
Under consideration for publication in J. Functional Programming 1

E D U C A T I O N A L P E A R L

Escape from Zurg: An Exercise in Logic
Programming

MARTIN ERWIG
School of EECS, Oregon State University, Corvallis, Oregon 97331, USA

(e-mail:erwig@cs.orst.edu)

Abstract

In this article we will illustrate with an example that modern functional programming languages
like Haskell can be used effectively for programming search problems, in contrast to the widespread
belief that Prolog is much better suited for tasks like these.

1 Introduction

It is a common belief that Prolog isthe language of choice to solve search problems. One
strong point of Prolog is its built-in backtracking ability, which can save considerable work
in handling search problems. On the other hand, Haskell (Peyton Jones, 2003) provides a
powerful type system, higher-order functions, and lazy evaluation. We want to illustrate
in this paper that these elements taken together make it as easy in Haskell (and maybe
even easier) to express and solve search problems as it is in Prolog. For example, lazy
evaluation facilitates the concise description of the search space because the specification
of an infinite data structure—the search tree—can be written down without running into
nontermination as long as only a finite part of it is processed. This idea is not new; it has
been described by Phil Wadler (Wadler, 1985) before. However, rewriting this encoding for
every search problem from scratch is tedious, error-prone, and can distract from the very
search problem that is to be implemented. In Haskell, the concept of type classes offers a
clean way to formulate the solution once and reuse it in different instances. Additionally,
Haskell data types allow (and enforce to some degree) formulation of the problem in an
adequate fashion.

An alternative approach is to embed a Prolog-like language into a functional language.
This has been demonstrated in (Seres & Spivey, 1999; Claessen & Ljunglö, 2000) for
Haskell and in (Haynes, 1987) for Scheme. However, our goal is to express search problems
functionally without resorting to a multi-paradigm approach.

The example that we want to consider is a homework problem that we have given in a
graduate level course on programming languages (Erwig, Fall 2001). The problem was one
of several exercises to practice programming in Prolog. After observing that many students
had problems manipulating term structures in Prolog (after already having learned to use
data types in Haskell) and spending a lot of time on debugging, the question arose whether
it would be as difficult to develop a solution for this problem in Haskell. This programming
exercise worked well, and we report the result in this paper.

In the rest of this paper we will describe the requirements for teaching the programming

2 Martin Erwig

of search problems in Haskell in Section 2. The example problem is described in Section
3. In Section 4 we show an example solution in Prolog. Section 5 presents the Haskell
solution to the problem. Conclusion given in Section 6 complete this paper.

2 Teaching Search Programming in Haskell

To teach search programming in Haskell as proposed here, students should already have
a solid understanding of essential functional programming concepts, such as, recursion,
lists, and higher-order functions. In addition, students have to understand type classes, data
types, and lazy evaluation, because these are used to create the modular solution.

First, a type class is used to separate the generic description of search problems from a
particular problem instance. In particular, we make use of multi-parameter type classes to
parameterize a search problem by the type of states and the type of moves. Multi-parameter
type classes need not necessarily be known in advance. In fact, theSearchProblem class
can serve as a motivating example to introduce multi-parameter type classes. The class
itself can be developed in steps. Initially, a single-parameter version can be defined that is
parameterized only over the type of search states. Then, recognizing that for some search
problems, like the one discussed here, the solution states are not as interesting as the moves
that lead to them, a generalization to two type parameters can be performed.

Second, data types are employed in the chosen example to create a model of the appli-
cation. Data types provide a higher-level means of modeling the application than encoding
all the information pieces by plain lists and tuples. Again, the encapsulation of the general
search process in a type class is helpful since it allows us to focus completely on modeling
the application because we do not have to deal with the search. This situation is similar in
Prolog where the search procedure is built into the language. However, compared to Pro-
log terms, Haskell data types provide as a typed representation immediate feedback about
illegal combinations of moves and states, which otherwise can cause a lot of debugging
effort in untyped respresentations.

Third, knowledge of lazy evaluation is required to understand how the potentially infinite
state space can be described in Haskell. A simple breadth-first search is implemented by
creating a list of states through repeated appending of successor states. Depending on the
focus and available time for dealing with search programming one might want to discuss
this aspect in more depth. For example, it is relatively easy to generalize the class by
parameterizing the construction of the search space by a search strategy. Again, since the
search problem is isolated in a type class, this discussion does not affect the modeling of
applications.

The implementation of search problems is discussed only in a few ML or Haskell text-
books. For example, Paulson (Paulson, 1996) describes the implementation of search pro-
gramming in ML in the context of a theorem prover. Rabhi and Lapalme describe how
to implement backtracking algorithms in Haskell (Rabhi & Lapalme, 1999). They employ
an explicitly defined depth-first search algorithm and do not use type classes to separate
the problem class from the applications. In particular, they do not distinguish a separate
type of moves, which makes the described approach inappropriate for the example prob-
lem discussed here. Felleisen et al. (Felleisenet al., 2001) describe in their book a similar
example, the problem of three missionaries and cannibals crossing a river. This example

Escape from Zurg 3

is given as an exercise in the context of programming with generative recursion and accu-
mulators, which are discussed in great depth as a means to retain context information in
recursive function definitions.

3 The Example Problem

The problem to be solved was called “Escape from Zurg” and reads as follows:

Buzz, Woody, Rex, and Hamm have to escape from Zurg.a They merely have to cross
one last bridge before they are free. However, the bridge is fragile and can hold at most
two of them at the same time. Moreover, to cross the bridge a flashlight is needed to
avoid traps and broken parts. The problem is that our friends have only one flashlight
with one battery that lasts for only 60 minutes (this is not a typo:sixty). The toys need
different times to cross the bridge (in either direction):

TOY TIME

Buzz 5 minutes
Woody 10 minutes
Rex 20 minutes
Hamm 25 minutes

Since there can be only two toys on the bridge at the same time, they cannot cross the
bridge all at once. Since they need the flashlight to cross the bridge, whenever two have
crossed the bridge, somebody has to go back and bring the flashlight to those toys on
the other side that still have to cross the bridge.

The problem now is: In which order can the four toys cross the bridge in time (that
is, in 60 minutes) to be saved from Zurg?

a These are characters from the animation movie “Toy Story 2”.

Try to solve the problem in your favorite language.

4 A Prolog Solution

Writing a Prolog program for solving the riddle is in principle a rather straightforward
task—at least once it has been figured out how to represent the problem. As it turned out,
this last aspect seemed to have been the major reason that quite a few students had problems
with the assignment. The most difficult part for the students was to find an appropriate term
representation for the states of the search problem, that is, the position of toys on either side
of the bridge and the position of the flashlight. In particular, the two prevailing mistakes
were to use too complex term structures or predicates and to use terms inconsistently, or
even in a few cases to confuse predicates and terms. Several programs did not terminate.
The reference solution is shown in Figure 1 to serve as a comparison with the Haskell
solution to be developed in the next section.

The idea of the Prolog program is to represent an intermediate state of a bridge crossing

4 Martin Erwig

time(buzz,5).

time(woody,10).

time(rex,20).

time(hamm,25).

toys([buzz,hamm,rex,woody]).

cost([],0) :- !.

cost([X|L],C) :-

time(X,S),

cost(L,D),

C is max(S,D).

split(L,[X,Y],M) :-

member(X,L),

member(Y,L),

compare(<,X,Y),

subtract(L,[X,Y],M).

move(st(l,L1),st(r,L2),r(M),D) :-

split(L1,M,L2),

cost(M,D).

move(st(r,L1),st(l,L2),l(X),D) :-

toys(T),

subtract(T,L1,R),

member(X,R),

merge_set([X],L1,L2),

time(X,D).

trans(st(r,[]),st(r,[]),[],0).

trans(S,U,L,D) :-

move(S,T,M,X),

trans(T,U,N,Y),

append([M],N,L),

D is X + Y.

cross(M,D) :-

toys(T),

trans(st(l,T),st(r,[]),M,D0),

D0=<D.

solution(M) :- cross(M,60).

Fig. 1. Prolog solution for the Zurg riddle.

by facts of the formst(P,L) whereL is a list giving the toys that are currently on the left
side of the bridge and whereP is a flag that indicates the position (left or right side) of the

Escape from Zurg 5

flashlight.1 The predicatemove/4 generates movements in its third argument; a movement
to the right is generated if the flashlight is on the left side of the bridge and vice versa;move

also relates the old state (first argument) to the newly reached state (second argument). The
last argument gives the time required for the move. In the case of a movement to the right,
the time is determined by the additional predicatecost/2 that computes the maximum
time needed by a group of toys. Any such possible group of toys to move to the right is
computed by the predicatesplit/3, which computes lists of length 2, which are sorted
to avoid redundancy caused by representing groups of toys as lists. In a move to the left
it makes only sense to send back one toy. Therefore, the definition ofmove for that case
uses the predefinedmember/2 predicate and computes the time by simply looking into
the tabletime/2. Finally, thetrans/4 predicate basically generates all possible bridge
crossings together with the required time whereas thecross/2 predicate formulates the
search problem by giving the initial and final configuration of the search space.

5 The Haskell Solution

We give the Haskell solution in two steps. First, we extract the general structure of the
search problem and capture it in the definition of a type class. Second, we present the
program for solving the puzzle as an instance of that class.

The main elements in the problem are astate(to represent intermediate stages of bridge
crossings) andmoves(to represent transitions between states, which are in this case bridge
crossings). Therefore, we have defined a type classSearchProblem with two parame-
ter typess and m. Next, we consider what member functions are needed for the class
SearchProblem.

To build the complete search space starting from some (initial) states, a function is
needed that describes which new states can be reached froms. In general, it is not only
the final state that is of interest (in fact, we know this state already in the given example,
namely all toys on the other side). Rather, the sequence of moves that lead to this state is
needed, too. Therefore, we haved added a function to the type class that computes for a
state a list of possible moves and the new states to which they lead:

trans :: s -> [(m,s)]

By repeatedly applyingtrans to the fringe of a search tree the complete search space for a
problem can be constructed. This search space is represented by an element of typeSpace

m s and is constructed by a functionspace that maps a state to a list of all nodes of the
search space. Each node (that is, state) is paired with the list of moves that lead to it.

type Space m s = [([m],s)]

space :: s -> Space m s

1 In fact, more common among the students’ solutions was the approach to representtwogroups of toys on both
sides of the bridge, but we found that although this redundancy might help to think about the problem, keeping
the invariant was a common source of errors.

6 Martin Erwig

type Space m s = [([m],s)]

class SearchProblem s m where

trans :: s -> [(m,s)]

isSolution :: ([m],s) -> Bool

space, solutions :: s -> Space m s

space s = step ++ expand step

where step = [([m],t) | (m,t) <- trans s]

expand ss = [(ms++ns,t) | (ms,s) <- ss,

(ns,t) <- space s]

solutions = filter isSolution . space

Fig. 2. TheSearchProblem type class.

Since the search space is completely represented by the initial state and the functiontrans,
the functionspace is a derived member function in the classSearchProblem. The def-
inition of space makes essential use of lazy evaluation: without a terminating condition
space refers (indirectly throughexpand) to itself; under strict evaluation this definition
would, in general, not terminate. For the present example this means that it is enough to
consider just two cases in the definition oftrans (see Figure 3); an additional definition

trans (R,[]) = []

is not needed, although such a condition was required in the Prolog program (cf. the first
clause for the predicatetrans).

In general, the solutions to a search problem are given by a subset of its states. The
decision is made by a predicate on states and their generating moves:

isSolution :: ([m],s) -> Bool

With this predicate another class membersolutions can be defined, which has the same
type asspace and which simply yields the subset of states that are considered solutions by
the predicateisSolution. The definition of the type classSearchProblem is summarized
in Figure 2.

Having defined the solution schema, the Haskell program for solving the riddle requires
only the modeling of the problem. The most important design decisions are the definitions
of the typesBridgePos andMove because they are related by an instance definition for
the classSearchProblem. In BridgePos we represent the position of the flashlight by a
constructorL or R and the toys that are on the left side of the bridge by a list, just like in the
Prolog implementation. A move is either a move of a group of toys from left to right or a
backward move from right to left by just one toy. Both kinds of moves are captured by the
typeMove, which is defined through anEither data type, which is predefined in Haskell
and which contains the constructorsLeft andRight to represent disjoint sum types.

Apart from defining types for representing the objects in the program, the main part is the
instance definition of theSearchProblem type class, which means to give a definition for

Escape from Zurg 7

data Toy = Buzz | Hamm | Rex | Woody deriving (Eq,Ord,Show)

data Pos = L | R deriving (Eq,Show)

type Group = [Toy]

type BridgePos = (Pos,Group)

type Move = Either Toy Group

toys :: [Toy]

toys = [Buzz,Hamm,Rex,Woody]

time :: Toy -> Int

time Buzz = 5

time Woody = 10

time Rex = 20

time Hamm = 25

duration :: [Move] -> Int

duration = sum . map (either time (maximum.map time))

backw :: Group -> [(Move,BridgePos)]

backw xs = [(Left x,(L,sort (x:(toys \\ xs)))) | x <- xs]

forw :: Group -> [(Move,BridgePos)]

forw xs = [(Right [x,y],(R,delete y ys)) |

x <- xs,let ys=delete x xs, y <- ys, x<y]

instance SearchProblem BridgePos Move where

trans (L,l) = forw l

trans (R,l) = backw (toys \\ l)

isSolution (ms,s) = s == (R,[]) && duration ms <= 60

solution = solutions (L,toys)

Fig. 3. Haskell solution for the Zurg riddle.

trans andisSolution. To this end, we have defined three auxiliary functions:forw and
backw for computing toy moves andduration for computing the total time of a crossing,
that is, for a sequence of moves. Note that the function(\\) computes the difference of
two lists. The definition of theisSolution predicate is obvious. The complete Haskell
solution is shown in Figure 3.

We have already mentioned that theSearchProblem type class from Figure 2 imple-
ments a simple breadth-first search. A generalization can be obtained by abstracting from
the append operation that is used to add newly generated states to the list of states, that
is, we introduce a function parameter into the definition ofspace andsolutions that
controls the addition of new states to the space. A possible implementation is shown in
Figure 4.

To use this generalized type class for the example problem, we only have to pass a
corresponding search strategy to thesolutions function, for instance:

8 Martin Erwig

type Space m s = [([m],s)]

type Strategy m s = Space m s -> Space m s -> Space m s

class SearchProblem s m where

trans :: s -> [(m,s)]

isSolution :: ([m],s) -> Bool

space, solutions :: Strategy m s -> s -> Space m s

space f s = expand f (step ([],s))

where expand f [] = []

expand f (s:ss) = s:expand f (f (step s) ss)

step (ms,s) = [(ms++[m],t) | (m,t) <- trans s]

solutions f = filter isSolution . space f

dfs = (++)

bfs = flip dfs

Fig. 4. GeneralizedSearchProblem type class.

solution = solutions bfs (L,toys)

For the example problem, the search strategy does not affect the solution, but for other
search problems, termination is generally more likely underbfs than underdfs.

6 Conclusions

Let us first summarize our experience with the shown programming exercise. Most stu-
dents seemed to like the puzzle style of the assignment, although quite a few students had
problems during the development of their solution and had to spend a considerable amount
of time debugging their programs. A particular problem was to spot illegal uses of Pro-
log terms that showed up in the interpreter just through the answerNo. Another mistake
was to confuse terms and predicates. To some degree, the completely different lexical con-
ventions in Haskell and Prolog are probably responsible for this confusion: Variables start
with an uppercase letter in Prolog, and with a lowercase letter in Haskell, whereas term
constructors start with a with a lowercase letter in Prolog, and with an uppercase letter in
Haskell.

Some students tried to work around their problems by coding knowledge about the so-
lution into their programs, for example, fixing the number of forward and backward moves
in the problem representation. Some of the solutions handed in by students were similar
to the one shown in Figure 1, differing mainly in the chosen term representation and in
how the transition predicate was defined. An incorrect term representation was the main
problem for those program that did not run at all or that were computing incorrect results.

To obtain feedback about the Haskell approach, a couple of graduate students were
asked to solve the problem also in Haskell. All they were given was the definition of the
SearchProblem type class. Those students who already got the Prolog solution correct

Escape from Zurg 9

reported that it was as easy in Haskell to come up with a solution as in Prolog. Others
who had non-perfect Prolog solutions felt it was easier to write the Haskell program than
the Prolog program. They also reported that the type system was helpful in designing the
solution and in debugging the program.

From our experience with solving the example problem with both languages, we believe
that Haskell’s type system makes it eventually easier to implement search problems in
Haskell than in Prolog. The most important feature of Haskell that supports this impression
is the availability of multi-parameter type classes, because we can abstract the general
solution schema in a type class and reuse it for other problems.

Acknowledgments

The author thanks Matthias Felleisen for his valuable hints and remarks that helped to
improve this paper. Many thanks also go to the students of the programming languages
class who provided a lot of feedback about their experience with Haskell, Prolog, types,
etc.

References

Claessen, K., & Ljungl̈o, P. (2000). Typed Logical Variables in Haskell.Haskell Workshop. Elec-
tronic Notes in Theoretical Computer Science, Vol. 41, No. 1.

Erwig, M. (Fall 2001). CS 581: Programming Languages. Graduate Course. Department of Com-
puter Science, Oregon State University.http://www.cs.orst.edu/~erwig/old/cs581.f01.

Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (2001).How to Design Programs—An
Introduction to Programming and Computing. Cambridge, MA: MIT Press.

Haynes, C. T. (1987). Logic Continuations.The Journal of Logic Programming, 4, 157–176.

Paulson, L. C. (1996).ML for the Working Programmer (2nd ed.). Cambridge, NY: Cambridge
University Press.

Peyton Jones, S. (2003).Haskell 98 Language and Libraries. Cambridge, UK: Cambridge University
Press.

Rabhi, F., & Lapalme, G. (1999).Algorithms: A Functional Programming Approach. Harlow, Eng-
land: Addison-Wesley.

Seres, S., & Spivey, M. (1999). Embedding Prolog in Haskell.Haskell Workshop. Technical Report
UU-CS-1999-28, Universiteit Utrecht.

Wadler, P. (1985). How to Replace Failure by a List of Successes.Pages 113–128 of: Conf. on
Functional Programming and Computer Architecture. LNCS 201.

