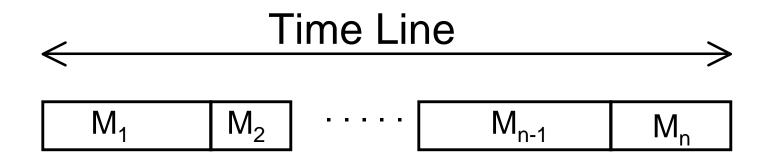
Learning First-Order Temporal Logic Formulas

Alan Fern and Robert Givan

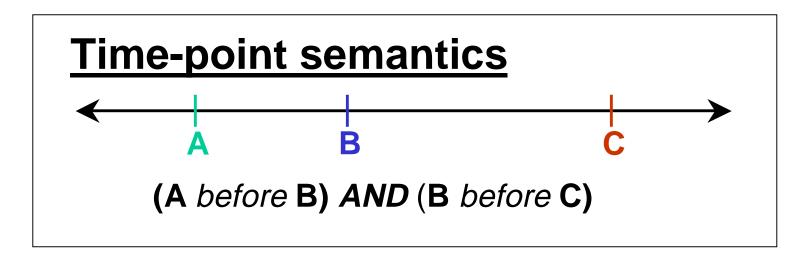
Electrical and Computer Engineering Purdue University

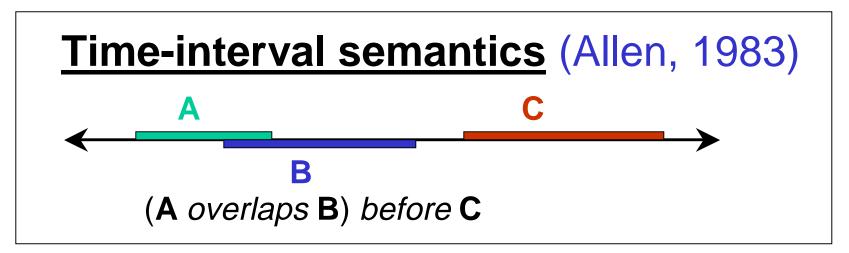
Overview

- Temporal Logic
- Motivation
 - Learning Visual Event Definitions
 - Learning Control Knowledge for Planners
 - Relational Reinforcement Learning

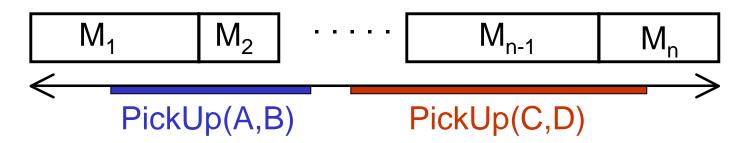

• Related ML Techniques

- Propositional sequence mining
- Explicit and propositional FSA/HMM inference
- Inductive Logic Programming


Temporal Models

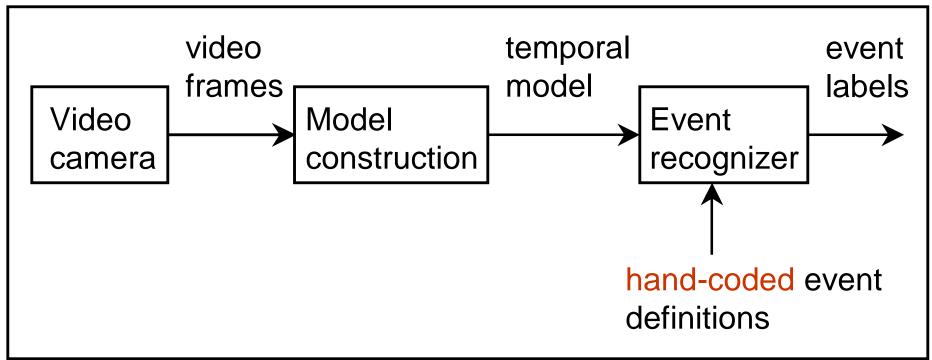

Linear temporal model: a sequence of atemporal models.

Atemporal model: a traditional first-order or propositional model.


Time-points vs. Time-intervals

Typical Learning Scenario

<u>**Given</u>**: a linear temporal model and a set of intervals labeled by events.</u>



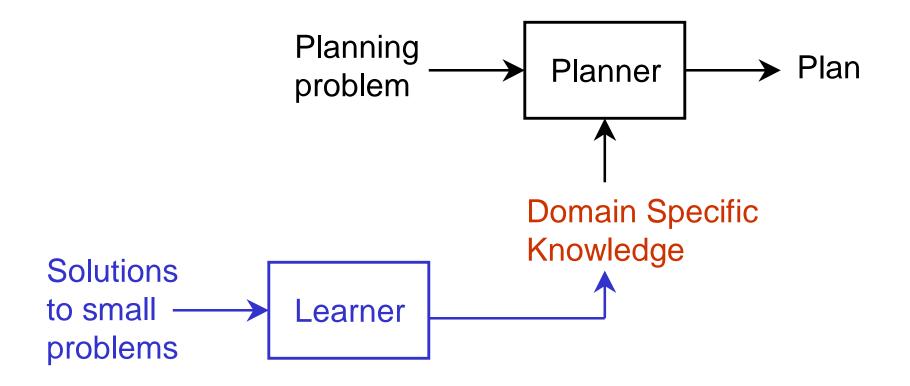
<u>Output</u>: a temporal logic formula *E* defining the events in the training set.

$$\operatorname{PickUp}(x, y) \equiv E(x, y)$$

Visual Event Recognition

The LEONARD system (Siskind. to appear in JAIR)

Example event label: PUT(A,B)@I Agent A put down object B during time interval I.


Visual Event Characteristics

- First-Order Structure there are objects and relations among them.
- **Temporal Structure** there are relationships among time-intervals.
- Hierarchical Structure events are composed of related sub-events.

Example Event-Logic Formula

 $Put(x, y) \equiv$ $\left[\text{attached}(x, y) \land \text{supports}(x, y) \right] \\ \land_{meets} \\ \left(\exists z \right) [z \neq x \land \text{supports}(z, y)]$

Learning Temporal Logic Formulas for Planning

Example Domain Knowledge: Don't move blocks that are 'solved'.

Learning Declarative Control Rules

• (Huang, Selman & Kautz. ICML'00) learn control rules from examples of optimal plans for simple problems.

Policy Constraints:

Antecedent(X) \rightarrow action(X)

Antecedent(X) $\rightarrow \neg action(X)$

Research Direction: Learn general FO temporal logic formulas in the spirit of TL-Plan (Bacchus & Kabanza, AlJ'00).

- Allow for state constraints in rule heads.
- Allow for temporal constraints in rule bodies.
- Constrain the strategy/program rather than the policy.

Relational Reinforcement Learning

- Learning HAMs, options, macros in relational domains
- Approach: initially consider deterministic goal-based domains, as in

(Dzeroski, De Raedt, & Driessens. MLJ'01)

Related ML Techniques

- Mining propositional time-point patterns (Mannila & Toivonen. KDD'95) (Agrawal & Srikant. ICDE'95)
- Mining propositional time-interval patterns (Cohen, P. 2001) (Kam & Fu 2000)
 (Rainsford & Roddick 1999)
- FSM/HMM Induction
- Inductive Logic Programming

References

Agrawal, R., & Srikant, R. (1995). Mining Sequential Patterns. International Conference on Data Engineering.

Allen, J. (1983). Maintaining Knowledge about Temporal Intervals. Communications of the ACM. (26),11.

Bacchus, F., & Kabanza, F. (2000). Using Temporal Logics to Express Search Control Knowledge for Planning. *Artificial Intelligence* (16).

Cohen, P. (2001). Fluent Learning: Elucidation the Structure of Episodes. Symposium on Intelligent Data Analysis.

Dzeroski, S., De Raedt, L., & Driessens, K. (2001). Relational Reinforcement Learning. Machine Learning (42).

- Huang, Y., Selman, B., & Kautz, H. (2000). Learning Declarative Control Rules for Constraint-Based Planning. International Conference on Machine Learning.
- Kam, P., & Fu, A. (2000). Discovering Temporal Patterns for Interval-Based Events. *International Conference on Data Warehousing and Knowledge Discovery*.
- Mannila, H., & Toivonen, H. (1995). Discovering Frequent Episodes in Sequences. International Conference on Knowledge Discovery and Data Mining.
- Rainsford, C., & Roddick, J. (2000). Temporal Interval Logic in Data Mining. *Pacific Rim International Conference* on Artificial Intelligence.
- Siskind, J. (to appear). Grounding the Lexical Semantics of Verbs in Visual Perception Using Force Dynamics and Event Logic. *Journal of Artificial Intelligence Research*.