
Variational Lists: Comparisons and Design
Guidelines∗

Karl Smeltzer
Oregon State University

USA
smeltzek@oregonstate.edu

Martin Erwig
Oregon State University

USA
erwig@oregonstate.edu

Abstract
Variation is widespread in software artifacts (data and pro-
grams) and in some cases, such as software product lines, is
widely studied. In order to analyze, transform, or otherwise
manipulate such variational software artifacts, one needs a
suitable data structure representation that incorporate vari-
ation. However, relatively little work has focused on what
effective representations could be to support programming
with variational data.

In this paper we explore how variational data can be rep-
resented and what the implications and requirements are for
corresponding variational data structures. Due to the large
design space, we begin by focusing on linked lists. We discuss
different variational linked-list representations and their re-
spective strengths and weaknesses. Based on our experience,
we identify some general design principles and techniques
that can help with the development of other variational data
structures that are needed to make variational programming
practical.

CCS Concepts • Software and its engineering→ Data
types and structures; Software design tradeoffs;

Keywords data structures, variation representation, lan-
guage design

ACM Reference Format:
Karl Smeltzer and Martin Erwig. 2017. Variational Lists: Com-
parisons and Design Guidelines. In Proceedings of 8th ACM SIG-
PLAN International Workshop on Feature-Oriented Software Devel-
opment (FOSD’17). ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3141848.3141852

∗This work is supported by the National Science Foundation under the grant
IIS-1314384.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FOSD’17, October 23, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5518-6/17/10. . . $15.00
https://doi.org/10.1145/3141848.3141852

1 Introduction
Variation in software and data is ubiquitous. Version control
systems and software product lines are two wide-spread ap-
proaches to managing variation in software. Variational data
does not just occur when viewing programs as data, however,
but also in many other applications. This is because instead
of executing the same program repeatedly on different in-
puts, one can envision running the program only once on
one variational input. Examples include searching for a spe-
cific string in all variants of a version control system [19], in
the history of an editor’s undo stack [26], or in speculatively
merged branches [5]. Performing such a search repeatedly
in each variant is potentially very inefficient. Since different
variants often have large parts in common, a more promising
approach would be to represent all documents as one docu-
ment with differences expressed locally, and then executing
the search over this combined, variational document. This
would help avoid unnecessary repeated searches over the
same parts and could overall speed up the search consider-
ably. To achieve this we need a representation for variational
data in general as well as new variational operations and
control structures.
In this paper we report on variational lists as a funda-

mental data structure, which can serve as a basis for many
applications including the search over variational documents
mentioned above. Conceptually, a variational list is a map-
ping from configurations to plain (non-variational) lists. A
configuration is a structure that uniquely identifies a par-
ticular variant among all the variants in the variational list.
This is best illustrated with a specific example. Consider this
example code.

#ifdef WINDOWS
printf("Hi Redmond.");

#elif defined UNIX
printf("Hello");
#ifdef MAC

printf(" Cupertino.");
#elif defined LINUX

printf(" Helsinki.");
#endif

#endif
printf("Goodbye.");

When source code is annotated with C preprocessor (CPP)
macros for conditional compilation (#ifdef and family), we
can view that code as a variational list of code sections, i.e.,
each the macros define configurations which determine a

https://doi.org/10.1145/3141848.3141852
https://doi.org/10.1145/3141848.3141852
https://doi.org/10.1145/3141848.3141852

FOSD’17, October 23, 2017, Vancouver, Canada Karl Smeltzer and Martin Erwig

particular list of sections and thus a particular variant of the
code.1
Analyzing this code naively will need to generate and

analyze all 24 = 16 source code files individually, creating
extra work. By first translating this code to a variational
list where the elements store sections of the program text,
and then performing a variational search on it, we stand to
potentially avoid that repeated work.
We could define such a variational list with a mapping

from configurations to their corresponding variants (unin-
teresting cases omitted):

c0 = {} c1 = {WINDOWS}

c2 = {UNIX, MAC} c3 = {UNIX, LINUX}

{ c0 7→ [printf("Goodbye.");],
c1 7→ [printf("Hi Redmond.");, printf("Goodbye.");],
c2 7→ [printf("Hello");, printf(" Cupertino");,

printf("Goodbye.");],
c3 7→ [printf("Hello");printf(" Helsinki");,

printf("Goodbye.");]}

Each plain list used in this map is called a variant of the
variational list, and the keys in the map amount to deci-
sions that one has to make in order to access any particular
variant. Each subset of macros corresponds to a potential
configuration that can appear as a key in the mapping. Any
representation of variational values consists in some way of
these two components: (a) the individual variants, and (b)
the decisions to distinguish between the variants.

We could also swap the usage of the list and map, so every
list element is a map to plain values. This may seem incon-
sequential, but we will demonstrate small changes result in
surprisingly different performance. This is hinted at by the
duplication of printf("Goodbye."); in the example map. We
also still need to figure out how programmers can actually
work with these structures.

In the remainder of this paper we demonstrate several
steps towards solving these problems. We begin by explor-
ing the design space for variational list data structures. By
examining how they support sharing and evaluating their
performance, we identify what approaches are sufficiently
robust, efficient, and generally useful for variational pro-
gramming.

Specifically, we will discuss two different representations
for variational values in Section 2. In Section 3 we will then
describe how these representations can be employed in dif-
ferent ways to add variation to lists. In addition to the interac-
tion of placement of variants and list position, the efficiency
of different variational list representations also depends on
the degree of sharing that a representation can achieve. We
will therefore identify different forms of sharing in Section

1Variational data arises from a surprising number of places, for example,
data from different sources about political polling, rankings of all sorts,
weather data, and so on.

4 and analyze what kind of sharing can be achieved by the
different variational list representations.
Section 5 demonstrates some of the requirements and

implications of realistic uses of these lists, and operations
on them. In Section 6 we discuss performance implications
of the representations abstractly, and then proceed into a
set of representative benchmarks. Finally, we discuss related
work in Section 7 and summarize what we have learned in
Section 8.

This paper makes the following specific contributions (for
clarity we mention include but annotate some contributions
made in prior work).

• A systematic structuring of the design space for varia-
tional list data structures.

• A comparison of specific variational list representa-
tions.

• A breakdown of the kinds of sharing exhibited.
• Insights into the design of a variational list program-
ming interface.

• A brief characterization of runtime efficiency for varia-
tional lists and a set of benchmarks comparing perfor-
mance on real-world data.

• An alternative interface design to improve underper-
forming list representations.

2 Representing Variational Values
Before focusing on variational data structures in general
and lists in particular, we need a systematic account of what
variation is andwhat variational values are. Based on a sound
formalism for variationwe can build and compare techniques
for variational data structures.
We discuss two major approaches to variation represen-

tation that differ fundamentally in the way they group and
share non-variational data and in the way variational data is
accessed, although other techniques are also possible. Section
2.1 presents an approach that forms the formal basis for a
number of different representations, including the mapping
representation shown in the Introduction. The employed
view of variational data is that of plain data being dependent
on decisions about which variants they belong to. In other
words, decisions are mapped to plain data. In contrast, the ap-
proach illustrated in Section 2.2 maps plain data to decisions
about which variants they belong to. Both representations
can be used as an implementation for a generic variational
type constructor V.

2.1 Named Choices and Choice Trees
The choice calculus [10] regards variation as named choices
between alternatives. For example, the choice between the
two plain (non-variational) values 1 and 2 is written asA⟨1, 2⟩.
The plain values are called alternatives of the choice, and the
name A is called its dimension. Each dimension A gives rise
to two selectors, A and ¬A, that select from a choice tagged

Variational Lists: Comparisons and Design Guidelines FOSD’17, October 23, 2017, Vancouver, Canada

by that dimension the right and left alternative, respectively.
When multiple choices exist in a single dimension, they are
said to be synchronized, meaning that any time one of the
alternatives from one choice is selected, the corresponding
alternative in every other choice in that dimension must also
be selected.
Choices can be nested inside one another, as in the ex-

pressionA⟨B⟨1, 2⟩,B⟨3, 4⟩⟩. These nested choices capture the
situation in which we need to select an alternative (left or
right) for both theA dimension and the B dimension in order
to reach a plain value. In this work choices are always binary.
That is not a limitation of the choice calculus, but rather a
way of simplifying examples.

This variation representation has been called a tag tree
in Walkingshaw et al. [24] (where the tags correspond to
dimensions), but here we prefer the name choice tree to differ-
entiate it more clearly from tag-based approaches, discussed
below. Each leaf in a choice tree represents a variant, and
any path from the root to a leaf represents a decision.
The use of maps for encoding the relationship between

configuration/decisions and values (as done in the examples
from the Introduction) can always be encoded with binary
choices. For example, for a map M = {A 7→ x , . . .} we can
construct a binary choiceA⟨. . . ,x⟩, and then recursively add
other nested choices in the left branch of the existing choice
for every key-value pair in the map.
It may seem intuitive to use such a map directly instead

of choices. Recall, however, that such a map will grow expo-
nentially with the number of configuration options and is
therefore impractical for real scenarios.

2.2 Tag Formulas and Tag Maps
Inverting the direction of access to variants in variational
data provides an expressive and powerful way to maximize
sharing in data (see also Section 4). In this approach, each
plain value is tagged to indicate which variants include it. For
example, the value 1A indicates a value 1 which is included
when tag (or dimension)A is selected, but not otherwise. Like
the choice calculus, this relies on some labeling scheme in
which a selection of labels forms a decision that identifies the
desired variant. This approach can be extended to allow for
tag formulas, analogous to boolean formulas. The advantages
of this extension are twofold. First, identical plain values
need not be duplicated. Instead of [1A, 1B] we can simply
write [1A∨B]. Second, it allows more complex relationships
to be defined such as values which are only included when
multiple selections are made. For example, 1A∧B indicates
that the plain value 1 is only included when both A and B
are selected.

With tag formulas, a variational value can be implemented
as a map from plain values to tag formulas. We call this
representation a tag map.

The major downside to this approach is that some opera-
tions require the use of a SAT solver. Moreover, an expensive

normalization process is sometimes needed to maintain shar-
ing.
Both choice trees and tag maps can serve as underlying

implementations for a variational type constructor V that can
be used to represent arbitrary variational values. For exam-
ple, the type V Int would represent variational integers and
could correspond to either choices of integers or tagged inte-
gers. We distinguish between these two approaches, where
necessary, by referring to them as VChc and VTag, respectively.
In cases where the distinction is not necessary, we simply
use V.

2.3 Visual Notation
In Section 3, we will make use of a compact visual notation
when presenting examples. This notation is based on graphs
whose nodes represent data and dimensions/tags and whose
edges represent pointers in the data structure. In cases where
both VChc and VTag can be used, we only show the structure of
choices for brevity’s sake. This notation, applied to the map
of lists example from the Introduction, is shown in Figure 1.

Every binary choice is represented as a node with two out-
going edges corresponding to the choice’s two alternatives.
In general, rather than rendering this choice tree everywhere
it occurs, we employ syntactic sugar which depicts the en-
tire tree structure as a single, unlabeled node. The outgoing
edges are labeled with configurations. We also add color
to help distinguish particular variants. In this example, we
would condense the graph to the one in Figure 2a.

3 Variational List Representations
We next explore the design of variational linked list data
structures. While there is only one way to apply a type
constructor to a value, there are several different approaches
to do so with data structures. First, we can simply apply the
type constructor at the top level. That is, just as we might
have a V Int for a variational integer, we could also define
a V [Int] for a variational list of integers. But we could also
distribute the variational type constructor parametrically
throughout the list, giving us a list of variational integers
[V Int]. Finally, we could take a recursive approach, where
rather than reusing the V constructor, the variation definition
is woven directly into the recursive list definition.
By systematically combining the different implementa-

tions of V together with these approaches for integrating
the variation into the list structure, we obtain six candidate
variational list representations. An overview of how each
of the following representations is categorized is shown in
Table 1.

For each representation, we summarize the main idea
and explain how it impacts the implementation of typical
list functions. When we talk about a variational version
of a common function, it should be understood to mean
the function obtained by variationalizing all of the inputs

FOSD’17, October 23, 2017, Vancouver, Canada Karl Smeltzer and Martin Erwig

WINDOWS

printf(“Hi Redmond.”);

UNIX
MAC

LINUX

printf(“Goodbye.”);

printf(“Goodbye.”);

printf(“ Helsinki.”);

printf(“Goodbye.”);

printf(“Goodbye.”);

printf(“ Cupertino.”);

printf(“Goodbye.”);

printf(“Hello”);

Figure 1. The unabbreviated visual notation used to demonstrate the general shapes that variational lists take.

c1 printf(“Hi Redmond.”); printf(“Goodbye.”);

printf(“Hello”);

printf(“Hello”);

printf(“ Cupertino.”);

printf(“Goodbye.”);

printf(“Goodbye.”);

c2

c3
c0

printf(“Goodbye.”);

printf(“ Helsinki.”);

(a) Box list. Every variant list is stored in its entirety and nothing is shared.

c1 1 5

2

2

3

5

c2

c3
c0

4

1 printf(“Hi Redmond.”);

2 printf(“Hello”);

3 printf(“ Cupertino.”);

4 printf(“ Helsinki.”);

5 printf(“Goodbye.”);

5

5

(b) Pointer list. Every element is stored in a hash table and only the indices are stored in the list.

c1 printf(“Hi Redmond.”);

c2,c3

c0

printf(“Hello”);

c1 ε

printf(“ Cupertino.”);

printf(“ Helsinki.”);

c0

c2

c3

ε

printf(“Goodbye.”);

ε

(c) Choice list

printf(“Hi Redmond.”); printf(“Hello”);

printf(“ Helsinki.”); printf(“Goodbye.”);

WINDOWS ¬WINDOWS∧UNIX

¬WINDOWS∧UNIX∧¬MAC∧LINUX ⊤

printf(“ Cupertino.”);
¬WINDOWS∧UNIX∧MAC

(d) Tag list

c1 printf(“Hi Redmond.”);

c2,c3

c0
printf(“Goodbye.”);

printf(“Hello”);

printf(“Goodbye.”);

printf(“ Cupertino.”);

printf(“ Helsinki.”);

c2

c3 printf(“Goodbye.”);

printf(“Goodbye.”);

(e) Suffix list

c1
printf(“Hi Redmond.”);

printf(“Hello”);c2,c3

c0
ε

printf(“ Cupertino.”);

printf(“ Helsinki.”);

printf(“Goodbye.”);
c2

c3

(f) Segment list

Figure 2. Example variational lists containing conditional pre-processor annotated source code from the Introduction making use of the visual notation
introduced in Section 2.3.

and outputs of that function. For example, where the plain
version of head takes a plain list and produces a plain value,
variational head takes a variational list as input and produces
a variational value as output.

3.1 Box Lists
A straightforward variational list representation is obtained
by applying the generic variational type constructor V to a list.

Since this approach does not have access to the individual
variant lists and stores each of them as whole, we call these
lists box lists. We use the generic V rather than VChc or VTag

specifically, because either is adequate here.

type BList a = V [a]

See Figure 2a for an example box list.

Variational Lists: Comparisons and Design Guidelines FOSD’17, October 23, 2017, Vancouver, Canada

This representation is essentially a brute force approach.
This makes it easy to lift plain list operations using an imple-
mentation of a function vMap for the V type constructor that
applies a function to all variants. Here, and going forward,
the code we reproduce is based on our Haskell prototype but
since the ideas presented generalize we have elected to take
some simplifying syntactic liberties, including using choice
syntax in place of actual constructors, which could make our
definitions appear type incorrect to Haskell experts.

vMap :: (a -> b) -> V a -> V b
vMap f A ⟨x, y⟩ = A ⟨vMap f x, vMap f y⟩
vMap f x = f x

The implementation of vMap for the variant map implemen-
tation from the Introduction is more involved since it has to
potentially merge variants in the result that are mapped by
f to the same value, see also Walkingshaw et al. [24].

With vMap we can define many lifted variational functions
by just applying it to plain versions.

vHead :: BList a -> V a
vHead = vMap head

Since they are so straightforward, box lists serve as a base
case for comparing the remaining representations.

3.2 Pointer Lists
We can extend the box list by a level of indirection, which
allows common elements to be shared but at the cost of
increased overhead. We refer to lists using this extension
as pointer lists. We apply V to keys, which index into a map
storing the actual list elements, ensuring no duplication.

type PList a = (Map Int a, V [Int])

An example pointer list is shown in Figure 2b.
The implementation of pointer list operations is similar to

the box list case since it is a direct extension, except that we
often need to compose them with a lookup operation which
extracts values from the map.

vLookup :: V Int -> Map Int a -> V a

vHead :: PList a -> V a
vHead (m,vi) = vLookup (vMap head vi) m

vReverse :: PList a -> PList a
vReverse (m,vi) = (m, vReverse vi)

This approach adds overhead, especially since Haskell maps
are implemented as trees, but enables sharing of all common

Table 1. A categorization of variational list representations according to
their use of variational type constructors and how they are integrated into
the list structure.

Use of V

Top Level Parametric Recursive

V
VChc

box, pointer
choice suffix, segment

VTag tag

elements in all variants. This complete sharing is unique in
the representations considered here. Indirection could also
be applied to any of the following representations.

3.3 Choice Lists
Since a list is itself a generic type constructor, we can move
the V type constructor to its argument type and apply vari-
ability not on the level of whole lists, but on the level of
elements. This gives us a single large list in which each ele-
ment is itself a choice tree of variational list elements. Such
an approach fails immediately, however, because variant lists
of different lengths cannot be modeled. Choices contain val-
ues for all decisions, so there is no way to include a value
which is only relevant to a subset of variant lists.

Our workaround is to allow certain choice tree leaves to be
empty. That is, wemodify the use of the VChc type constructor
to carry values of type Maybe a, which allows us to represent
partial variational values.

type CList a = [VChc (Maybe a)]

These are called choice lists and an example is shown in
Figure 2c. As discussed in Section 4, there is generally no
canonical choice list for a given set of data.

Any list operation which returns or manipulates single list
elements will now require additional work. To best under-
stand this, consider how to implement a vHead function for
this representation. We might be tempted to write something
like the following.

vHead :: CList a -> VChc (Maybe a)
vHead (x:_) = x

This is problematic because the first element could have
empty leaf values even when the list variant is not empty.
Consider the following variational list:

[A ⟨Just 1, Nothing⟩,A ⟨Just 2, Just 3⟩]

Neither variant is empty, but the first element of the choice
list only contains a value relevant to one of the two. This
means that the implementation for vHead given above pro-
duces A⟨Just 1, Nothing⟩, which is incorrect.

A correct implementation is more complicated and needs
to potentially traverse the entire choice list to ensure that
it finds a value (if one exists) for every variant. This results
in a runtime complexity for vHead that is no longer constant
time. Similar issues arise in other cases, too, such as sorting.
Section 6 discusses this further.

3.4 Tag Lists
Tag lists use the same parametric application of V as choice
lists, but with the tag formula implementation of V instead
of choices. Tag formulas are paired with each element in a
plain list, indicating which variants include those elements
and which do not.

type TList a = [VTag a] -- using the list as a map

See Figure 2d for a tag list example. These suffer from some
of the same problems as choice lists, e.g., the implementation

FOSD’17, October 23, 2017, Vancouver, Canada Karl Smeltzer and Martin Erwig

of vHead is slow in both. Consider the list [1A, 2A, 2B , 1B]. In
order to return the first element for both variantsA and B we
need to look beyond the first element, which has a negative
impact on runtime complexity.

Tag lists have one major advantage, however, in that many
plain list operations work as is. For example, the typical
reverse sort functions work just fine. When the overall tag
list is reversed or sorted, so is any particular variant.

Conversely, tag lists also have some drawbacks. Consider
how we might implement a fold, for example. Since the
tag map values we encounter as we traverse a list have no
structure, we have to check the annotated tags and perform
Boolean satisfiability computations to determine how to pro-
ceed.
This demonstrates that even simple, seemingly transpar-

ent changes to the way we build our variational data struc-
tures (in this case the implementation of V inside our list)
can have far-reaching and non-intuitive effects, both good
and bad.

3.5 Suffix Lists
As an alternative to using traditional linked lists as a base,
variation can be integrated directly into the structure of the
list. One such approach, first demonstrated in Erwig and
Walkingshaw [11], is to extend traditional cons lists with a
nesting constructor that uses V. We call these suffix lists.

data SuffList a = Cons a (SuffList a)
| Nil
| Nest (VChc (SuffList a))

See Figure 2e for a suffix list containing example data. This
approach produces tree shapes rather than graphs, and once
two variants have split apart, they will never be merged
again.

Suffix lists share common elements among variants in the
prefix of variational lists. From the first element up until the
first point of variation, we have something indistinguishable
from a traditional cons list. The actual sharing achieved
depends on the data being stored in the lists, which makes it
difficult to reason about in general. More details follow in
Section 4.
As is becoming a theme, this representation encounters

tradeoffswhen implementing list operations. Generally, those
which iterate through the list but do not modify the struc-
ture or reorder anything perform well on suffix lists. For
example, head does not need to traverse the whole list, as was
required for choice and tag lists, and functions like last are
straightforward since there are no empty elements.

Conversely, functions that change the structure of the list
such as sort and reverse are challenging. The latter is a clear
example. Since suffix lists are actually trees, which have one
root node and typically many leaf nodes, it is not possible to
simply reverse the pointers. Instead, we need to find all of the
leaf nodes and combine them into a root node, and then work

backwards. Compared to the simple one-pass list reversal
operations that work for other lists, this is inefficient.

3.6 Segment Lists
The idea of segment lists is to encode variational lists as a
sequence of segments, where a segment is either a named
choice of nested lists or a sequence of plain elements.

type SegList a = [SegListV a]
data SegListV a

= Elems [a]
| Split Name (SegList a) (SegList a)

See Figure 2f for an example segment list. The segment list
is similar in principle to the choice list, except more compact.
Because of this, it shares most the tradeoffs with the paramet-
ric application of variation in the choice lists: We generally
need to traverse the entire list in order to implement vHead
function, and we need to add extra machinery to manipulate
choices in order to implement sorting. On the other hand,
reversing the list is relatively simple since reversing each
segment is sufficient to reverse each variant list.

4 Sharing
Sharing in the context of variational lists is valuable, in par-
ticular, since it helps to avoid unnecessarily duplicating ex-
pensive computations on common list elements. Variational
lists provide relatively little value if they simply wrap a set
of plain lists. Sharing is one major opportunity in which
variational lists can offer an optimization above an ad hoc
or brute force approach.

In the representations discussed here, the sharing offered
can be classified into one of four categories. Roughly in in-
creasing order of power, these are (1) no sharing, (2) prefix
sharing, (3) join sharing, and (4) total sharing. These are
explained in turn, each with specific details of the represen-
tations that are categorized as such.

No Sharing Of the list representations described here, only
the box list offers no sharing at all. It stores each variant com-
pletely independently and thus duplicates not only storage
costs for each element that could, in theory, be shared, but
also offers no mechanism to share computations on common
elements.

Prefix Sharing Offering an incremental improvement over
no sharing at all, prefix sharing enables sharing common
elements only in list prefixes, that is, from the first element
up until the first point of variation between two variants.
This kind of sharing occurs in the suffix list representation
discussed in Section 3.5.

Consider the example suffix list shown in Figure 2e. There
printf("Hello"); is shared, but printf("Goodbye."); is not. Pre-
fix sharing is somewhat unpredictable since it depends on
the shape of the data being stored.

Variational Lists: Comparisons and Design Guidelines FOSD’17, October 23, 2017, Vancouver, Canada

Table 2. A summary of the type of sharing offered by each representation
discussed in this work.

Sharing Type
Representation None Prefix Join Complete
Box ×

Pointer ×

Choice ×

Tag ×

Suffix ×

Segment ×

Join Sharing Join sharing is defined by the ability to share
common list elements by aligning the separate variants so
that common elements occur in the same position. This is
the approach taken in choice, segment, and tag lists. Join
sharing is sometimes more effective than prefix sharing and
never worse.
Consider the example shown in Figure 2c. There, we in-

serted empty Nothing elements, rendered as ϵ in order to
allow the variants to share the last token printf("Goodbye.");.
Padding the lists with empty elements in this manner can
increase the amount of sharing substantially.

Unfortunately, finding an alignment that maximizes shar-
ing is difficult and the subject of much research in its own
right, particularly in molecular biology [6]. Furthermore, a
maximal alignment can be inefficient if too many empty
values are padded.

Complete Sharing Pointer lists are the only variational
lists we have presented which can share every common
element regardless of the number of variants or the positions
of particular values. Each element is stored exactly once.
Although optimal in a sense, there is inherent overhead.

A summary of the kinds of sharing exhibited by our rep-
resentations is shown in Table 2.

5 Variational Programming
We can now focus on designing a variational list program-
ming interface. The first step is to define a type class that
contains basic list library function analogues. Type classes,
as we use them, are essentially like interfaces in Java.

class VList vl where
vEmpty :: vl a
vCons :: V (Maybe a) -> vl a -> vl a
vTail :: vl a -> vl a
...

If we want to implement functions generically for all of
our lists, we need some additional variational programming
machinery. For example, in order to work with variational
Bool values (such as those returned from vNull) we need a
variational if construct. We use VChc here instead of the
generic V because it helps to clarify a point of difficulty after
the following initial attempt.

vIf :: VChc Bool -> VChc a -> VChc a -> VChc a
vIf A ⟨l, r⟩ t f = A ⟨vIf l t f, vIf r t f⟩
vIf b t f = if b then t else f

Suppose we now want to define a generic variational list
reversal function. This will take the following (incomplete)
form.

vRev :: (VList vl) => vl a -> vl a
vRev xs = vIf (vNull xs) vEmpty ...

Unfortunately, this definition already contains a type error.
We want to pass vEmpty to vIf, which is a variational list, but
that function only accepts choices with the type VChc.
What we need instead is to come up with a type that

describes variational values more generally, including both
applications of our variational type constructor as well as any
kind of variational list. This, too, can be achieved with a new
type class. Unlike before, this code is unabridged because
the details are necessary. Name, now revealed, is just a string
encoding the dimension of variation.

class VVal (v :: * -> *) where
mkV :: Name -> v a -> v a -> v a
liftV :: a -> v a

Now we need to make both our choices and all kinds of
variational lists instances of this new type class. This is trivial
and omitted for choices (VChc) but the variational list instance
is trickier. For mkV, we need to take two variational lists and
zip them together.

instance (VList vl) => VVal vl where
mkV = mkVL
liftV = vSingleton . liftV

mkVL :: (VList vl) => Name -> vl a -> vl a -> vl a
mkVL n l r =

if vAllNull l && vAllNull r
then vEmpty
else vCons (liftV n (vHead l) (vHead r))

(mkVL n (vTail l) (vTail r))

Now we can return to our vIf definition and modify it to
work with values of this type instead of just VChc.

vIf :: VVal v => VChc Bool -> v a -> v a -> v a
vIf A ⟨l, r⟩ t f = mkV A (vIf l t f) (vIf r t f)
vIf b t f = if b then t else f

Now, finally, we can implement a variational list reversal
function.

vRev :: (VList vl) => vl a -> vl a
vRev vl = vIf (vNull vl)

vEmpty
(vCat (vrev (vTail vl))

(vSingleton (vHead vl)))

This generic interface, in addition to being useful, enables
meaningful benchmarking, which is discussed in the next
Section.

6 Performance
The runtime complexity of an algorithm is expressed as a
function that depends on the size of its inputs. In the case of
variational data structures, runtime not only depends on the

FOSD’17, October 23, 2017, Vancouver, Canada Karl Smeltzer and Martin Erwig

total size of the input, but also on the variability (expressed,
for example, as the number of variants) and exploitation
of redundancy in the data (expressed, for example, by the
degree of sharing).

As an example, consider finding the last element in a plain
linked list. Traditionally this takes O(n) time. However, the
variational analogue has to deal with potentially many vari-
ants of different lengths.
We opt to use n̄ = N /v to denote the average length

(or size, generally) of a variant list and then write O(vn̄) to
express that the runtime of an operation is linear with re-
spect to the number of variants and their respective lengths.
This is more succinct than using summation notation. Gen-
erally, if a function f :: [a] -> [b] has complexity O(д(n))
where n is the length of the input list, then the lifted version
vF :: V [a] -> V [b] has time complexity O(vд(n̄)).

Since the complexity can depend on the amount of shar-
ing in a variational list, we use the variable S to indicate a
metric depending on the redundancy in the data and the cor-
responding degree of sharing achieved by the data structure.
We define S = 0 to mean no sharing (but arbitrary data re-
dundancy) and S = 1 to mean completely redundant data and
total sharing, i.e. every element is stored once. This metric
accounts for actual sharing, rather than potential sharing.
For example, suppose we have two variant lists [1,2,4]

and [3,2,1]. Under prefix sharing the ratio is S = 0. For a list
representation with join sharing, we have S = 1/3 since only
the 2 will be shared. With a pointer list, we achieve S = 2/3
since 1 and 2 can be shared.

6.1 Specific List Operations
Unsurprisingly, sharing can lead to improved performance.
What is surprising, however, is that some representations
are actually slower than a brute force approach. We have
seen this in the head function, which requires some repre-
sentations to potentially traverse the entire length of the
list. This effectively turns a constant time operation into
one linear with respect to the length of the list. This kind of
asymptotic slowdown can occur (for some representations)
whenever the operation relies on the assumption that one
variational element is equivalent to one plain element, i.e.,
that it contains one plain value for all variants. Other typical
examples include intersperse and zip.
Conversely, consider reverse. Both box lists and pointer

lists have worst-case complexityO(vn̄) and no improvement
in the best case. This is not surprising for box lists since
we have no sharing, but the sharing offered by pointer lists
does not provide any improvement because we still need to
reverse all the copies of pointers.
For the other four representations, however, we need to

factor in the amount of sharing that occurs as part of the
measure. Using the measure S this gives us a runtime com-
plexity O(n̄ + n̄(v − Sv)) = O(n̄(1 + v(1 − S))) for those
representations. Plugging in values for S between 0 and 1

gives back the expected results. Although this is constant
factor wheneverv ≪ n̄ and easy to dismiss theoretically, the
impact on pragmatic performance might still matter.

6.2 Benchmarks
While the computational complexity measures of operations
are interesting, they can sometimes fail to fully portray the
realities of practical performance. This is the case with our
results.
Our benchmarking was performed on files from popular

C/C++ projects for which the source is freely available, in-
cluding Python, GCC, Gecko/Firefox, Linux, and Stockfish.2
We selected files in each of those source code bases which
contained a near-median number of CPP conditional com-
pilation macros. Although we believe these files provide a
good overview, it is not possible to choose files that precisely
represent the general case since the use of the preprocessor
varies tremendously based on the needs and coding style of
a project [9].
In files with no or minimal CPP annotations, we would

expect performance comparable to the base case for all rep-
resentations, which is not insightful. On the other hand, files
with the highest number of annotations are atypical and
sometimes even too slow to benchmark reasonably.
The benchmarks reported here are based on a list filter-

ing operation, a generally useful list operation that requires
traversing the entire list. A filtering operation represents
a realistic operation to be performed on a source code file,
such as finding all fully configured sections in a file which
satisfy some predicate (e.g., all parts of a file that apply a
particular function or redefine a particular variable).

vFilter :: (VList v) => (a -> Bool) -> v a -> v a
vFilter p l = vif (vNull l) vEmpty (fil p l)

where fil p l = vCons (vFilterV p (vHead l))
(vFilter p (vTail l))

vFilterV :: (a -> Bool) -> V (Maybe a) -> V (Maybe a)

We used the Criterion3 package to benchmark our Haskell-
based implementation of these list representations on 2.8Ghz
Intel Core i5 with 16GB of memory. We use the default set-
tings which run each benchmark 1000 times in order to
ensure a dependable result in the presence of factors like
garbage collection. Table 3 shows the benchmarked result for
applying vFilter with a predicate for including an arbitrary
line of code to one file from each of the five repositories. It
also includes information about the number of lines of code
(LoC) and lines of relevant CPP annotations (LoCPP) for each
of the files.
The runtimes show some unexpected results. First, we

can see that not every representation is able to outperform
the box list base case. Most notably, both pointer lists and

2www.python.org; gcc.gnu.org; www.mozilla.org; www.kernel.org; https:
//stockfishchess.org
3hackage.haskell.org/package/criterion

www.python.org
gcc.gnu.org
www.mozilla.org
www.kernel.org
https://stockfishchess.org
https://stockfishchess.org
hackage.haskell.org/package/criterion

Variational Lists: Comparisons and Design Guidelines FOSD’17, October 23, 2017, Vancouver, Canada

Table 3. Benchmark results for applying vFilter to five CPP-annotated source code files for each of our list representations. Runtimes given in µs.

List
Representation

parser.c

(Python)
bitmap.c

(GCC)
FilterProcessing.cpp

(Firefox)
raw.c

(Linux)
bitboard.h
(Stockfish)

LoC/LoCPP 488/22 2280/16 262/26 1369/21 334/9

Box 1220 894 336 3610 1680
Pointer 341000 12800 321 3490 55600
Choice 1770 486 436 909 357
Suffix 1090 465 363 823 620
Segment 22 462 41 377 152
Tag 11000 438 2870 11300 6830

tag lists occasionally perform significantly worse than the
base case. Conversely, choice and suffix lists frequently (but
not always) offer a noteworthy improvement over the base
case. However, from the results, it is clear that the segment
list representation is the top performer, beaten only in one
benchmark and even then only by a small margin.
As mentioned, both choice and segment lists suffer from

the potential for asymptotic slowdown in functions like vHead.
The benchmarks here seem to suggest that this does not man-
ifest in practice in at least some circumstances and that we
should probably rely more on benchmarks than on theoreti-
cal performance.

6.3 Interface Design
One further optimization can come from a refactoring of our
implementation. By making our type classes more granular,
we can provide more efficient implementations for many of
the list operations. For example, instead of a filter function
based on the potentially slow vHead and vTail functions, we
can define the following.

class VFilter vl where
vFilter :: (a -> Bool) -> vl a -> vl a

Then we can instantiate this type class for all of the list
representations.

We re-benchmarked this more granular use of type classes
on themost inconsistent representations, the results of which
are shown in Table 4.
Performance is now generally improved and more con-

sistent. Not all the news is good, however. By comparing
the two tables, we can see that in three of the five cases, the
type class design actually worsens the performance of the
segment lists. In the remaining two cases performance is
more or less unchanged.

7 Related Work
There is relatively little work so far exploring variational
data structures. Erwig and Walkingshaw [11] developed a
general strategy of adding variation to data types and also
applied to to lists. That work directly informs the suffix lists
described here. Walkingshaw et al. [24] explored some of the
possibilities of variational lists, sets, and maps. While that

work broadly covered many data structures and possibilities,
we focus more deeply on lists and practical list programming.
Meng et al. [21] designed and evaluated the performance of
variational stacks. Erwig et al. [12] investigated variational
graphs using a tag-based approach much like the tagged list
representation discussed here.
Despite the relatively small amount of work specifically

targeting variational data structures, there is a lot of work
within the larger fields of variation research that shares
some common goals. Both TypeChef [16] and SuperC [13]
make use of variational data structures to perform variability-
aware code analysis. In the same way that variational data
structures are concerned with sharing as much as possible
between otherwise independent variants, variational model
checking work also looks to avoid unnecessary duplication
of analysis [2, 8, 23]. Some model checking work has even
gone so far as to effectively design variational data structures,
even if not describe as such directly [7, 18].

Although not principally focused on variational data struc-
tures, Liebig et al. [20] suggest keeping variability as local
as possible and specifically consider the differences between
a choice of map structures and a map of variational values.
Similar ideas regarding localizing variation and the notions
late splitting and early joining are expressed by both Kästner
et al. [14] and Apel et al. [1].
Finally, some work on testing variational code has tried

to avoid a brute force approach by variationalizing an in-
terpreter [15, 17, 22]. Similar approaches have also been
proposed for dealing with privacy policies [3, 4, 25].

8 Conclusions
Our exploration of variational list data structures has two
main take-awaymessages. First, we have learned that the seg-
ment list representation (paired with the generic variational
list interface) outperforms our other representations. This
suggests that the best approach for a practical variational
list library would be one based only on segment lists with
no real need for the notion of a generic VList that can be in-
stantiated to several different concrete types. As a corollary,

FOSD’17, October 23, 2017, Vancouver, Canada Karl Smeltzer and Martin Erwig

Table 4. Benchmarks for applying vFilter on some list representations using a more granular approach. All runtimes given in µs. Compare to Table 3.

List
Representations

parser.c

(Python)
bitmap.c

(GCC)
FilterProcessing.cpp

(Firefox)
raw.c

(Linux)
bitboard.h
(Stockfish)

Pointer 1190 1000 420 3980 1940
Choice 176 456 169 473 158
Segment 173 451 168 473 162
Tag 172 490 166 470 161

we recommend that designers of other variational data struc-
tures perform pragmatic benchmarking, because theoretical
worst-case analysis may not align with the results.

Second, we have learned a couple of lessons about de-
signing variational data structures in general. Through the
general failure of the pointer lists, we have learned that
hash-consing (at least in pure languages) is likely not worth
the extra overhead. Hybrid approaches such as storing the
indices in a segment list offer no improvement.
We have also seen that even though our segment lists

eventually outperformed everything else, a library design
that avoids over-generalizing is preferable in most cases. For
example, if we were to move on to implementing variational
trees or graphs, and were unable to find a representation that
outperforms the others, we would expect the best approach
to be supporting multiple representations and having one
type class for every operation that is supported.

References
[1] Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Grösslinger,

and Dirk Beyer. 2013. Strategies for Product-line Verification: Case
Studies and Experiments. In IEEE Int. Conf. on Soft. Eng. 482–491.

[2] Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein,
and Dirk Beyer. 2011. Detection of Feature Interactions using Feature-
Aware Verification. In Int. Conf. Automated Soft. Eng. 372–375.

[3] Thomas H. Austin and Cormac Flanagan. 2012. Multiple Facets for Dy-
namic Information Flow. In ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages. 165–178.

[4] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-
Lezama. 2013. Faceted Execution of Policy-Agnostic Programs. In
Proc. ACM SIGPLAN Work. on Programming Languages and Analysis
for Security. ACM, 15–26.

[5] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2011.
Proactive Detection of Collaboration Conflicts. In Europ. Software
Engineering Conf./Foundations of Software Engineering. 168–178.

[6] Humberto Carrillo and David Lipman. 1988. The Multiple Sequence
Alignment Problem in Biology. SIAM J. Appl. Math. 48, 5 (1988), 1073–
1082.

[7] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel
Legay. 2011. Symbolic Model Checking of Software Product Lines. In
ACM Int. Conf. on Software Engineering. ACM, 321–330.

[8] Marcelo d’Amorim, Steven Lauterburg, andDarkoMarinov. 2008. Delta
Execution for Efficient State-Space Exploration of Object-Oriented
Programs. IEEE Trans. Softw. Eng. 34, 5 (2008), 597–613.

[9] Michael D. Ernst, Greg J. Badros, and David Notkin. 2002. An Empirical
Analysis of C Preprocessor Use. IEEE Trans. on Software Engineering
28, 12 (Dec 2002), 1146–1170.

[10] M. Erwig and E. Walkingshaw. 2011. The Choice Calculus: A Repre-
sentation for Software Variation. ACM Trans. on Software Engineering
and Methodology 21, 1, Article 6 (2011), 27 pages.

[11] M. Erwig and E. Walkingshaw. 2013. Variation Programming with
the Choice Calculus. In Generative and Transformational Techniques in
Software Engineering (LNCS 7680). 55–100.

[12] M. Erwig, E. Walkingshaw, and S. Chen. 2013. An Abstract Representa-
tion of Variational Graphs. In ACM Int. Workshop on Feature-Oriented
Software Development. 29–40.

[13] Paul Gazzillo and Robert Grimm. 2012. SuperC: Parsing All of C by
Taming the Preprocessor. In ACM SIGPLAN Conf. on Programming
Language Design and Implementation. 323–334.

[14] Christian Kästner, Alexander von Rhein, Sebastian Erdweg, Jonas
Pusch, Sven Apel, Tillmann Rendel, and Klaus Ostermann. 2012. To-
ward Variability-aware Testing. In ACM Int. Work. on Feature-Oriented
Soft. Dev. 1–8.

[15] Christian Kästner, Alexander von Rhein, Sebastian Erdweg, Jonas
Pusch, Sven Apel, Tillmann Rendel, and Klaus Ostermann. 2012. To-
ward Variability-Aware Testing. InGPCEWorkshop on Feature-Oriented
Software Development. 1–8.

[16] Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Leich.
2010. TypeChef: Toward Type Checking # ifdef Variability in C. In Int.
Work. on Feature-Oriented Soft. Dev. ACM, 25–32.

[17] C. H. P. Kim, S. Khurshid, and D. Batory. 2012. Shared Execution for
Efficiently Testing Product Lines. In Int. Symp. Software Reliability
Engineering. 221–230.

[18] Kim Lauenroth, Klaus Pohl, and Simon Töhning. 2009. Model Checking
of Domain Artifacts in Product Line Engineering. In IEEE/ACM Int.
Conf. on Automated Software Engineering. 269–280.

[19] Yun Young Lee, Darko Marinov, and Ralph E. Johnson. 2015. Tempura:
Temporal Dimension for IDEs. In ACM Int. Conf. Soft. Eng.

[20] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens
Dörre, and Christian Lengauer. 2013. Scalable Analysis of Variable
Software. In ACM Symp. on the Foundations of Soft. Eng. 81–91.

[21] Meng Meng, Jens Meinicke, Chu-Pan Wong, Eric Walkingshaw, and
Christian Kästner. 2017. A Choice of Variational Stacks: Exploring Vari-
ational Data Structures. In ACM Int. Workshop on Variability Modelling
of Software-intensive Systems. 28–35.

[22] Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. 2014.
Exploring Variability-Aware Execution for Testing Plugin-Based Web
Applications. In ACM Int. Conf. Soft. Eng. 907–918.

[23] Hendrik Post and Carsten Sinz. 2008. Configuration Lifting: Verifica-
tion meets Software Configuration. In Int. Conf. Automated Soft. Eng.
347–350.

[24] E. Walkingshaw, C. Kästner, M. Erwig, S. Apel, and E. Bodden. 2014.
Variational Data Structures: Exploring Tradeoffs in Computing with
Variability. In ACM Int. Symp. on New Ideas, New Paradigms, and Re-
flections on Programming & Software (Onward!). 213–226.

[25] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. 2012. A Lan-
guage for Automatically Enforcing Privacy Policies. In ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages. 85–96.

[26] YoungSeok Yoon and Brad Myers. 2015. Supporting Selective Undo in
a Code Editor. In ACM Int. Conf. Soft. Eng. 223–233.

	Abstract
	1 Introduction
	2 Representing Variational Values
	2.1 Named Choices and Choice Trees
	2.2 Tag Formulas and Tag Maps
	2.3 Visual Notation

	3 Variational List Representations
	3.1 Box Lists
	3.2 Pointer Lists
	3.3 Choice Lists
	3.4 Tag Lists
	3.5 Suffix Lists
	3.6 Segment Lists

	4 Sharing
	5 Variational Programming
	6 Performance
	6.1 Specific List Operations
	6.2 Benchmarks
	6.3 Interface Design

	7 Related Work
	8 Conclusions
	References

