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Abstract

Previous research has shown that a technique called error�correcting output coding �ECOC� can
dramatically improve the classi�cation accuracy of supervised learning algorithms that learn to
classify data points into one of k � � classes� This paper presents an empirical investigation
of why the ECOC technique works� particularly when employed with decision�tree learning
methods� It concludes that an important factor in the success of the method is the nearly
random behavior of decision tree algorithms near the root of the decision tree when applied to
learn di	cult decision boundaries� The results also show that deliberately injecting randomness
into decision tree algorithms can signi�cantly improve the accuracy of 
voting� methods that
combine the guesses of multiple decision trees to make classi�cation decisions�

� Introduction

Error�correcting output coding �ECOC� is a method for converting a k�class supervised learning
problem into a large number L of two�class supervised learning problems� Any learning algorithm
that can solve two�class problems� such as the decision tree algorithm C��� �Quinlan� 	

��� can
then be applied to learn each of these L problems� To classify a new �test� example� each of the
L learned decision trees is evaluated� Then the ECOC method tells how to combine the results
of these L evaluations to predict the class of the test example� Previous experimental research
�Bakiri� 	
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�� has shown that error�correcting output coding uniformly improves the classi�cation accuracy
of decision tree and neural network classi�ers when compared with the standard approaches to
k�class learning problems�

This paper shows that the ECOC strategy can be viewed as a compact form of �voting�� The
key to the success of this voting is that the errors committed by each of the L learned binary
functions are substantially uncorrelated� To explain why the ECOC strategy works� we must
therefore explain why the L learned binary functions make such uncorrelated errors�

The paper explores three hypotheses to explain why these errors are so uncorrelated� the
resampling hypothesis� the decision�boundary alignment hypothesis� and the random�algorithm�
behavior hypothesis� Experimental tests show that the random�algorithm�behavior hypothesis is
correct and that the other two hypotheses are incorrect� Furthermore� the random�algorithm�
behavior hypothesis suggests a new technique for improving the performance of the standard C���

	



algorithm� The paper describes experimental tests of this technique� and shows that it gives
performance nearly as good as the ECOC approach itself�

The remainder of this paper is structured as follows� First� we introduce our notation and
de�ne the error�correcting output coding method� Second� we brie�y summarize previous results for
error�correcting output coding� Third� we present two equivalent perspectives on error�correcting
output coding� an information�theoretic perspective and a geometric perspective� Both perspectives
will demonstrate the importance of learning binary functions with uncorrelated errors� Fourth�
we describe each of our three hypotheses in detail� This is followed by a series of experiments
designed to test the hypotheses� The paper concludes with a discussion of the experiments and
their implications for various methods of combining guesses from multiple learned hypotheses�

� Background

��� De�nitions

The goal of supervised learning for classi�cation is to learn a classi�cation function f�x� that takes
a description x of an input object and classi�es it into one of k classes� f�x� � fc�� � � � � ckg�
To learn this classi�cation function� a learning algorithm analyzes a set of training examples
f�x�� f�x���� �x�� f�x���� � � � � �xm� f�xm��g� Each training example is a pair consisting of a descrip�
tion of an object� xi� and its correct classi�cation� f�xi�� Each xi is typically represented by a
vector of n feature values that describe various properties of xi� We will refer to the feature values
describing example xi as a��xi�� � � � � an�xi�� We can view this vector of feature values as a point in
an n�dimensional feature space�

Some learning algorithms� such as C��� �Quinlan� 	

�� and CART �Breiman� Friedman� Ol�
shen� 
 Stone� 	
���� can solve such k�way classi�cation problems directly� However� many learning
algorithms are designed to solve binary ���class� classi�cation problems� The error�correcting out�
put coding �ECOC� technique studied in this paper is one of several techniques for converting a
k�way classi�cation problem into a set of binary classi�cation problems� It works as follows�

Let s�� � � � � sk be k distinct binary strings of length L� Choose these strings so that the Hamming
distance between every pair of strings si and sj is a large as possible� �The Hamming distance
between two binary strings is the number of bit positions in which the strings di�er�� We will call
each string si the codeword representing class ci� Table 	 shows an example of a set of 	� such
binary strings� The Hamming distance between each pair of these strings is always at least � bits�

Now� de�ne L binary classi�cation functions� f�� � � � � fL so that fj�x� � 	 if f�x� � ci and the
j�th bit of si is 	� Otherwise� fj�x� � �� These correspond to the columns of Table 	�

During supervised learning� each of the fj functions is learned by re�coding the examples to be
f�x�� fj�x���� �x�� fj�x���� � � � � �xm� fj�xm��g and applying a binary learning algorithm� The result

of this is a set of L hypotheses� f �f�� � � � � �fLg�
To classify a new example� x�� we compute a vector of binary decisions �s � h �f��x

��� � � � � �fL�x
��i

by applying each of the learned functions �fj to x�� Then� we determine which codeword si is
nearest to this vector �using the Hamming distance�� The predicted value of f�x�� is the class ci
corresponding to the nearest codeword si� For example� suppose that the predicted outputs for x�

are �s � h	� 	� �� �� �� 	� 	� 	� �� �� 	� �� �� �� 	i� We now compute the Hamming distance between this
string of predictions and each of the rows si of Table 	� The Hamming distances are shown in
Table �� Class c� has the smallest Hamming distance ���� so we predict �f �x�� � c��

The advantage of this scheme is that the codewords fs�� � � � � skg constitute an error�correcting
code� If the minimum Hamming distance between any pair of codewords is d� then any b�d� 	���c
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Table 	� 	��bit Error�correcting output code for a 	��class problem

Code Word �si�
Class i f� f� f� f� f� f� f� f� f	 f
 f�� f�� f�� f�� f��

� 	 	 � � � � 	 � 	 � � 	 	 � 	
	 � � 	 	 	 	 � 	 � 	 	 � � 	 �
� 	 � � 	 � � � 	 	 	 	 � 	 � 	
� � � 	 	 � 	 	 	 � � � � 	 � 	
� 	 	 	 � 	 � 	 	 � � 	 � � � 	
� � 	 � � 	 	 � 	 	 	 � � � � 	
� 	 � 	 	 	 � � � � 	 � 	 � � 	
� � � � 	 	 	 	 � 	 � 	 	 � � 	
� 	 	 � 	 � 	 	 � � 	 � � � 	 	

 � 	 	 	 � � � � 	 � 	 � � 	 	

Table �� Hamming distances between the string of predicted bits sx� and the codewords from
Table 	

Class Hamming Distance

c� �
c� 

c� �
c� �
c� �
c� �
c� 	�
c� �
c	 �
c
 �
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errors in the individual fj �s can be corrected� because the nearest codeword will be the correct
codeword�

By contrast� the standard approach to converting a k�way classi�cation problem into a set of
binary classi�cation problems is to de�ne one function fi for each class� such that fi�x� � 	 if
f�x� � i and zero otherwise �see Nilsson� 	
���� We call this the one�per�class �or OPC� method�
During learning� a set of hypotheses� f �f�� � � � � �fkg� is learned� To classify a new example� x�� we
compute the value of �fi�x�� for each i� The predicted value of f�x�� is the class ci for which �fi�x��
is maximized� �This approach works best for learning algorithms that produce a probability or
activation as the output��

The one�per�class approach can be viewed as an application of the ECOC approach where the
length of the code is equal to the number of classes� k� Each codeword has only one bit �the i�th
bit� set� The Hamming distance between any pair of codewords is only �� so no errors committed
in any bit position can be corrected�

��� The C��� algorithm

In this paper� our main goal is to explain why error�correcting output coding works so well with
decision�tree learning algorithms� Speci�cally� we employ the C��� algorithm �Quinlan� 	

��� C���
constructs a decision tree by analyzing a collection of examples� An example decision tree is shown
in Figure 	� Also shown is an equivalent set of nested if statements�

Recall that each example xi is represented by a vector of features ha��xi�� � � � � an�xi��i� Each
internal node of the tree tests the value of one of the features to see if it is greater than some chosen
constant value� If the test fails� control proceeds to the left child of the node� If the test succeeds�
control proceeds to the right child of the node� At the leaf node� �f�x�� the predicted class of x� is
assigned�

To construct a decision tree� C��� operates in two phases� �a� tree growth and �b� tree pruning�
During the tree growth phase� C��� begins at the root of the tree and chooses the best single test�
where a test is a combination of a feature �e�g�� a��x�� and a constant value �e�g�� 	���� The feature
and constant value are chosen to maximize a heuristic quantity called the �information gain ratio��
The exact details and justi�cation for this heuristic can be found in Quinlan �	

��� Intuitively�
the goal is to �nd the test that gives the most information about the identity of the true class of
x� f�x��

Once the best test is chosen� the training examples are divided into those examples that fail the
test and those that satisfy the test� The algorithm is then called recursively on these two subsets
of examples to create the two child subtrees of the root node�

C��� continues to partition the data until all of the examples at a node are from the same class�
At that point� it creates a leaf node that will assign �f�x� to have that class�

Once the tree has been grown� C��� next proceeds to prune it� The pruning process involves
deleting subtrees and replacing them with leaf nodes� These deletions are performed to avoid
over�tting the training data �i�e�� �nding ad hoc patterns in the data that will not generalize to
new examples�� C��� employs a technique called pessimistic pruning that computes an estimate of
the accuracy of a subtree and compares it to the estimated accuracy of the leaf node that would
replace it� If the leaf node is estimated to be more accurate� then the subtree is replaced by the
new leaf node�

This description of C��� captures the main properties of the algorithm� but it ignores many
subtleties� Quinlan �	

�� provides full details�

There are two points to note about C��� �and other decision�tree algorithms�� First� the decision
tree constructed by C��� can be viewed as partitioning the n�dimensional feature space into a set
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if a��x� � ��	
then if a��x� � ����

then if a��x� � ���

then �f�x� �� c�
else �f �x� �� c�

else �f�x� �� c�
then if a��x� � ���

then �f�x� �� c�
else �f�x� �� c�

Figure 	� C��� decision trees� �a� example tree and �b� an equivalent if�then�else expression�
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Figure �� Decision boundaries constructed by C��� for a ��class problem in a ��dimensional feature
space� Dashed lines show the true decision boundaries� Solid lines show splits chosen by C����
Various shapes show the training examples for the six classes�

of regions �one region for each leaf node�� Each region is labeled with one of the k class labels�
c�� � � � � ck� The boundaries separating these regions are parallel to the coordinate axes of the feature
space� Most of these boundaries separate regions belonging to di�erent classes� A boundary �or
part of a boundary� that separates regions belonging to two di�erent classes is called a decision

boundary� In learning problems where the true decision boundaries are not axis�parallel� C��� will
need to construct a kind of �staircase approximation� by using many internal nodes�

Figure � shows a ��class problem that we will use for illustration throughout this paper� Each of
the ��� training examples has only two features� so it can be plotted as a point in this ��dimensional
feature space� The true decision boundaries are shown as dashed lines� The �gure also shows �as
solid lines� the boundaries constructed by C��� when it is trained on these ��� examples� Notice
the �staircase approximations� to the curved decision boundaries�

The second point to note about C��� is that the amount of data available to guide the choice
of tests is greatest for the choice of the root node and decreases toward the leaves� Several authors
have pointed out that C��� often makes its worst errors at nodes derived from a small number of
examples �Holte� Acker� 
 Porter� 	
�
�� This is part of the rationale for the pruning phase of
C���� From this observation� one might believe that C��� will make its most reliable choices of
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Figure �� Performance of the one�per�class and ECOC methods relative to the direct multiclass
method using C���� Asterisk indicates di�erence is signi�cant at the ���� level or better� The glass�
vowel� soybean� audiology �standardized encoding�� ISOLET� letter recognition� and NETtalk data
sets are all from the Irvine respository �Murphy 
 Aha� 	

��� The POS task is to predict the
part�of�speech of unknown words �Claire Cardie� personal communication� from their context�

decision�tree tests when it is still at or near the root of the tree �and hence� has a lot of training
examples to analyze�� However� it is easy to construct problems� such as parity� in which the
information gain ratio heuristic cannot distinguish between tests of important features and tests of
features that take on random values�

These two points will be important for understanding the remainder of the paper�

��� Previous work on error�correcting output coding

We now summarize the results of previous work on error�correcting output coding�
Dietterich 
 Bakiri �	

�� have shown that the error�correcting output coding technique works

very well with the decision�tree algorithm C���� Figure � compares the performance of C��� in eight
domains� Three con�gurations of C��� are compared� �a� multiclass� in which a single decision tree
is constructed to make the k�way classi�cation� �b� one�per�class� in which k decision trees are
constructed� and �c� the error�correcting output coding� in which L decision trees are constructed�

In this �gure� the light bar shows the performance �in percent correct� of the one�per�class
approach� and the dark bar shows the performance of the longest error�correcting code tested�
Performance is displayed as the number of percentage points by which each algorithm di�ers from
the multiclass approach� An asterisk indicates that the di�erence is statistically signi�cant at the
p � ���� level according to the binomial test for the di�erence of two proportions�

From this �gure� we can see that the one�per�class method performs signi�cantly worse than
the multiclass method in �ve of the eight domains and is statistically indistinguishable in the
remaining three domains� Much more important is the observation that the error�correcting output
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Figure �� A model of inductive learning as a communications problem�

code approach is signi�cantly superior to the multiclass approach in six of the eight domains and
indistinguishable in the remaining two�

To understand why the ECOC approach works so well with decision trees� we begin by presenting
two approaches to understanding error�correcting output coding�

� Two Perspectives on Error�Correcting Output Coding

��� Error�correcting output coding and communication theory

Claude Shannon �	
��� showed that whenever the transmission rate required by a communication
system is less than the capacity of the communication channel� it is possible to achieve arbitrarily
small error rates by using codes with redundancies� The key idea behind his channel coding
theorem is that we can use the channel many times in succession independently� Assuming that
errors introduced by the channel are independent� then a su�ciently long code can achieve an
extremely small probability of error�

We can conceive of inductive learning as a communications problem �see Figure ��� Imagine
a communications problem in which the sender wishes to communicate a function f to a receiver
through a channel� The �channel� is a two�class inductive learning algorithm� The sender does
not have direct access to the function f � Rather� the sender can only obtain a random sample of
f of size m�that is� a set of m examples of the form hx� f�x�i� The sender must communicate
with the receiver by sending sets of training examples through the channel� The primary freedom
the sender has is that the sender can encode these training examples and transmit them to the
learning algorithm as many times as necessary� The sender and receiver can agree on the encoding
and decoding procedures before the training examples are given to the sender�

One strategy the sender can use is the error�correcting output code approach� The training set
is transmitted to the receiver L times� once for each bit position in the L�bit error�correcting code�
When the training set is transmitted for the j�th time� the examples are labeled according to bit
position j in the error�correcting code�

The receiver receives a sequence of L hypotheses� �f�� � � � � �fL� The receiver constructs the com�
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Figure �� Performance of C��� on the Letter Recognition task as a function of the length of the
error�correcting code�

bined hypothesis for f by using error�correcting decoding� To compute �f�x�� for a point x�� the
receiver evaluates �f��x

��� � � � � �fL�x
�� to construct a bit string s�� It then �nds the codeword si that

is nearest to s� in Hamming distance as sets �f �x�� � ci�
We can see that if the errors introduced by the learning algorithm in each of the hypotheses �fl

are independent� then the error between �f and f can be made as small as desired by making the
code arbitrarily long�

Unfortunately� the errors committed when learning fi and fj are not independent� There are
many ways to demonstrate this� First� experiments with the ECOC method have shown that as
the code is lengthened� the accuracy of the learned function �f ceases to improve beyond a certain
point� Figure � shows this for C��� on the letter recognition task� At ����bits� the accuracy of �f is
still increasing� but very slowly� It is unlikely to reach 	��� correct regardless of the length of the
code� Similar behavior is seen in all eight of the domains we have studied�

More direct evidence for dependencies between the errors of �fi and �fj is shown in Figure ��
The horizontal axis in this �gure shows the Hamming distance between the columns of an error�
correcting code �in this case� a code of length ��� for the ���class letter recognition task�� If the
columns de�ning fi and fj are separated by an intermediate Hamming distance of around 	� bits�
then those functions are very di�erent from one another� Conversely� if the Hamming distance is
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Figure �� Number of simultaneous errors as a function of the Hamming distance between columns
of the code� Each point shows the average number of simultaneous errors �on 	��� test examples�
of all pairs of function �fi and �fj separated by the indicated Hamming distance�

near � or near ��� then the functions are nearly identical or nearly complementary� The vertical axis
in the �gure shows the average number of simultaneous errors committed by all pairs of functions
fi and fj separated by a given Hamming distance� Clearly� functions that are more similar to one
another make a larger number of simultaneous errors� Hence� the errors committed by pairs of
functions are not independent�in fact� they can be predicted by knowing the Hamming distance
between the functions� Nonetheless� even for the worst function pairs� the error correlation is quite
low� The maximum number of simultaneous errors was less than 		� of the 	��� test examples�

��� Error�correcting output coding and decision boundaries

The second perspective on ECOC that we will consider is based on considering the behavior of
ECOC along the decision boundaries in feature space� Consider Figure �� which shows the decision
boundaries from Figure �� Each segment of the decision boundaries has been given a unique
label �e�g�� B��a is one of boundaries separating class c� from class c��� When we applied the
C��� multiclass algorithm to this problem� it was forced to learn all of the decision boundaries
simultaneously�

However� if we consider the ECOC approach� each individual binary function� fl� must only
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Figure �� Superimposed decision boundaries learned by functions f� through f	 on our example
learning problem�

learn some of the decision boundaries� and this set of decision boundaries varies from one function
fl to another� For this ��class problem� we have constructed an error�correcting output code of
length L � �	 bits� The function f�� for example� labels examples from classes c� and c� as 	 and
all others as �� Hence� it must learn the decision boundaries labeled B�	� B��� B��a� B��� and
B��b� The function f��� on the other hand� labels examples from classes c�� c�� and c� as 	 and all
others as �� It must learn boundaries B��� B	�a� B��� and B	�b� In fact� each boundary is learned
exactly 	� times in this �	�bit code�

Figure � shows the decision boundaries learned by functions f� through f	 of our �	�bit error
correcting output code �the remaining �� functions were omitted to improve readability�� We
can see that each of the decision boundaries has been learned approximately � times� and that
the various boundaries are not identical� This means that in the neighborhood of the decision
boundary� di�erent binary functions �fl are making di�erent decisions� To classify a new point x�

near the decision boundary� these various binary functions e�ectively �vote� to determine on which
side of the boundary the x� should be placed� Our �	�bit code can correct � errors� Since each
decision boundary is learned 	� times� this means that x� will be properly classi�ed if the majority
of the �fl have made the correct prediction�

This decision boundary perspective on error�correcting output coding also explains why the
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Table �� Comparison of three con�gurations of C��� on the data from Figure �
Method � Incorrect

C��� one�per�class 	���

C��� multiclass 
�	

C��� �	�bit ECOC ���

one�per�class approach works poorly� In the OPC method� each boundary is learned twice� For
example� boundary B�� is learned once when we attempt to discriminate class c� from all of the
other classes� and it is learned again when we try to discriminate class c� from all of the other
classes� With only two hypotheses along each decision boundary participating in a �vote�� there is
no way to recover from any errors�

To establish baseline performance on this ��class problem� we applied C��� in its multiclass
con�guration as well as C��� with the OPC and �	�bit ECOC con�gurations� A training set of
��� training points �and an independent set of ��� test points� was drawn uniformly at random�
As Table � shows� the error�correcting code approach performs better than either of the other
methods� The di�erence between OPC and multiclass C��� is statistically signi�cant �p � ������
the di�erence between OPC and ECOC is also statistically signi�cant �p � ����	��

� Three Hypotheses

Based on the two perspectives presented in the previous section� we can formulate three hypotheses
to explain why the errors made by individual fl functions are fairly independent�

��� The Resampling Hypothesis

Consider again Figure � and the decision�boundary segment B��a� Any function fl that labels c�
and c� di�erently must learn this boundary� But sometimes� when we are learning this boundary�
c� and c� are grouped together� while at other times� c� and c� are labeled di�erently� When c�
and c� are grouped together� all of their combined training examples lie to the left of segment B��a
and can help a learning algorithm learn that segment� On the other hand� when c� is assigned
a di�erent label than c�� only the training examples from c� are available to help learn boundary
B��a� Let us de�ne the set of training examples within a �xed distance D of a decision boundary
to be the relevant training examples for that boundary�

From this example� we can see that the set of relevant training examples for a given decision
segment changes from one fl to another� The resampling hypothesis asserts that it is these di�erent
relevant examples that in�uence the learning algorithm and cause it to make uncorrelated errors
in the di�erent fl�s�

We call this the �resampling hypothesis�� because it is related to the statistical sampling tech�
nique of bootstrapping �Efron 
 Tibshirani� 	

	� Efron 
 Gong� 	
���� In bootstrapping� a
learning algorithm is repeatedly applied to various subsets of the training set� From a training
set of size m� each subset is constructed by making m draws�with replacement�from the full
training set� If the resampling hypothesis correctly explains ECOC� it suggests that a similar boost
in performance could be obtained by drawing many bootstrap samples� applying C��� OPC to each
sample� and taking a vote among the learned hypotheses�
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Figure 
� The root splits computed by C��� for function f�
 �the right�most vertical line� and f��
�the left�most vertical line��

��� The Decision�Boundary Alignment Hypothesis

The C��� algorithm is a global algorithm� By this we mean that the position of a decision boundary
near any given point x� can be in�uenced by training examples that are very far away from that
point� This is quite di�erent from algorithms� such as the nearest neighbor algorithm� in which
only the training examples nearest to x� in�uence the position of any nearby decision boundary�

The decision�boundary alignment hypothesis is based on the observation that di�erent fl�s will
be learning di�erent sets of decision boundaries� Di�erent global alignments of these boundaries
may in�uence C��� to place its splits in di�erent positions� and this could produce the observed
low correlation among the errors in the �fl�s�

Consider again Figure �� Suppose we are learning boundaries B�	 and B��a for a boolean
function fl� These boundaries are approximately aligned vertically� so C��� will be encouraged to
choose a vertical split located along these segments� In fact� for f�
� the classes c�� c�� and c� are
grouped together� and Figure 
 shows the �rst split chosen by C����

By contrast� if we consider function f��� it groups together classes c�� c�� c�� and c�� Figure 

shows the �rst split chosen by C��� in this case too� Notice that the position has shifted to the left�
Hence� along boundary B�	� changes in a distant decision boundary �e�g�� B�� instead of B��a�
have changed the position of C����s decision boundary�
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To test this hypothesis� we could force the learning algorithm to be local by considering only
training examples near the decision boundary� Speci�cally� suppose that we delay performing any
runs of C��� until we receive a test example x� to classify� Then� we compute a set of the r nearest
points to x� and run C��� �with ECOC� on those points to classify x�� According to this boundary
alignment hypothesis� such a �local� C��� with ECOC would not exhibit the performance advantage
over C��� OPC that we have observed with global C����

��� The Random�Algorithm�Behavior Hypothesis

Our third hypothesis is based on the observation that the decision boundaries learned by ECOC are
more complex than the boundaries learned in the one�per�class con�guration of C���� The random�
algorithm�behavior hypothesis asserts that these boundaries are so complex that the behavior of
the learning algorithm near the root of the decision tree becomes random� and this high level
randomness creates the uncorrelated errors�

There is a large amount of evidence to show that the decision boundaries learned by ECOC are
more complex than the boundaries learned by the OPC con�guration� In our simple problem in
Figure �� the OPC method must learn only 	� boundary segments �each of the nine segments is
learned twice�� for an average of � segments per decision tree� By comparison� ECOC must learn
each segment 	� times �for a total of 	�� segments�� This gives an average of ��� segments per
decision tree�

Experimentally� we can compare the size and error rate of the individual binary decision trees
learned by C��� in the OPC and ECOC con�gurations� The one�per�class con�guration constructs
trees with an average of 	���� leaves per tree �after pruning�� We can measure the error rate of these
binary trees individually on the test set� The average individual error rate is ����� In comparison�
the ECOC con�guration constructs trees with an average of ����� leaves per tree �after pruning�
and an average individual error rate of ����� From these statistics� we can see that the ECOC
trees are more complex and have higher individual error rates �on average� than the OPC trees�

When C��� is confronted with a very di�cult learning problem� none of the splits available at
the root of the tree appears very promising� and many splits have nearly equal information gain
ratio scores� Hence� the choice of the split at the root is somewhat random� The random�algorithm�
behavior hypothesis claims that this randomness near the root of the tree in�uences subsequent
split decisions� so that the staircase approximations constructed for the decision boundaries become
uncorrelated�

This hypothesis predicts that if the behavior of C��� near the root is forced to be constant �i�e��
independent of the data�� then the errors between di�erent fl�s will become strongly correlated�
It also makes a prediction that has the potential for boosting the performance of multiclass and
OPC C���� Suppose we construct several sets of OPC decision trees while deliberately injecting
randomness into the split decisions made near the root of the decision trees� The random�algorithm�
behavior hypothesis predicts that these multiple OPC trees will make fairly uncorrelated errors�
and hence� if they are combined by voting� a substantial performance improvement will be obtained�

� Experimental Tests of the Hypotheses

��� Comparison of Bootstrap OPC with ECOC

To test the resampling hypothesis� we generated eight random subsets of the training set �for our
example problem from Figure ��� and trained one collection of one�per�class decision trees on each
of these training sets� We chose this ��fold bootstrap so that each decision boundary would be
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Figure 	�� A synthetic problem with no alignments among decision boundaries

learned an equivalent number of times in the OPC and ECOC con�gurations� Each collection of
OPC trees learns the 
 decision boundaries twice� so eight replications gives 	�� decision boundary
hypotheses�the same number as the �	 ECOC trees�

With the ��fold bootstrap� the error rate of OPC decreased from 	���� to 	����� This is still
substantially worse than the ���� error obtained by ECOC� Even with a ���fold bootstrap� the
error rate for OPC voting only decreased to 
���� From this experiment� we conclude that while
the boostrap hypothesis may explain some of the di�erence between OPC and ECOC� it does not
explain all of the performance di�erence�

��� Tests of the Decision�Boundary Alignment Hypothesis

To test the decision�boundary alignment hypothesis� we constructed a problem in which none
of the decision boundaries are aligned �see Figure 	��� Despite this absense of alignments among
decision boundaries� Table � shows that ECOC still works much better than the one�per�class
method and slightly better than multiclass C��� on this problem�

As we suggested above� another way of testing the decision�boundary alignment hypothesis is
to modify C��� to make it a local� lazy algorithm� No analysis of the training data is performed
until a test example� x� is presented� Then� we compute the r training example data points nearest
to x� �in Euclidean distance� and construct a training set containing only these data points� C��� is
then trained using this very small training set �and using either the OPC or ECOC con�guration��
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Figure 		� Performance of local versions of C���� Decision trees for either the one�per�class �OPC�
or �	�bit error�correcting output code �ECOC� con�guration were trained on the r nearest neighbors
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Table �� Performance on the problem from Figure 	�
Method � Incorrect

C��� multiclass 		��

C��� one�per�class 	���

C��� �	�bit ECOC 	���

The test point x� is then classi�ed using the resulting decision trees� For each test data point� a set
of local decision trees must be produced in this fashion�

Figure 		 compares the performance of C��� OPC and �	�bit ECOC as a function of the value
of r� Because there are ��� training examples� all values of r less than 	� are certainly preventing
any distant decision boundaries from in�uencing the behavior of C���� Nonetheless� we see that
there is still a substantial performance advantage for the ECOC con�guration� even when r is very
small� The decision�boundary alignment hypothesis would have predicted that there would be no
di�erence in the performance of these algorithms for small r values�

Based on these two experiments� it is quite clear that the decision�boundary alignment hypoth�
esis is incorrect�

��� Tests of the Random�Algorithm�Behavior hypothesis

The random�algorithm�behavior hypothesis predicts that if the behavior of the learning algorithm
is forced to be constant near the root of tree� then the errors between di�erent fl�s will become
strongly correlated� To test this hypothesis� we implemented a �constant splits� version of C���
in which the �rst four levels of the decision tree have �xed values such that the feature space is
split into 	� square regions of equal size� After these �xed splits� the information gain heuristic of
C��� is permitted to choose any further splits that are needed� We then computed the number of
simultaneous errors committed by these �	 decision trees on each test data point and plotted them
in Figures 	� and Figure 	��

Figure 	� shows the distribution of simultaneous errors for the standard ECOC con�guration�
It clearly shows that most of the errors are committed simultaneously by only a small fraction of
the �	 decision trees� Because the �	�bit code can correct any � errors made by individual trees�
all cases with � or fewer simultaneous errors will be correctly classi�ed�

In contrast� Figure 	� shows the distribution of simultaneous errors when the top four levels of
the tree were held constant� We can see many test cases having � or 	� simultaneous errors� These
test cases will be incorrectly classi�ed� Hence� it is not surprising that the error rate of ECOC
worsens from ���� for the standard �	�bit ECOC to 
��� for the constant�splits ECOC con�gura�
tion� Interestingly� the error rate for individual decision trees on the constant�splits con�guration
actually improved �from ���� for standard �	�bit ECOC to ���� for the constant�splits ECOC��
However� because these ���� errors were more highly correlated with one another� the aggregate
performance worsened� This provides support for the random�algorithm�behavior hypothesis�

Another test of the random�algorithm�behavior hypothesis can be obtained by injecting ran�
domness into the OPC con�guration of C���� learning several sets of OPC trees� and having them
vote to classify test examples� We implemented a version of C��� that computes the seven best
candidate splits and then chooses randomly from those splits� We only permit these randomized
splits for the �rst � levels of the decision tree� Beyond that point� the algorithm reverts to choosing
the best possible split�

This approach of injecting randomness is similar to previous methods of constructing multiple
decision trees and then having them vote to classify test examples� Kwok 
 Carter �	

�� con�
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Figure 	�� Bit�Error Distribution in Fixed�Split Learning

	




0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30

N
um

be
r 

of
 T

es
t E

xa
m

pl
es

Number of Bit-Errors in a Single Test Data

Figure 	�� Bit�Error Distribution in ECOC

��



structed multiple trees by manually altering the choices of C��� near the root of the decision tree�
Buntine �	

�� evaluates an algorithm in which all equally promising splits at a node are pursued
to construct an �option tree� �essentially a kind of decision DAG with multiple paths from the root
to each leaf�� When a new example is classi�ed� all of these multiple paths are followed� and the
results are averaged� Both of these previous studies showed improved performance�

Because ECOC is combining the votes of �	 trees� we chose to combine the votes of a nearly
equal number of OPC trees�speci�cally� �� trees �i�e�� � full sets of � trees each�� Five trees were
learned for each class� To classify a test example� x�� the C��� probability outputs of those �ve trees
were summed to determine a score for that class� This was repeated for each of the six classes� The
class with the highest score was chosen as the predicted class of the test example�

The error rate of this ��fold randomized OPC was ����� which is statistically indistinguishable
from the error rate of ���� achieved by our standard �	�bit ECOC con�guration� Based on this
result� we conclude that the primary explanation for the excellent performance of error�correcting
output coding is the random behavior of C��� near the root of the decision tree�

� Discussion

So far� we have only considered arti�cial ��dimensional problems for ease of illustration� In this sec�
tion� we compare results on the Vowel speech recognition task obtained from the CMU connectionist
benchmark collection �also available from the UC Irvine database��

The Vowel problem has 		 classes� Each training example is represented by 		 continuous
features� Table � shows the performance of �ve di�erent con�gurations of C��� on this task� As we

Table �� Performance of �ve con�gurations of C��� on the Vowel problem�
Method � Incorrect

C��� one�per�class ����

C��� multiclass ����

C��� ��fold randomized OPC ���


C��� ���bit ECOC ���	

C��� ����bit ECOC ����

have seen in our synthetic problems� the OPC and multiclass con�gurations of C��� perform much
worse than the ECOC con�gurations� However� notice that a ��fold randomized OPC con�guration
�which has �� trees� performs almost as well as the ���bit ECOC con�guration �which has �� trees��
This experiment therefore con�rms that injecting randomness into C��� and voting multiple trees
can obtain performance similar to that obtained by error�correcting output codes�

� Concluding Remarks

The experiments in this paper show that the most plausible explanation of the success of error�
correcting output coding is that the complex decision boundaries constructed by error�correcting
output codes cause C��� to make random choices for splits near the roots of the decision trees�
These random choices decorrelated the errors made by the various binary functions learned in the
ECOC approach�

The paper also showed that the key factor determining the performance of the ECOC approach
is the degree of independence in the errors committed by the learned binary functions� If we view

�	



inductive learning as a communications problem� the independent errors allow us to apply results
from coding theory� If we view inductive learning as a form of voting along the decision boundaries
in feature space� then independent errors enable us to estimate the correct decision boundaries
much more accurately�

These observations hold for any method that combines multiple hypotheses through some kind
of voting scheme� There has recently been an explosion of interest in combining multiple hypotheses�
including� for example� the work of Schapire �	

��� Freund �	

��� and Drucker et al� �	

�� on
the �boosting� method and the work of Perrone 
 Cooper �	

�� on taking linear combinations of
neural networks trained from di�erent starting seeds� Much attention has been paid to �nding the
optimal way of combining the votes of multiple hypotheses� but this ignores the most important
question� Are the multiple hypotheses involved in the voting process making independent errors�
If so� almost any voting scheme will give good results� If not� then no voting scheme can correct
the correlated errors�

The key open problem in this research area is to develop methods for constructing multiple
hypotheses so that their errors are uncorrelated� This paper describes two such methods� the
error�correcting output coding method and the method of injecting randomness near the root of
the decision tree in C���� The success of the boosting method may also derive directly from its
algorithm for constructing multiple hypotheses� More methods need to be developed and evaluated�
and all of these methods need to be compared to one another�

The error�correcting output coding method is only applicable to problems with at least �ve
classes� and it shows promise of scaling to problems with a very large number of classes� These may
turn out to be precisely the cases where this method outperforms all other methods� An important
problem for future research is to study the e�ectiveness of various voting techniques on problems
having hundreds or thousands of classes�
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