
Visual Specifications of Correct Spreadsheets?

Robin Abraham Martin Erwig Steve Kollmansberger Ethan Seifert
School of EECS, Oregon State University

[abraharo, erwig, kollmast, seiferet]@eecs.oregonstate.edu

Abstract

We introduce a visual specification language for spread-
sheets that allows the definition of spreadsheet templates.
A spreadsheet generator can automatically create Excel
spreadsheets from these templates together with customized
update operations. It can be shown that spreadsheets cre-
ated in this way are free from a large class of errors, such
as reference, omission, and type errors.

We present a formal definition of the visual language for
templates and describe the process of generating spread-
sheets from templates. In addition, we present an editor for
templates and analyze the editor using the Cognitive Di-
mensions framework.

1 Introduction

Spreadsheets are widely used: It is estimated that each
year tens of millions of professionals and managers create
hundreds of millions of spreadsheets [12]. Many studies
have shown that existing spreadsheets contain errors at an
alarmingly high rate [12]. Some studies even report that
90% of real-world spreadsheets contain errors [13]. Many
of these errors have significant impact. For example, one
spreadsheet error caused a Florida construction company to
underbid a project by $250,000 [7].

Since spreadsheets are programs, the creation of spread-
sheets can (and should!) also be considered a software en-
gineering task. The need for applying software engineering
methodologies to spreadsheets is urged by the high error
rates and the severe impact of spreadsheet errors. In many
cases, these errors are a result of the ad-hoc, undocumented
operation of spreadsheets where a sheet may be created by
one person, then used and modified by another who does
not fully understand its functionality. Since spreadsheet
systems offer no abstractions and do not even separate data
from computation, attempts to reuse spreadsheets can easily
result in errors.

This paper introduces a visual language for structuring
spreadsheets, allowing reuse and preventing errors. The
idea originates by noticing that a given spreadsheet may

∗This work is partially supported by the National Science Foun-
dation under the grant ITR-0325273 and by the EUSES Consortium
(http://EUSESconsortium.org).

evolve in a number of predictable ways, and various in-
stances of a spreadsheet could emerge from a common tem-
plate. The visual language introduced in this paper, ViTSL

(an acronym forvisual templatespecification language),
provides a method for modeling the template of a spread-
sheet and the ways it can evolve.

Vi TSL specifications are constructed with an editor and
are loaded into Gencel [9], which is an Excel extension pro-
viding an environment where update operations behave de-
pendent on the given specification. With the introduction
of abstraction provided by ViTSL, spreadsheets become not
only safer, but also more re-usable. The Gencel environ-
ment manages the evolution of a spreadsheet from a ViTSL

specification. This environment automatically handles all
formula generation and spreadsheet structure modification,
ensuring that all spreadsheet formulas are correct and al-
lowing the user to focus on data entry and analysis. Spec-
ifications also act as a documentation to describe the func-
tionality of the spreadsheet without reference to particular
instances.

The architecture of the ViTSL/Gencel system is depicted
in Figure 1 and reflects the observation that the creation
of spreadsheets can be conceptually split into two phases:
First, a computational schema, or template, is developed,
which defines headers, data cells, and computations. Sec-
ond, this schema/template is filled with data, which includes
the possible insertion and deletion of rows and columns.
The ViTSL editor serves the first task, whereas the Gencel
system is responsible for the second. In Excel these two
different phases are not separated, which is the source of
many errors in Excel spreadsheets as will be illustrated in
Section 2. The benefit of the chosen two-level approach
to creating spreadsheets is that users can still apply update
operations to their spreadsheets (such as row/column inser-
tions or deletions), but only those that keep the spreadsheet
within the specified evolution and do not introduce any ref-
erence, type, or omission errors.

Just as software engineering practices allow separation
of modeling and implementation duties as well as standards
and quality control, the ViTSL specification language pro-
vides these benefits to spreadsheets. An organization could
hire domain experts to construct ViTSL specifications for
the domains they wish to operate in. These specifications

1



Correct Spreadsheet Correct Spreadsheet

…

…

Template Template

Gencel Excel

ViTSL Editor

Figure 1. Vi TSL/Gencel Architecture

can be confidently used by other employees without a pre-
cise understanding of all aspects of how the spreadsheets
work. Furthermore, by enforcing the structure and formu-
las, Gencel acts as an automatic quality control system, en-
suring that spreadsheets stay within the bounds prescribed
by the domain experts and approved by management.

In Section 2 we first present an example of how Gencel
can protect a spreadsheet from errors and how ViTSL can
be used to design a specification to that end. In Section 3,
we describe a formal model for ViTSL specifications. We
briefly discuss the process of spreadsheet generation from
specifications in Section 4. An analysis of an editing tool for
Vi TSL using the Cognitive Dimensions framework [11, 3]
follows in Section 5. Finally, we discuss related work in
Section 6 and present conclusions in Section 7.

2 Editing Spreadsheets

Consider the Excel spreadsheet shown in Figure 2.
This spreadsheet allows the user to maintain quanti-

ties and costs for a variety of items within a single year.
Note that the individual year consists of three actual Ex-
cel columns. If the user wanted to add another year to the
spreadsheet, a series of operations would be required. First,
three new columns would need to be inserted and the appro-
priate headers copied. Next, the formula for the total of that
year could be copied from another year. At this point, the
table looks correct and is shown in Figure 3.

However, critical updates have not yet been made, and
could easily be overlooked: In addition to inserting and fill-
ing the new columns, the user must also remember to update

Figure 2. Excel budget spreadsheet

Figure 3. Incorrectly updated budget sheet

the grand totals at the far right. In this case, no copy/paste
operation will suffice—references to the new year’s quan-
tity and total cost must be added manually. This error-prone
process must be repeated for each year the user wishes to
add. Mistakes in this operation will cause the total values to
be incorrect, but no feedback is given by Excel to indicate
a mistake may have been made. In addition, if the updates
are forgotten in some cells, they will still appear to have
reasonable values, and Excel will grant no warning to the
user.

Likewise, if the user wishes to add additional items to
their spreadsheet, they may insert rows. However, once the
rows have been inserted, the formulas for each year must be
copied down from the previous year. Moreover, the formu-
las for the grand totals must also be copied. In case a row
is added at the bottom, the aggregation formulas along the
bottom must all be updated, all by hand. Again, if the user
fails to update a formula or inadvertantly selects the incor-
rect cell, Excel will happily present them with the erroneous
value. Any single forgotten or incorrect update will likely
lead to an error on the bottom line, which could be substan-
tial in magnitude and difficult to detect, isolate, and fix.

As the user progresses with this spreadsheet there are
basically three updates that the user will perform: add an-
other item (row), add another year (three columns), or up-
date quantities and header labels. The user may also choose
to delete years or categories, although this is probably less
common. In addition, each of these operations can be bro-
ken down into a fixed set of necessary steps. In this way,
the initial spreadsheet with one year, a spreadsheet with two

2



years, and a spreadsheet with twenty years are all related. In
this sense, the spreadsheets from Figures 2 and 3 (once cor-
rected) can be thought of as deriving from the one shown in
Figure 4.

From this sample sheet, any number of spreadsheets may
be derived using the operations provided by Gencel [9].
These operations, which consist of row or column insert,
value update, and row or column delete, are specialized
for this particular sample sheet to ensure that updates oc-
cur correctly with all necessary changes. For example, if
the user presses the insert column button (see right panel in
Figure 4) when the cursor is within a year group, three new
columns representing a new year will be inserted at once
and all formulas will be correctly updated instantly. The
Gencel system provides these specialized updates to ensure
correctness. Since the sample sheet is generic with respect
to the actual categories, years and other labels and values,
it may be reused by various users at different times. In all
cases, the safety and correctness of the formulas and struc-
ture within the Gencel system is assured.

Figure 4. Gencel budget spreadsheet

From the sample sheet shown in Figure 4 it is not clear
which columns and rows are fixed and which are expand-
able. However, it is possible to analyze the spreadsheet
and abstract the basic building blocks which make it up—a
three column repeating group which forms a year, an ag-
gregation formula (for example, the grand total of quantity)
which sums all the left-most cells in each year, as well as
headers and values. By abstracting out the building blocks
from the concrete Gencel spreadsheet in this way, we can
fully and formally describe the operations required to cre-
ate a spreadsheet. This is the purpose of ViTSL—to provide
a formal visual specification language for spreadsheets and
their evolutions.

The ViTSL template for the above Gencel spreadsheet
is shown in Figure 5. This specification describes how the
three columns repeat and how the total formulas on the right
sum up the quantity and total cost. In particular, we group
the three columns for a year together and make them hor-
izontally repeat, showing that any number of years are al-
lowed. The relative references,B3 andD3, in the grand total

Figure 5. Budget template created in the Vitsl
editor

(a) (b)

Figure 6. Summation Templates

columns refer three cells to the left forQnty and two cells
to the left forCost, respectively. As these cells are repeated
(for additional years) the formulas for the grand totals are
automatically updated by Gencel to include theQnty and
Cost, respectively, for each year. Similarly, the third row is
specified as vertically repeating.

In this way, spreadsheets can be derived mechanically,
ensuring that formulas are always correct and that the cor-
rect types of data are always used. This provides a substan-
tial amount of safety against errors which may occur in a
manual update process, especially as a spreadsheet becomes
large with many references.

3 Visual Spreadsheet Specifications

The structure of tables is determined by different kinds
of cells and their relationships. For example, the cells of
a table can be distinguished according to their content into
header, data, and computation cells. Moreover, some rows
or columns of a table are fixed, like header and footer rows
and columns, while other rows and columns are duplicated
if new data is to be added.

Vi TSL offers constructs to define a table as a horizontal
sequence of fixed and extendable columns where a column
is constructed as a vertical sequence of fixed and extendable
blocks, which are rectangular collections of cells containing
values and formulas.

Consider, for example, all tables that consist of a plain
column of numbers with a header at the top and a sum-
mation formula at the bottom. A corresponding table tem-
plate can be specified by the ViTSL expression in Figure
6(a). The specification consists of three elements: two cells,
the header containing the label and the footer containing

3



the summation formula, and a vertically expandable group
(also calledvex groupfor short) that consists of a single
cell containing the value 0. The argument of the summa-
tion formula, A2, is shown as an absolute address in the
Vi TSL specification. However, it actually represents a rela-
tive address that is translated and expanded by Gencel into
a range of addresses according to the number of times the
second row is expanded. The above template describes a
class of tables that all consist of one column with the shown
(changeable) header and footer and that have one or more
number cells in between.

Vi TSL offers the following visual elements for describ-
ing templates:

• Cells, represented by rectangles and containing data
and formulas.

• References, represented by cell addresses.
• Vex groups, represented by vertical dots that indicate

the possible expansion of a (group of) cell(s) in vertical
direction.

• Hex groups, represented by horizontal dots that indi-
cate the possible expansion of one or more columns in
horizontal direction.

An example for a horizontally expandable group (hex
group) is given in the summation template in Figure 6(b).
This template is obtained by taking the previously shown
summation column, making it horizontally expandable, and
joining it by a column that also contains a header and a sum-
mation footer, but whose vex group contains a summation
formula whose argument references the number cell of the
hex group.

The hex group in the last example illustrates that expand-
able groups may consist of groups of cells and not just sin-
gle cells. Moreover, one column can also contain multi-
ple vex groups. Similarly, a table can contain multiple hex
groups. However, vex groups and hex groups cannot be ar-
bitrarily nested. The only possible nesting is indicated by
the example: hex groups may contain vex groups.

In addition, several structural constraints are needed to
ensure that a reasonable definition for the update operations
of Gencel exists. For example, all columns in a table have
to align vertically. Structures that do not align do not have
clear semantics under our formal definition. To explain the
idea of alignment, consider a column as a sequence of fixed
and expandable blocks (cell groups), sayc = [b1, . . . ,bk].
Now c matches another columnc′ = [b′1, . . . ,b

′
k] only if (a)

bi has the same height asb′i and (b)bi is an expandable
group iff b′i is. This constraint ensures that all existing vex
groups are horizontally aligned, which allows the insert-row
command to be defined to insert a number of rows accord-
ing to the common height of the vex groups. Similarly, we
require that all blocks in a column have the same width.
For columns in hex groups, this constraint ensures that the

insert-column command can be defined to create a number
of columns according to the common width of the blocks of
the hex group.

In the following we provide a formal definition of the
Vi TSL syntax. Atemplate tis given by a horizontal com-
position (|) of fixed (c) or expandable (c→) columns, where
a column is given by a vertical composition (ˆ) of fixed (b)
or expandable (b↓) blocks. A block is given by a composi-
tion of formulas (f ). Formulas consist of basic values (φ),
references (ρ), and expressions that are built by applying
functions to a varying number of arguments given by for-
mulas (φ( f , . . . , f )). Functions can generally be applied to
an arbitrary number of arguments of the same type, like ad-
dition SUM and multiplicationPROD.

Formally, references are given by pairs of integers and
represent relative references in the form of offsets. We use
the following abbreviations for cell offsets:̀ = (−1,0),
r = (1,0), u = (0,−1), andd = (0,1). We sometimes use
sequences of abbreviated offsets to represent larger offsets,
for example,̀ ` = `2 = (−2,0). The syntax of templates is
summarized in Figure 7.

f ∈ Fml ::= φ | ρ | φ( f , . . . , f ) (formulas)
b∈ Block ::= f | b|b | bˆb (blocks, tables)
c∈ Col ::= b | b↓ | cˆc (columns)
t ∈ Template ::= c | c→ | t | t (templates)

Figure 7. Abstract Syntax of Vi TSL.

The constructs correspond directly to the visual notation.
As an example, consider the summation column, shown in
Figure 6(a). This column is represented by the following
template.

Valuesˆ0↓ˆSUM(u)

The summation table, shown in Figure 6(b), is represented
by the following expression.

(Valuesˆ0↓ˆSUM(u))→ |TotalˆSUM(`)↓ˆSUM(u)

The abstract syntax representation of ViTSL templates is an
important prerequisite to facilitate a precise formal defini-
tion of the spreadsheet generation process and the deriva-
tion of safety properties.

4 Automatic Generation of Spreadsheets
For lack of space we can present only an informal de-

scription of the spreadsheet generation process in this pa-
per. Details of how tables and updates operations are cre-
ated from specifications can be found in [9].

The definition of update operations relies on an interme-
diate structure, called atemplate instance, which is a slight
generalization of a table specification in which vertical and
horizontal repeating groups are marked with numbers in-
stead of arrows to represent the number of expansions of

4



the corresponding groups, that is,b|k instead ofb↓ andck in-
stead ofc→. These group sizes are, in particular, needed to
correctly generate references in formulas. In the initial tem-
plate instance all→ and↓ exponents are replaced by ones.
Then each application of an insert-column command to a
hex group increases its exponent by one, whereas each ap-
plication of an insert-row command increases the exponents
of all vex groups in one row by one.

Since a template instance contains all the required infor-
mation to generate all formulas with references for a table,
update operations, such as insert column, simply create an
updated template instance by increasing the repeating group
index and then derive the changed formulas from the new
instance. All values from the old table are copied, whereas
values for possibly inserted rows or columns are taken from
the template.

The translation of a template instance into a spreadsheet
works by recursively traversing the template instance. Dur-
ing this traversal, four different kinds of actions are per-
formed. (The formal definition of the translation is indi-
cated by equations of the formT(t) = t ′; the actual defi-
nition is a bit more involved since it maintains information
about the position of a block or column within the template
to facilitate the proper translation of references.)

1. Constants and functions are copied unchanged (that is,
T(φ) = φ).

2. Horizontally and vertically joined blocks and columns
are translated separately, and the results are joined as
in the template instance (that is,T(t1 | t2) = T(t1) |T(t2)
andT(c1ˆc2) = T(c1)ˆT(c2)).

3. A horizontal (vertical) repeating group that is marked
with a numberk will be translatedk times, and all re-
sults will be horizontally (vertically) joined together
(that is, T(ck) = T(c) |T(c) | . . . |T(c) and T(b|k) =
T(b)ˆT(b)ˆ . . . ˆT(b)).

4. Relative references will be translated into absolute ref-
erences or ranges, depending on the target cell of the
reference. The absolute addresses are computed based
on the current position of the cell that contains the ref-
erence, the relative offset, and possible exponents of
vex and hex groups that are “crossed” by the offset.

The translation of relative into absolute references requires
the consideration of many different cases. The main idea
is described in the following. Suppose(x,y) is the abso-
lute address of a cell that contains a formula with a relative
referenceρ = (i, j). If (i, j) points to a cell that is con-
tained in a horizontally and/or vertically repeating group,
the reference might denote a horizontal, vertical, or two-
dimensional range, but only if the current cell(x,y) that
contains the reference(i, j) is not contained in a repeat-
ing group that is expanded in parallel with the referenced

one. This information can be obtained for the horizontal di-
mension by checking whetherx+ i lies outside the horizon-
tal range of a possible repeating group containing(x,y), in
which case the cells are expanded independently of one an-
other. Similarly, only ify+ j lies outside the vertical range
of the group containing the current cell, it is not expanded
together with the group containing(i, j).

If the relative address is to be translated into a range, this
range is computed by selecting from the already expanded
table area (see item 3. above) that corresponds to the re-
peating group containing the referenced cell(x+ i,y+ j) all
addresses(x′,y′) whose relative offset from the beginning
of the repeating group is the same as the offset of the refer-
enced cell from the first repeating group. The ViTSL budget
sheet specification presented in Figure 5 illustrates this case
where the generated range for the summation formula under
Qnty consists only of two cells, which both start at the be-
ginning of each repeating-group instance, that is, columns
B andE. A similar example is the summation formula under
Cost.

We have designed a type system for ViTSL that guaran-
tees a very high level of spreadsheet correctness, namely,
any spreadsheet that is created with Gencel from a ViTSL

template will never contain any omission, reference, or type
errors. This is possible because type- and reference-correct
Vi TSL templates will be translated into specialized update
operations, such as insert row, used by Gencel to modify
spreadsheets. For details of the type system we refer to [9].

We believe that this safety property can have a huge posi-
tive impact on the correctness of spreadsheets, because once
a particular ViTSL template has been created that is appro-
priate for a particular application, all spreadsheets that will
ever be instantiated from it will be always correct.

5 Analysis of the ViTSL Design and Editor

In the following we describe how our choices in de-
signing the system have been guided by theCognitive Di-
mensions of Notationsframework [11, 3]. For the sake of
brevity, we discuss, with suitable examples, the ones that
are of primary interest in the context of the ViTSL editor.

Viscosity. The viscosity of a system is an indicator of
how much effort is required to accomplish user goals us-
ing the system. Two kinds of viscosity might be present
in a system—repetition viscositywhich refers to the system
forcing the user to carry out many actions of the same kind
individually (for example, replacing all occurrences of one
string by another), andknock-on viscositywhich refers to
the system requiring the user to perform many actions to re-
store consistency after the user has performed some action
to achieve a certain goal (for example, variable renaming in
a program using a replace-all feature of a simple text edi-
tor).

To facilitate easy editing of specifications, we have

5



been especially careful in providing facilities to reverse
any action performed by the user. The insert-row and
insert-column operations have corresponding delete-row
and delete-column operations. The grouping operations that
specify if cells are in horizontally or vertically repeating
groups have corresponding ungroup operations. The system
supports the deletion of repeating or non-repeating rows or
columns. We also provide the facility to undo an unlimited
number of operations.

Viscosity can be lowered, in general, when the system
provides suitable abstractions. The current version of our
system does not provide facilities to lower repetition vis-
cosity. It does aim to lower knock-on viscosity relating to
specification-edit actions. For example, affected cell refer-
ences in formulas get automatically updated when a row or
column is deleted.

Error proneness. The error proneness of a system is
an indicator of how the notation causes the user to commit
errors. In situations where this problem might arise, the
system should have built-in mechanisms to protect the user
from committing errors.

We minimizeediting errors that can occur during the
creation of the specification by only allowing logically valid
operations at every step during the edit process. For ex-
ample, if any cell within a vertically repeating group is se-
lected, the button for creating vertically repeating groups is
disabled (this situation is shown in Figure 8 on the left). A
similar situation arises when any cell within a horizontally
repeating group is selected. Another example is everything
else is disabled while the user is in edit mode for formulas
(this situation is shown in Figure 8 on the right).

Figure 8. Within a vertically repeating group
(left) and in formula-edit mode (right)

Closeness of mapping. The closeness of mapping is an
indicator of how closely related the notation is to the result
it is describing.

Since the specifications developed in ViTSL will eventu-
ally be used with Gencel, we have adopted a structure simi-
lar to Excel to maintain closeness of mapping. Moreover,
operations like insertion or deletion of rows or columns
work the same way as in Excel. We deviate from the Ex-
cel model in that we provide separate buttons to insert rows

above or below or to insert columns to the left or to the right
of the currently selected cell. This design choice was made
to provide greater flexibility to the user and is also consis-
tent with the editing model of Gencel. We allow selection of
ranges with shift-click to specify horizontally or vertically
repeating groups and the cell addresses also work the same
way they do in Excel.

Consistency. When similar semantics are expressed in
similar syntactic forms, users find it easier to infer the struc-
ture of the presented information. If this consistency is not
maintained and there are many representations for the same
thing in the notation, usability might be severely compro-
mised.

Since ViTSL is targeted at expert users of Excel, the ba-
sic update operations in ViTSL have been designed to be
consistent with those in Excel. The main deviation from
Excel is that ViTSL has additional operations for forming
repeating groups. In this case, the visual notation for verti-
cally and horizontally repeating groups are similar as shown
in Figures 5 and 9.

Secondary notation and escape from formalism. Of-
tentimes the user might need to record additional informa-
tion without using the formal syntax of the notation. To
cater to this need, many systems support secondary nota-
tions that can be used any way the user likes. For example,
programming languages allow users to include documenta-
tion within the source code using comments.

The current version of the system does not support any
secondary notation. In future versions of the system, we
plan to incorporate mechanisms by which the user can in-
clude documentation, both at cell and specification level,
within the ViTSL specifications.

Progressive evaluation. This dimension refers to facil-
ities within the system that allow the users to assess their
progress, even with partially complete specifications.

The current version of the ViTSL system does not have
a readily availabletest drivemechanism so users could pre-
view their work to check their progress. The user has to
build the specifications using the ViTSL interface, save to
file, and load it into Gencel to evaluate the effect of the
customized update operations. The lack of a more direct
feedback mechanism is a problem we hope to rectify in fu-
ture versions by integrating the ViTSL editor within Gencel.
The users would then be able to more easily switch between
the ViTSL specification-edit mode and the Gencel table-
creation mode to check their progress.

Role expressiveness. This dimension refers to the ease
with which the role or purpose of an entity in the notation
can be inferred. A role expressive notation is easier to “pick
up” since the roles of the entities and their relationships can
be easily discovered.

Mainly, there are two kinds of entities in the ViTSL

system—buttons for edit operations and the cells used to

6



build specifications. In a given specification, cells can have
two possible roles—they can be singleton cells or they can
be part of a repeating group. This information is conveyed
to the user through the row and column address bars to show
the rows or columns that are part of a repeating group and
by shading the backgrounds of cells within repeating groups
differently from those that are not part of repeating groups.

Figure 9. Horizontally repeating group.

Figure 9 shows the horizontally repeating group from the
template given in Figure 5. The fact that columnsB, C, and
D are part of the same group is depicted by the absence of
separators. The three horizontally aligned dots in the visual
notation show that the group to its left is a horizontally re-
peating group. We have three horizontally aligned dots as
the icon on the corresponding grouping button to show this
relation.

An example of a vertically repeating group was shown
in Figure 5. In this case, the three vertically aligned dots
indicate that the group above it, row 3 in this case, repeats
vertically. As in the case with the horizontally repeating
cells, we have three vertically aligned dots as the icon on the
button for the vertical grouping action to show the relation
between the button and the action it performs.

Hard mental operations. This dimension is an indica-
tor of the cognitive load the system places on the user. The
notation would not be very usable if it made it complex or
difficult for the user to figure things out by making high de-
mands on the user’s cognitive resources like attention and
memory. Cell references in formulas within a template be-
have differently in generated tables depending on the cell
the formula is in and the cell the reference is pointing to.
The translation of references was briefly sketched in Sec-
tion 4. The different cases are shown in Table 1.

Source cell Target cell Behavior
non-repeating non-repeating reference
non-repeating repeating range

repeating non-repeating reference
repeating repeating (same group) reference
repeating repeating (different group) range

Table 1. Behavior of References

Since this behavior is not very obvious from the visual
notation, we have provided tooltip help that indicates if a
reference will get expanded to a range in the spreadsheet.

Premature commitment. Ideally, the notation should
not impose anyartificial constraints on the order of do-
ing things. Such constraints would force the user to make
choices before they need to and with insufficient informa-
tion. Therefore a notation which demands a high level of

premature commitment would automatically be high on er-
ror proneness.

We had some initial concerns about the system forcing
the user to think out the entire specification before starting
the edit process. These concerns arose primarily from the
fact that specifications start from a single cell and expand
to the right and down depending on the update operations
carried out by the user. To protect the user from imposition
of any particular sequence of editing actions, we have pro-
vided separate buttons for inserting rows above and below
and inserting columns to the left and to the right of the cur-
rent cell. This feature allows the creation of a specification
to proceed in all directions within the plane of the interface.

Visibility and juxtaposability. The system should
provide mechanisms that allow users to view components
easily. For example, exploratory activities like debugging
would require that reasonably-sized chunks of code can
viewed in isolation and side by side with other code or exe-
cution windows.

Even in the case of very large spreadsheets (in terms of
number of cells), the basic specification can be very small
as can be seen in the budget sheet example shown in Figure
5. As a result of this higher level of abstraction, in most
cases the specification will only require minimal screen
real estate. In the rare case of very large specifications,
we run into the same problem Excel users face with large
spreadsheets—the need to scroll to view the full sheet. An-
other important aspect that reduces problems ViTSL might
have with visibility and juxtaposability is that specifications
are created at a table level. Therefore all the update oper-
ations arelocal to a table. On the other hand, an Excel
spreadsheet might have more than one table and an update
operation, an insert or delete column for example, might af-
fect tables above or below the table the user is working on.

Summary. The dimensions are not independent of each
other and in many cases the language designer has to make
trade-off decisions. In the case of ViTSL we have chosen
to go with a representation similar to that of Excel since the
target audience is assumed to be comfortable with Excel.
Another factor that guides choices for trade-offs would be to
aim at making common tasks easier to perform with respect
to less common tasks. This concern has led us to provide
easily accessible buttons for the common tasks. Cognitive
Dimensions do not really help in this context since they are
task neutral. However, they give us a good starting point
and also help us focus on potential problem areas.

6 Related Work

The pervasiveness of errors in spreadsheets has moti-
vated some research into spreadsheet testing [14] and con-
sistency checking [10, 4, 2, 1].

The UCheck system provides spatial spreadsheet analy-
sis by way of headers to locate errors in existing spread-

7



sheets [1]. This approach is somewhat similar in that it
considers the structure of spreadsheets—headers, content,
and aggregation formulas. However, our system is con-
cerned with generating these elements from a template,
while UCheck is concerned with inferring some of these el-
ements and checking their consistency [10]. The inference
system presented in [2] is similar to UCheck, but requires
manual annotations of the spreadsheet by the user.

The use of assertions to identify erroneous formulas is
presented in [4]. In this system, the system generates its set
of assertions based on the assertions entered by the user. It
then warns the user if there is a conflict between the value
in the cell and the cell’s assertion or when there is a con-
flict between the system-generated assertion and the user-
specified assertion for a cell with a formula. This approach
is concerned with the ranges of values used in content and
aggregation cells, whereas our system focuses on the refer-
ences and structure of the spreadsheet.

We have chosen the Cognitive Dimensions model of
analysis to direct the usability of the ViTSL editor. The
Cognitive Dimensions of Notations was created to help de-
signers evaluate their systems with respect to its usability
[11, 3]. In addition to our use here, Cognitive Dimensions
have been broadly applied to other programming and soft-
ware engineering environments, such as evaluating the C#
programming language [5] or UML use-case diagrams [6].

7 Conclusions and Future Work

In this paper, we have introduced a visual language for
describing spreadsheet models. In conjunction with the
Gencel environment, spreadsheets designed with ViTSL are
guaranteed to be free of formula or reference errors. In ad-
dition to the visual language, we have implemented an ed-
itor that allows end users to graphically design spreadsheet
models, which may then be imported into Gencel for safe
use.

We have also analyzed the design of the ViTSL editor
according to the Cognitive Dimensions framework in order
to make the editor as straightforward and usable as possible.
With the ViTSL editor and the Gencel environment, we have
created a formalized, visual language for specifying correct
spreadsheets as well as an implementation of the language
and tools to operate such spreadsheets.

There are several directions for future work. First of all,
we plan to carry out user studies using the ViTSL interface.
The feedback from such a study would help us in refining
the interface. Second, one major obstacle to the adoption
of this new system is the collection of spreadsheets individ-
uals and companies might already have. The users might
have invested a lot of time and money in the creation of
their spreadsheets and would not be willing to port them to
the new system. This problem would be even more seri-
ous in cases where the model behind the original spread-

sheet is not clear (or documented). To solve this problem,
we are also working on a spreadsheet structure parser that
would support the user in extracting possible ViTSL speci-
fications from a given spreadsheet. Finally, a specification
may evolve over time. How existed spreadsheets based on
that specification could be automatically modified to meet
the new specification is another topic of future work.

References
[1] R. Abraham and M. Erwig. Header and Unit Inference for

Spreadsheets Through Spatial Analyses.IEEE Int. Symp. on
Visual Languages and Human-Centric Computing, pp. 165–
172, 2004.

[2] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi.
A Type System for Statically Detecting Spreadsheet Errors.
18th IEEE Int. Conf. on Automated Software Engineering,
pp. 174–183, 2003.

[3] A. F. Blackwell and T. R. G. Green. Notational Systems -
The Cognitive Dimensions of Notations Framework.HCI
Models, Theories, and Frameworks: Toward and Interdisci-
plinary Science, pp. 103–133, 2003.

[4] M. M. Burnett, C. Cook, J. Summet, G. Rothermel, and
C. Wallace. End-User Software Engineering with Assertions.
IEEE Int. Conf. on Software Engineering, pp. 93–103, 2003.

[5] S. Clarke. Evaluating a New Programming Language.13th
Psychology of Programming Interest Group Workshop, pp.
275–289, 2001.

[6] K. Cox. Cognitive Dimensions of Use Cases—Feedback
From a Student Questionnaire.12th Psychology of Program-
ming Interest Group Workshop, pp. 99–122, 2000.

[7] S. Ditlea. Spreadsheets Can be Hazardous to Your Health.
Personal Computing, 11(1):60–69, 1987.

[8] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmans-
berger. Gencel — A Program Generator for Correct Spread-
sheets. Technical Report TR04-60-11, School of EECS, Ore-
gon State University, 2004.

[9] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmans-
berger. Automatic Generation and Maintenance of Correct
Spreadsheets.27th IEEE Int. Conf. on Software Engineer-
ing, pp. 136–145, 2005.

[10] M. Erwig and M. M. Burnett. Adding Apples and Or-
anges. 4th Int. Symp. on Practical Aspects of Declarative
Languages, LNCS 2257, pp. 173–191, 2002.

[11] T. R. G. Green and M. Petre. Usability Analysis of Vi-
sual Programming Environments: A ‘Cognitive Dimensions’
Framework. Journal of Visual Languages and Computing,
7(2):131–174, 1996.

[12] R. R. Panko. Spreadsheet Errors: What We Know. What We
Think We Can Do.Symp. of the European Spreadsheet Risks
Interest Group (EuSpRIG), 2000.

[13] K. Rajalingham, D. R. Chadwick, and B. Knight. Classifica-
tion of Spreadsheet Errors.Symp. of the European Spread-
sheet Risks Interest Group (EuSpRIG), 2001.

[14] G. Rothermel, M. M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A Methodology for Testing Spreadsheets.ACM
Transactions on Software Engineering and Methodology, pp.
110–147, 2001.

8


