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Abstract: In mary geographical applications there is a need to model spatial phenom-
ena not simply by sharp objectstibather through indeterminate @gue concepts.or
support such applications we present a modelagfug rgions which ceers and
extends preious approaches. The formal fran@k is based on a generaket model

of spatial data types. On the one hand, this simplifies the definition ciglie model
since we cantild upon already»asting theory of spatial data types. On the other hand,
this approachdcilitates the migration fromxact to \ague models. Moreer, exact spa-

tial data types are subsumed as a special case of the presmgiedcencepts. &/
present gamples and sl how they are represented within our frawerk. We give a
formal definition of basic operations and predicates which particulariy @lmore
fine-grained imestigation of spatial situations than in the puxee case. Walso dem-
onstrate the intgation of the presented concepts into an SQ&-djery language.

1 Introduction

In the literature about spatial database systems and geographical information systems
(GIS) that adacates an entity-oriented weof spatial phenomena, the general opinion
prevails that special data types are necessary to model geometry aficigatsf rep-

resent geometric data in database systemsx#onge [Eg89, GNT91, GS93, GS95,
Gu88, LN87, OM88, Sc95, SV89]. These data types are commonly dencieatias

data typessuch agoint, line, or region. We speak ospatial objectsaas occurrences of
spatial data types.

So far, spatial data modeling implicitly assumes that tkiterg and hence the boundary

of spatial objects is precisely determined andensially recognized. This leadschu-
sively to exact object modelsSpatial objects are represented by sharply described
points, lines, and ggons in a defined reference frame. Lines link a seriexaxtly
known coordinates (points), andgiens are bounded byactly defined lines which are
calledboundaries The properties of the space at the points, along the lines, or within
the rgions are gien by attrilites whose alues are assumed to be constaetr dhe

total extent of the objects. Examples are especially man-made spatial objects represent-
ing engineered arakts (like highways, roads, houses, and bridges) and some predom-
inantly immaterial spatial objectxerting social control (li& countries and districts
with their political and administratt boundaries or land parcels with their cadastral
boundaries). & will denote this kind of entities dgterminate spatial objects



Increasingly researchers are dgganing to realize that there are maspatial objects in

reality which do not hae sharp boundaries or whose boundaries cannot be precisely
determined. Examples are natural, social, or cultural phenomenari features with
continuously changing properties (such as population dessityguality vegetation),
oceans, biotopes, deserts, an English speaking area, or mountaialegsdMhe tran-

sition between aalley and a mountain usually cannot baetly determined so that the

two spatial objects “alley” and “mountain” cannot be precisely separated and defined.
Frequentlythe indeterminacof spatial objects is associated with temporal changes; for
example, clouds and sandbanks dynamically change their shapes in the course of time.
We will denote this kind of entities &ague or indeterminate spatial objects.

This paper presents an object model for definagure rgions: which rests on “tradi-

tional” (that is, &act) modeling techniques. This modeling sggtsimultaneously
expresses the authors’ opinion that it is unnecessarygio filem scratch when mod-

eling vague spatial objects. On the contratyis possible to xend, rather than to
replace, the current theory of spatial database systems and GIS. Furthermorg, mo
from an &act to a mgue domain does not necessariyalitate comentional geometry;

it is merely an gtension. Consequentlyhe current xact object models that are
restricted to determinate spatial objects can be considered as simplified special cases of
a richer class of models for general spatial objects. It turns out that tkescit/ehe

case for the model to be presented.

Section 2 gies a characterization of tharious meanings of indeterminacliscusses

the notion of “boundary”, and presents a classification of the approaches proposed so
far. Section 3 informally introduces the concept afjwe rgions and motiates the
necessity of ague topological predicates analgue spatial operations. Section 4 for-
malizes these concepts and discusses the problem of adequately defining numerical
operations onague rgions. Section 5 demonstrates an embedding into an S@L-lik
query language, and Section 6wsasome conclusions and/gs a prospect of future
research aatities.

2 Classifying Modelsfor Vague Spatial Objects

A first attempt of a taxonomy ofague spatial objects has beewegi by Couclelis
[C096]. She proposes taamine the essence adgue spatial objects from threefeif

ent perspectes: the empirical nature of the object, the mode of ohtery and the
users purpose. All three perspaas are based on the intuéimeaning of the notion
“boundary”. The nature of the object (foraenple, whether it is homogeneous or het-
erogeneous, continuous or discontinuous, solid or fluiddfor meing) influences
how we becomewsare of the boundaries and theigdee of sharpness. The mode of
obsenation (gven, for éample, by scale, resolution, time, errofeats the knaledge
about the position of the boundafihe uses purpose for which a model is designed
leads to a preference for one modetrothe othersince diferent user cagories hae

1. Concepts for &ague points andague lines are currently not &akinto account.



different requirements and conceptuaiwseAdministrators, for instance, demand pre-
cisely defined objects; scientists wewer, strive to intgrate the sgueness of bound-
aries into their models.

The entity-oriented vig of spatial phenomena, which we will &ln this papercon-

siders spatial objects as conceptual and mathematical abstractions aintdantities

which can be identified and distinguished from the rest of spacex&mple, a rgion

divides space into three parts: one part inside the object, another part on the border of
the object, and the remaining part outside the object. The three parts form a partition of
space, that is, tlyeare mutually ¥clusive and ceering the whole space. Hence, the
notion of a rgion is intrinsically related to the notion of a boundlaeyit sharp or inde-
terminate.

So far, in spatial data modeling boundaries are considered as sharp lines that represent
abrupt changes of spatial phenomena and that describe and thereby distiggomsh re

with different characteristic features. The assumption of crisp boundaries harmonizes
very well with the internal representation and processing of spatial objects in a com-
puter which requires precise and unique internal structures. Hence, in the past, there has
been a tendegdo force reality into determinate objects. In practiceydver, there is

no apparent reason for the whole boundary ofmnreto be sharp or to i@ a constant

degree of \agueness. There are a lot of geographical applicatam@es illustrating

that the boundaries of spatial objects can be indetermiratendtance, boundaries of
geological, soil, andegetation units (see forxample [Al94, Bu96, KV91, LAB96,
WHO96]) are often sharp in some places aaglue in others; mgrhuman concepts l&k

“the Indian Ocean” are implicitlyague.

The treatment of spatial objects with indeterminate boundaries is especially problem-
atic for the computer scientist who is confronted with thigcdities hav to model such
objects in his database system so that tteerespond to the ussrintuition, heov to
finitely represent them in a computer formatyto develop spatial indestructures for

them, and hw to drav them. He is accustomed to the abstraction process of simplifying
spatial phenomena of the reabnd through the concepts of antional binary logic,
reduction of dimension, and cartographic generalization to precisely defined, simply
structurzed, and sharply bounded objects of Euclidean geomedrgdikts, lines, and
regions:

In reality, there are essentially twcatgories of indeterminate boundaries: sharp
boundaries whose position and shape are umkioo cannot be measured precisalyd
boundaries which are not well-defined or which are uselessX@on@e, between a
mountain and aalley) and where essentially the topological relationship between spa-
tial objects is of interest.

2. Ironically, this abstraction process itself mapping reality onto a mathematical model implicitly
introduces a certain kind ohgueness and imprecision.



Spatial objects with indeterminate boundaries arficdif to model and are saif not
supported in spatial database systems. According to theatgories of boundaries,
two kinds of \agueness or indeterminjaconcerning spatial objectsv&to be distin-
guishedUncertainty relates either to a lack of kwtedge about the position and shape
of an object with amasting, real borderpgositional uncertainty) or to the inability of
measuring such an object precisehgésurement uncertainty) Fuzziness is an intrinsic
feature of an object itself and describes thgueness of an object which certainly has
an «tent lut which inherently cannot or does notéa precisely definable border

The subject of modeling spatiedgueness has sarfoeen eclusively treated by geog-
raphers bt rather nglected by computer scientists. At least three alteremtre pro-
posed as general design methods:

» fuzzy models [Al94, Ba93, Bu96, Ed94, KV91, LAB96, Us96,a84, WHS90]
which are all based on fuzzy set theory and predominantly model fuzziness,

» probabilistic models [BI84, Bu96, Fi93, Sh93] which are based on probability
theory and predominantly model positional and measurement uncersaidty

» exact models [CF96, CG96, Sc96] which transfer data models, type systems, and
concepts for spatial objects with sharp boundaries to spatial objects without clear
boundaries and which predominantly model uncertaintyalso aspects of fuzz-
iness.

Fuzzy sets were first introduced by Zadeh [Za65] to treat imprecise concepts in a defin-
able vay. Fuzzy set theory is axtension or generalization (and not a replacement) of
classical boolean set theory and deals only with fuzziness, not with unce Fairgy

ness is not a probabilistic attute, in which the grade of membership of anvidiial

in a set is connected to asgn statistically defined probability function. Rathers an
admission of the possibility that an iadiual is a member of a set or that eegi state-

ment is true. Examples of fuzzy spatial objects include mountaatisys; biotopes,
oceans, and mgrother geographic features which cannot be rigorously bounded by a
sharp line.

Probability theory can be used to represent uncertairtgfines the grade of member-
ship of an entity in a set by a statistically defined probability function. Examples are the
uncertainty about the spatiattent of particular entities l& regions defined by some
property such as temperature, or thetew level of a lale.

The main dificulty of fuzzy and probabilistic models is that their use with spatial data
is still a non-trvial application. On the one hand, our current computational technology
does not aller efficient processing of uncertain and fuzzy spatial data. On the other
hand, itis an open problemwado integrate and transform these models into the concept
of spatial data types.

A benefit of the ract object model approach is thaisting definitions, techniques,
data structures, algorithms, etc., need not bevedolged it only modified and
extended, or simply used. The currently proposeatemethods modekgue rgions



by using some kind afone concept, either without holes [CF96, CG96] or with holes
[Sc96]. The central idea is to consider determined zones surrounding the indeterminate
boundaries of a ggon and &pressing its minimal and maximattension. The zones

serne as a description and separation of the space that certainly belongs gahe re
and the space that is certainly outside.

While [CF96] and [CG96] are mainly interested in classifications of topological rela-
tionships betweenague rgions for which a simple model is assumed, [Sc96] proposes
a model of compbevague rgions with \ague holes and focusses on their formal defi-
nition. Unfortunatelythe three approaches are limited to “concentric” object models
and hae problems with geometric closure properties. The model described in this paper
also pursues thexact model approachubis much more general and much simpler than
the approaches suggested&o f

3 What are Vague Regions?

Our goal to base a concept @&fgue rgions on traditional modeling techniques first
necessitates a generahet object model for determinatgyrens. VW will introduce this

model only informally here. A formal definition of this model based on the point set par-
adigm and on point set topology isvgn in the Appendix. Each alternati model
should fulfill the properties described there. Possible candidates are the models
described in [ECF94, WB93], and the discrete model of tBSR algebra [GS93,
GS95, Sc95].

A (determinate) region is a set of disjoint, connected areal components possibly with
disjoint holes (see the picture belo This model is gry general and closed under
(appropriately defined) geometric union, intersectionfedhce, and complement
operations. It alles regions to contain holes and islands within holes tp (@nite)

level. The requirement of disjointedness is not meant in a strict sense; components of
regions as well as holes of a component may be neighbored in a common boundary line
or in common single boundary poiritsVe only require that the empled model satis-

fies the requirements defined in the Appendix.

Qo

3. Usually, common boundary lines makio sense, since then adjacent components and adjacent holes,
respectiely, could be meged together by eliminating the common boundary paotso&ir purposes,
this aspect is not ralant.



Our concept of &gue rgions mainly deals with the aspect of uncertainty d&so
includes some aspects of fuzziness. Frequethire is uncertainty about the spatial
extent of phenomena in space, that is, objects can shrinkxéemitde An gample is a

lake whose \ater level depends on the amount of precipitation or on tigesgeof ®ap-
oration and which has thus a minimal and maximgrg. Another gample is a map

of natural resources kkiron ore. Br some areascperts definitely kne the eistence

of iron ore because of soil samplesr Bther areaserts are not sure and only assume
the incidence of this mineral. These are the kindsaglie rgions we are especially
interested in. On the other hand, our concept is also able to model the aspect of fuzziness
that areal objects ka an &tent hut cannot be bounded by a precise bqrderexample,

the transition between a mountain ancbey. Continuous changes of featureseldr
pollution continuously decreasing from city centers to rural areas) cannot currently be
modeled by this conceptybsee Section 5).

A vagueregion is a pair of disjoint rgions. The first rgion, called thdernel, describes

the determinate part of thague rgion, that is, the area which definitely anda}s
belongs to the ague rgion. The second g#on, called theboundary, describes the
vague part of theague rgion, that is, the area for which we cannot say withcar-

tainty whether it or parts of it belong to thegue rgion or notMaybe the boundary or
parts of it belong to theague rgion, maybe this is not the case. Or we could say that
this isunknown. It is important to notice that boundaries need not necessarily be one-
dimensional structuresubcan be rgions, and that the semantics of the boundary of a
vague rgion is not fixed by our modelit depends on the meaning the application asso-
ciates with it.

The figure belw gives an abstrackample of a ague rgionv. The blank areas anno-
tated withv depict lernels, the shaded areas annotated witbnote the boundaries of
the vague rgionv, and the blank areas that are not annotated describe holegahie e
ple demonstrates the comyiky of the model. kernels and boundaries may be adjacent;
they may hae holes which themsedg can contain a hierascbf kernels and bound-
aries with holes.

A 10

We naw briefly present tw real life applications and muaéte the use ofague rgions,
vague topological predicates, andgue spatial operationsayyue concepts fafr a



greater fl&ibility for modeling properties of spatial phenomena in the realdihan
determinate concepts do. Stilague concepts comprise the modeling/@oof deter-
minate concepts as a special case.

The first @ample is takn from the animal kingdom and demonstrates the need of dif-
ferentvague intersects predicates and the use oWague intersection operation. &

view the lving spaces of diérent animal species and distinguigiriel areas where
they mainly live and boundary areasdiberipheral areas or corridors whereytimepar-
ticular hunt for food or which tlyecross in order to migrate from onerkel area to
another one. W nav consider some relationships of thewinig spaces and ask:

» Which animals (partially) share theivilng spaces?
* Which hunters penetrate into theitig space of other animals?
» What are the areas whereotapecies can only meet by accident?

For two animal species andyv, the interesting situations for the queries arevsho
belovn. They all relate to diferent kinds of intersection which amount to threéedent

kinds of topological predicates (introduced in thetrsection). The first query asks for
kernel/lernel intersections, the second query femiel/boundary intersectionsitnot
kernel/lernel intersections, and the third querclasively for boundary/boundary
intersections. The situation on the left is definitely an intersection. In contrast, the situ-
ation in the middle is aague intersection which, wever, is a stronger case than the
situation on the right. Othexamples of topological relationships and their use will be
presented in the Resection.

‘5: ofﬂv .

The task to compute the commorinig spaces of tavanimal species asks for the inter-
section of tvo vague rgions. The intersection of twkernels is certainly agtnel, and
the intersection of arxeerior part with agthing else is anxgerior part. The open ques-
tion is nav the intersection of aeknel with a boundary and the intersection ob tw
boundaries. Since boundaries aagwe, we cannot maka unique statement whether
these intersections belong to trerrkel parts or to the boundary parts. It only remains
to rggard these intersections as boundary parts.

The second »>ample demonstrates that concentric modele tikose presented in
[CF96, CG96, Sc96] are captured by our concept. Consides vidkch has a minimal
water level in dry periods (&rnels) and a maximalater level in rairy periods. Dry peri-
ods can entail puddles. Small islands in the hakich are less flooded byaver in dry
and more (bt never completely) flooded in rajrperiods can be modeled through holes



surrounded by a boundary an island like a sandbank can be flooded completiély
belongs to the boundary part.

Lake

Puddl \ @

Sandbank

Island

4  An Exact Model of Vague Regions

In this section, we ge a formal account ofague rgions. W\ first define ague spatial
operations in Section 4.1. After that we define predicates in Section 4.2. There we will
see that a concept, suchiasde, is not agmore simply a question dfue andfalse,

but rather needs aague kind of booleans containing @ue like maybe. That is, we
actually emplyg a three-alued logic as the range of (standard) predicates. Similarly
numeric operations gen in Section 4.3 seem to require a conceptagtie numbers
(given, for &kample, by interals). Since this entails rathettensie changes to the type

of real numbers and on its operations, we instead defifexaiit exact \ersions of
numeric operations capturingnous aspects ofagueness. In general, the problem is
how to integrate \ague rgions with other types and operations of a data modziv\lV
pick up this issue agn in Section 6.

For the definition of s&gue rgions we mak use of a suitable model for determinate
regions as sktched in the pxéous section. One possible candidate is the point set
model the releant parts of which aregn in the Appendix. W can choose grother
model as long as it fars the follaving operations (leR denote the type of ggons and

IR the set of real numbers):

®:RxR- R (union)

®:RxR - R (intersection)
©:RxR-5 R (difference)
©:R-R (complement)
dist:RxR - IR (minimum distance)
area:R - IR (area)

Moreover, R together with the operatiods and® must form a boolean algebra. The
order predicate of the corresponding boolean lattice isthven gyr [1s = r[ds=s
(e rns=r).

We define avague region v as a pair of disjoint ggons K, b) wherek gives thekernel
of v andb denotes théoundary of v. We emply the folloving notation:v¥ = k and
VP = b. Finally, theexterior, oroutside, of v is defined asf = O(k @ b).



4.1 Vague Spatial Operations

In order to define operations, sucluason, inter section, anddifference of two vague
regionsu andy, it is helpful to consider the possible relationships betweeneimek
boundary and outside parts ofandv. We do this by giing a table for each operation
where a column/mw labeled by@, O, or O denotes thedenel, boundaryor outside

part ofu/v. Each field of the table denotes a possible combination (that is, intersection)
of kernel, boundaryand outside parts of both objects, and the label in each field speci-
fies whether the corresponding intersection belongs toettmek boundaryor outside

part of the operatios’result.

union @ O© O intersection @ © O
® @@ @ e ®@ ®@ © O
O @ © O O o O O
OO @ © O oo O O

For example, theunion of a kernel part with ay other part is adenel part since the
union of two rggions asks for membership in eithegimn and since membership is cer-
tain for each &rnel part. Lilewise, the union of teboundaries or the union of a bound-
ary with the outside should be a boundarnd only the parts of the space which belong
to the outside of both geons contrilnite to the outside of the union.

On the other hand, the outside of theersection is given by either rgion’s outside
because intersection requires membership in bgthrrs. The krnel of the intersection
only contains parts which definitely belong to tieernel of both ayjuments, and inter-
sections of boundary parts with each other or witm&l parts mak up the boundary
of the intersection.

The definition of diference is motiated by the definition of complement. Cleathe
complement of thedrnel should be the outside, and the complement of the outside
should be thedenel, lut what about the boundary part?y#tmng inside the &gue part

of an object might or might not belong to the object, so we cannot definitely say that the
complement of theague part is the outside. Neither can we say that the complement
belongs to thedernel. So the only reasonable definition is to define the complement of
the boundary to be the boundary itself:

complement|. o O
O 0 @

Now the result of remdng a \ague rgionv from another ague rgionu can be defined
as the intersection ofwith the complement of That is, remaing a lernel part means
intersection with the outside whichnalys yields outside, and remiong arything from

the outside lezes the outside part uriefted. Similarly remwing a boundary means



intersection with the boundary and thus results in a boundangfoekand boundary
parts, and remang the outside o¥ (that is, nothing) does notfa€t ary part ofu.
difference @ O© O
®@ O O @
oo o O
Ol O O

Next we formally define these operations simply by usigipres operations, that is, we
express the notion ofague rgions using well-understooda&ct rgions. Letu andv be
two vague rgions. Then we define:

uunion v =DV WP VP) o UKD W)

uintersection v:= (U @ V&, IP @A) @ X @ VP) @ (UP ® VX))
udifferencev = (UK ® OV), P W) @ 1K ® W) @ (1P ® (BW)))
complement v = (6, W)

In the folloving we use as an abkiating notation for the intersection of tv{determi-
nate) rgions simple juxtaposition, and we assign intersection higher asgibgittan

union and diference. That is, the ab® definition foru difference v could also be writ-
ten more concisely asf{(6V¥), uPvP & uvB @ uP(EevX)).

It is not difficult to check that the definitions realize the hetraspecified by the tables
given abee. Considerfor example, thaunion-operation. Brw =uunion v we hae to
show the follonving three identities:

(1) WK = USVE @ uVP @ UKV @ UPVE @ UBVK
) WP = PP @ uPVE @ UEVP
(3) W = U

For proving (1) we first obserr that® is idempotent. \& can therefore duplicate the
first termufv¥. Then using theaict that® distributes wer @ we can &ctorize bothu®
andv® and obtain:

WK = (UK B VP B VE)) @ (VKUK @ UP @ uP))
SinceV® ® VP ® \# = 1z anduX @ uP @ U = 1 and sincdR is the identity of® we get
W= (U QR 1R) @ (V¢ ® 1g) = Uk @ K,

which is the definition of thedtnel part otinion. Equation (2) can be siva as follavs.
For arbitrary rgionsr ands we knav:

rds=rs®r(Os) ® (or)s
We can use this identity towete the boundary definition as:

PP @ uBevP) @ (OUPWE © (UKVK ® U (OVF) B (BUVX)

_10_



Next we ealuate all complements (note ti&® = V< © V& or 6 =P @ \#):
PR @ WP @ VB) © (UK @ LEWP © (UK @ U (VP @ V) ® (UP @ LEWN)),
and apply distribtivity of ®:
PV @ P @ PV @ UVB @ uBVR © (UK @ UVB @ UKV © LRV @ LBVY)

In the resulting term, onlyﬁvK andu®vP appear in both parts of theféifence; all other
intersections to be subtracted/bano efect at all since all intersections are pairwise dis-
joint. Therefore the result is:

PP @ PV @ LEVP

which is eactly the condition required forP. For the proof of relationship (3), first
note that in a boolean lattice wevkdor ary two regionsr ands: 1,® s=5s, 1D S=
1z, and1lg =1 @ (Or). Therefore, we kne thats = (r @ (Qr))s= rs® (Qr)s, and it
follows thatr @ s=r ® rs® (©r)s. We also knw thatr ® rs=r(1g® s) =r, so thar

@ s=r @ (Or)s. Since ©r)sis another \ay of denoting the dérences© r, we getr
@ (s©r) =r @ s. Now we hae by definition that

WE =W @ wWh) = (UK & V¢ @ (UP © VP) © (UK D VX)) =0 U & v d uP @ \P)
By commutatvity and de Mogan’s law this reduces to:
U D uP) ® (O( & W)

which is by the definition of complement equalit® \#, the condition required fav®.
The correctness of the other operations isvshio a similar vay.

In addition to haing the four basic spatial operations @gue rgions, it is also some-
times helpful to be able txplicitly deal with their boundary anceknel parts. Thus, we
define the follaving operations:

boundary(v) := ({1, VB)

kernel(v) = (V& 0)
invert(v) = (VB V)

In particular these operationsdilitate the computation with parts acigue rgions in

a purely gact way since theague spatial operations, applied &gue rgions with an
empty boundarybehae eactly like the correspondingact spatial operations. (This
can be easily seen from the definitions.)

4.2 Vague Predicates

One of the most basic relationships that can be obddov two regions is whether the
intersect or not. Mandifferent cases of intersection can be identified leading to special-
ized predicates, l&covers or meets, that describe more specific relationshigsd@fine

an intersection predicate forawague rgionsu andv it is instructve to look at the pos-

— 11_



sible results for thedenel and boundary @f = u inter section v. Surely we want to say
thatu andv intersect ifw* = U*v¥ is not emptythat is, if the krnel r@ions ofu andv
overlap. This is true independent from tlaue ofwP. Likewise, if the rgions ofu* @

uP andvk & VP are disjoint, we can safely say tlhedndv do not intersect at all. ke
ever, if W<=0g andwP # Or, We cannot be sure about the intersection afdv. This
means, we can neither returoe norfalse, but we rather hae to define the predicate to
yield something lik maybe or unknown (comparable to NULL-alues knavn from rela-
tional databases).

Therefore, we use a threalued logic as the range of boolean predicates. The definition
of the logical operators parallels the definition of the operationsafpresrgions (1, 0,
and ? are used as abliegions fortrue, false, andmaybe):

and
1

or
1

O v Rk
O o o|lo
e e
SIS N
o v RO

O NV V|

Now we return to the definition obgue predicatesoF example, the definition of inter-
section is:

O true if UVE 2 0g
[

uintersectsv = 0 false if UV @ uPVe @ UP @ uPvK = 0
[

[0 maybe otherwise

Themaybe-case of intersection can be distinguished further according to wheter a k
nel/boundary or only a boundary/boundary intersectkist® An example for both sit-
uations is shen belov:

b (PR

vague intersection weak vague intersection
We consider the situation depicted on the left to be a stronger indication of intersection

than the situation on the right. Accordinglye define tw predicatesy-inter sects
(vague intersection) andw-inter sects (weak vague intersection) as follows:

_12_



O true if uPVK @ UVP # 05 andukv® = O
uv-intersectsv =0
O false otherwise

_ Otrue  if uPvB 2 0g anduPv® @ UP @ UKV = 0
u w-intersectsv =[]
[ false otherwise

A special case of intersection is alseeyi wheru lies insidev. We can safely say that
uinsidev holds if eerything ofu (that is, lernel and boundary) is inside therkel of
v. If this is not the case, we cannot simply conclude dhatide v is false since this
requires definite kneledge about a part afbeing outside anpart ofv. In other vords,
wheneeru® 0 V¢ @ v we are not sure about insideness, and we should defisiele

v asmaybe:

O true if U@ uP O
]

uinsdev=0Ofalse  if X[ VDV
]
0 maybe otherwise

As we hae done for intersection we can discriminatertiagbe-case furthenf the ker-

nel part ofu is completely inside thegknel part o, then only the boundary afmalkes

the decision of insidenesague. This is a stronger indication for the inside relationship
than in the case that also a parud kernel lies in the boundary ef Some possible
relationships are sk in the follaving picture:

4
vague inside weak vague inside

As indicated by the twsituations on the right, the predicatei@ak vague inside can
be distinguished furthevWe do not follev this line, since this leads quickly to an infla-
tion of predicates.

O true if U< 0 VK anduP 17 V&
uv-insidev= [
O false otherwise

O true if Uk O V< @ VB andu® [ V¢
uw-insidev=0
O false otherwise

The complementary predicate fater sectsisdigoint, and its definition is obtained by
simply exchangingtrue andfalse in the definition ofnter sects.
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Note that we cannot directlkpress relationships, suchraeets or adjacent, since we
currently hae no concept of lines and points in our modelwHer, we can rgard
weak \ague intersections as a kind of adjages€ done by [CF96, CG96].

4.3 Vague Numeric Operations

The definition of numeric operations cegue rgions must be based on the correspond-
ing functions for rgions. Let us considefor example, thearea of a \ague rgion. The
area is at least the area of tlegrel part and at most the area efriel plus boundary
So the result of theague area operation could be an irdégwven by the minimum and
maximum areaalues. & then, hwever, have to work with intenals in ary further cal-
culations using such an arealie. This requires a wholeweset of \ague arithmetic
operations wrking with intenals. (The situation is similar to thetension to threeal-

ued logic used for predicates.) So in orderdgegkthings simple we instead define
operationsmin-area andmax-area, and can thusdep ordinary numeric operations.

min-area(v) := area (V¥)
max-area(v) = area (V¢ ® VP)

The definition of thelistance between tw vague rgionsu andyv is very similar Again

the distance is aague alue: An upper bound is obtained by the distance between the
kernel parts olu andy, that is, we are sure that the distance is at most the distance
between thedrnels. The distance might be smalkert it is at least as lge as the dis-
tance between the maximatensions ofi andyv, in other vords, the minimum distance

is given by the distance takinginel and boundary into account.

min-dist (u, V) :=dist (U ® uP, V¥ @ \P)
max-dist (u, v) :=dist (UX, v¥)

The generalization @frea anddist to vague rgions is rather straightfoavd. There are
other useful operations ongiens, hevever, for which a generalization to thague

case is not quite so simple aea impossible. Considefior example, the definition of
perimeter The definition for thexact case is well-krnwn, but what could be the perim-
eter of a ague rgion? In a first approach one could be tempted to define minimum and
maximum \ersions similar to the definition of area. Thiswkeer, might lead to wrong
results. V@ have indicated that the boundangren can be thought of (at least in some
applications) as describing possible locations of th@nés contourBut then we can-

not give ary upper bound on the length of such a euin particularthe contour might

be much longer than the perimeter of the boundayipme for instance:
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Moreover, we cannot simply takthe perimeter of thesknel part as the minimal perim-
eter This can be seen as falls. Usually holes contrilite to the perimeter of agien.

If now, for example, a krnel part of a&gue rgionv contains a hole which is equal to

a boundary part of the perimeter of the hole is not counted in the perimeter of the max-
imal possible rgion.

C

In this exkample, the minimal possiblegi®n has a perimeter téngth(C) + length(c)
whereas the maximal possiblgi@n has the minimal possible perimetetanigth(C).

Another &kample is an operation\gng the number of connected components for which
the generalization toague rgions hewily depends on the semantics of the boundary
parts. Since igions need not be connected, a “possilg@re”-semantics of boundary
parts might well allev several unconnected parts, that is,

Ogﬂ could be a possible g®n of

Hence, we cannot\g an upper bound on the number of components. But, in general,
we cannoteen give a nhon-twial lower bound either (fon@mple, the number oeknel
components) sinceeknel components might be connected by boundaigms. Thus

in the xample belw, the minimal number of components is 1 although there are three
kernel rgions.

(If we required, havever, that a possible gion extending into an adjacent boundary is
connected, we couldg a meaningful definition.)

We deliberately hae avoided definitions of operations, such as perimeter and number
of components, since we are then not forced to fix a semanticagoe vgions. This
means, the semantics can be assumed by each application as required andethus mak
our model more general.
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5 Embedding Vague Regionsinto Query L anguages

In the preious section we ha defined operations oague rgions. Net we indicate
how these operations can play a part in a spatial query languageo Wbt gre a full
description of a specific languageeWather assume a relational data model where
tables may containague rgion objects together with a SQL-dilquery language oF
example, if we vant to find out all rgions where lack of ater is a problem for cuita-

tion, we can pose the follang query:

select region from weathemwhere climate = dry

Here we assume a tableeather havsing a column namedegion containing ague
region values for arious climatic conditions gen by the colummlimate. A similar
query could ask for bad soilg®ns as a hindrance for cutition.

Note that the result of both queries iseaof vague rgions. If we nav want to find out
about rgions where culation is impossible due to either reason, we ask for the union
of the two reggion sets. Thus, we firstyato cast the sets into singlgien objects. W
therefore use theduldt-in aggregation functionsum which, when applied to a set of
regions, aggrgates this set by repeated applicationmbn (in the sense dbld/reduce

of functional languages). So we can determiggores where cultiation is impossible

by:

(select sum(region) from weathemwhere climate = dry)
union
(select sum(region) from soil where quality = bad)

Pollutions are nmadays a central ecological problem and cause an increasing number
of ervironmental damages. Importanxiaenples are air pollution and oil soiling. Pollu-

tion control institutions, ecological researchers, and geographers, usually use maps for
visualizing the gpansion of pollution. \& can ask, forxample, for inhabitable areas
which are air polluted (where thetel part of air pollution denotes kég polluted

areas and the boundary pases only slightly polluted ggons).

select sum(pollution.region)inter section sum(areas.rgion)
from pollution, areas
where area.use = inhabiteahd pollution.type = air

Then the krnel part of the result consists of inhabitegiors which are hedy pol-
luted, and the boundary consists (a) of slightly polluted inhabitggdn®, (b) of hedly
polluted rgions which are only partially inhabited, and (c) of slightly polluted and par-
tially inhabited rgions. If we vant to reach all people whovdi in heaily polluted
areas, we need theinel of the intersection together with part (b) of the intersection
boundary How can we get this from the am query? The trick is to force boundary
parts (a) and (c) to be empty by restricting pollution areas to theiekrgion:
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select kernel(sum(pollution.region)) inter section sum(areas.rgion)
from ...

A slightly different query is to find out all areas where people are definitely or possibly
endangered by pollution. Of course, wedto use an intersection predicate. More pre-
cisely we want to find those areas for whictter sects either yielddrue or maybe. For

this purpose we can prefixyapredicate withmaybe which causes the predicate &al f

only if it returnsfalse. (Technicallymaybe turns amaybe value intotrue.) So the query

is:

select areas.name
from pollution, areas
where area.use = inhabiteahd
pollution.region maybe inter sects areas.rgion

We could alsogress the query by using simphter sects and &plicitly adding the
two cases fov-inter sects andw-inter sects. This would be, of course, much longer and
less clear

The followving example describes a situation which stresses the conflicting interests of
economy and ecolog®ssume on the one hand areas of animal species and plants that
are worth being protected (nature reses\and national parks are tregthel rggions) and

on the other hand mineral resources the mining of which prospects high profits. An
example for forming a diérence of ague rgions is a query which asks for mining
areas that do notfatt the lving space of endangered species.

(select sum(region) from resourcesvhere kind = mineral)
difference
(select sum(region) from naturewhere type = endangered)

The lernel of the result describegrens where mining should be alled. The bound-

ary consists (a) of ggons where mineral resources are uncertain and (b) of res@urce k
nels that lie in (non<rnel) rgions hosting endangered species. Since national parks are
generally protected by the ygrnment, it is especially geons (b) conseationists
should carefully obseer We can determine thesegrens by:

(select kernel(sum(region)) from resourcesvhere kind = mineral)
inter section
(select boundary(sum(region)) from naturewhere type = endangered)

The result is aague rgion with an empty érnel and a boundary that just consists of
the intersection of the mineral resouregriel and the endangered nature boundary

Next we consider anxample from biology already mentioned in Section 3. Assume we
are gven living spaces of diérent animal species. Therkel describes places where
they normally Ive, and the boundary describegioms where thecan be found occa-
sionally (for example, to hunt for food or to migrate from orertkel area to another
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through a corridor). First, we can search for pairs of species which share a common li
ing space. This asks forgiens which hae a non-empty intersectiortnel:

select A.name, B.name
from animals (A), animals (B)
where A.regionintersects B.region

A quite diferent question, also based on intersection, is whether there are animals that
only sometimes enter thetnel rgion of other animals, forxample, to attack them

(but usually Ive in different areas). Here, we ask for an empty interseceomekand a
non-empty boundaryéicnel intersection which iscactly the concept ofague intersec-

tion. The abwe query changes to:

select ...
where A.region v-intersects B.region

Finally, we can also ask for animals that only encounter each other in their boundaries.
This would be, for instance, the case footanimal species that are both hunters and
usually aoid contact. The corresponding query is obtained by simply wginmger -

sects instead ofv/-inter sects.

Assume that we are\gin a map of land areasetkels) and mied areas lik shores and
banks (boundaries) where theitig spaces of animals with theierkel and ague
regions are depicted. \can ask for animals that usuallyelion land and sometimes
enter the \ater or for species that vex leave their land area. This can bepesssed
using the inside predicate. The firsample is characterized by an animdiVing space
beingv-inside land:

select name
from animals
where regionv-inside (select sum(region) from land)

The second»ample demands plain (that is, stronggide.

A quite different &ample using insideness relates to the historicaldpment of the
Roman Empire, in particulaits expansion. At apm moment during this delopment
there were &rnel rg@ions representing the areas currently occupied by the Roman con-
guerors and spheres of influencague parts) that were under the control of the Roman
Empire lut not anneed. If we consider tvpoints in timet <t,) and hence tarvague
regionsu andv, we could ask whether ymf the occupied areas fgthave been pre-
sened tot,. This is the case if theeknel ofu is completely inside, in other vords,
whenuinsidev or uv-insidev. If they had to gie up lernel rgions, this is amemple

of uw-inside v.

Let us finally preide some xamples for numeric operations. Oil companies are often
interested to determine whether it i®nh eploiting a recently disoeered oilfield.
Hence, the classify oilfields in areas where thastence of oil vas praed by soil sam-
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ples and in areas where the incidence of oil is only assumed. The decisiploiing
then depends on the guaranteed minimtdresions of the oilfields:

select min-area(region) from oilfields

An example for applyingnax-area is a@in pollution where we should be pessimistic
and consider the evst case of all possible pollutedjiens.

The minimum distance between a forest fire andyemneof endangered species indi-
cates where proteg# measures should be performed first. &#other xample con-
sider an attaad country that might a secure parts ¢knel), battle rgions (bound-
ary), and een lost parts (outside)oTnove from one safe area to another one might con-
sider the risk of such a trip bevgn by the maximum distance betweemedént regions,
that is, the dierence between secure parts.

6 Conclusionsand Future Work

We have defined a data model ofgiens that is capable of describing matifferent
aspects of ague spatial objects. It is a canoniceleasion of a determinategien
model which &cilitates the treatment odgue andxact rgions in one model. In par-
ticular, this allavs a smooth migration from alreadyigting models to &gue concepts
(at least asdr as rgions are concerned). Our approach is basedaxt spatial model-
ing concepts which ales to lild upon &isting work and simplifies mandefinitions.
In particular we can (re-)use alreadyisting regions implementations to realizague
regions with only minimal dort.

Of course, the current model is limited in sonayg; and we are currentlyigstigating
extensions along seral diferent lines. First, the presented conceptagfueness can
be extended taother spatial objects, such as points and linesrfexample, a ague line
could be thought of as consisting ofearkel part gien by a set of (unconnected) cesv
and a ague part described by a boundagioa. An exkample is a ker which may con-
tain fixed sgments (determined, for instance, byees) and a boundary which
describes possible i that depend onater level or season.

M

A vague point can be simplyvgin by a ague rgion (with empty krnel) describing
possible positions of the pointo Tefine such»@ensions we first he to etend the
basic model of xact raions by lines and points together with operations defined for
them. These can then be used to defagpie lines and points.&Mlso should consider
operations concerning objects offdient \ague types, fon@ample, the intersection of
a\vague line with aague rgion.

Another direction of @ension is the notion ofagueness itself. As yet, there is only one
kind of vagueness,ui there are manapplications which can be best described lwy ha
ing different degrees of vagueness. For example, zones of decreasing pollution or
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regions of diferent possibilities for certain virus infections. Our model can be easily
extended to deal with this kind of applications byihg a set of rgions labeled with
different \alues of a suitable domald which is subject to certain restrictionsorF
example, we need operatiomsx andmin to gve meaningful etensions of operations
like union andinter section.

Finally, we consider théntegration of vague rgions (and their possiblextensions)

into other data models.&hae already seen ofor predicates and numeric operations
the \agueness of gegons afects the corresponding domains of booleans and real num-
bers. It is lilely that the situation is similar for other domains as well. So thgratten

of vague rgions into ag existing data model and query language might cause some
trouble since it either requires a redefinition of the data types or a redefinition (and
duplication) of operations. That this can be tedious and-prome has been demon-
strated in the description of numeric operations. Note that the probleragféinfec-

tion” is not restricted to standard data types. &ample, in [EG94, Er94] graphsvea
been intgrated into a spatial data modelith\fespect to ague spatial objects, an oper-
ation like subgraph that computes part of a graph according to a possibly spatial pred-
icate should return gague graph. Now, what are ague graphs, and Wwocan all the
graph operations adapted to tregue case? ¥/currently consider the irgeation an
open problem.
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Appendix

We gve a formal definition of the general model for determinag®ns that has been
informally described in Section 3. An adequate and general method to formally define
this model is to use the point set paradigm and point set topdibgypoint set para-
digm expresses that space is composed of infinitelyynpamts and that spatial objects

like areal objects are distinguished subsets of space whichaezh\as entities. Point

set topology [Al61, Ar83, Ga64] alles one to distinguish special topological structures

of a point set lik its boundary or interiok\Ve start with some basic concepts of point
set topology

Definition. LetX be a set andl 0 2X be a subset of the wer set ofX. The pair K, T)
is called aopological space, if the following three axioms are satisfied:

(T1) XOT,O0O0T
(T2) UOT,VOT O UnVvOT

(T3) sOT O [JuOT
uags

T is called atopology for X. The elements ofl are calledopen sets, their
complements iX closed sets. The elements of are callegoints.

When no confusion can ariskis not mentioned, and denotes a topological space. In
the sequel, leX be a topological space and] X.

Definition. The interior of Y, denoted byy°, is the union of all open sets that are
contained inY. Theclosure of Y, denoted byY, is the intersection of all closed sets
that containyY. Theexterior of Y, denoted byr", is the union of all open sets that are
not contained inY. The boundary of Y, denoted by, is the intersection of the

closure ofY and the closure of the complementypthat isdY =Y n X-Y.

The relationships between these four topological structures\ene iy the preable
statements (1yY° n oY =0, (2)Y O Y=Y, (3)Y nadY=0, and (4)Y° n Y =01.
Obviously we can concludg =0Y [0 Y° 0 Y.

Since our objecte is to model tw-dimensional areal objects for spatial applications,
we embed them in the Euclidean space (plm?eas an instance of a topological sface
with metric properties. A problem of applying pure set-theoretic operations to point sets
Is that undesired geometric anomalies can arise. These anomaligsideg &y the
concept ofegularity [Ti80].

Definition. Y is calledregular closed if Y = Y,

Intuitively, regular closed sets model areal objects containing their boundaries and
avoid both isolated or dangling line or point features and missing lines and points in the
form of cuts and punctures. Hence, it msisense to defineregularization function

reg which associates a séwith a reyular closed set, as folies:

4. Note that most of the definitions and results in the sequel also hold for general topological spaces.
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reg(Y) := Y

An example of rgularization is shan belav where the seY consists of areal, point,

and line objects. Some areal objects contain only parts of their boundanves ydta

broken lines) and hee cuts (drevn with brolen lines) and punctures. Thgudarization
process eliminates point and line features, cuts and punctures, and includes the missing
boundary parts of the areal objects.

T

X\ @%

Y reg(Y)

The union of a finite number ofgelar closed sets isgalar closed. The intersection
and diference of rgular closed sets are not necessartylar closed. Hence, we intro-
duceregular set operations that preserw regularity.

Definition. Let A, B be r@gular closed sets, and letA denote the (set-theoretic)
complementR? - A of A. Then
() ADB:=regAOB)=AOB
(i) An,B:=reg(An B)
(i) A- B:=reg(A-B)
(iv) -/A=reg(-A)

It is obvious that the subspa&€ES of regular closed sets together with thgukar set
operations is a topological spacegRlar closed sets andyd@ar set operationxpress
a natural formalization of the dimension-preserving propergnér granted by man
spatial type systems and geometric algorithms. TheAdoipimportant theorem holds:

Theorem. RCSwith the set-theoretic order relatidhis a Boolean lattice.

This implies that (i) RCS, ) is a partially ordered set, (iiyery pairA, B of elements
of RCS has a least upper bouAd], B and a greatest\wer boundA n, B, (iii) (RCS
[0) has a maximal elemedt := IR? (identity of n,) and a minimal elemert, := [
(identity of,), (iv) algebraic lavs like idempotence, commutaty, associatiity, and
distributivity hold for O, andn,, (v) (RCS ) is a complementary lattice, that i$ A
ORCS:An,~A=0,andA, -, A=1,.

Definition. A regionis a r@ular closed set.

Definition. The typeR consists of all igions and has the operatiohs®, ©, and©
that are equated with thegudar set operatioris,, n,, —, and-, respectiely, and
the elementdg = 1, andOg =0,.
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