In: 13th IEEE Symp. on Visual Languag€spri, 1997. To appear.

Semantics ofVisual Languages

Martin Erwig
FernUniversitat Hagen
58084 Hagen, Germany

erwig@fernuni-hagen.de

Abstract

The effective use of visual languageguires a pecise
understanding of their meaning. Muavey it is impossible
to prove popetties of visual languages like soundness of
transformation ules or corectnessesults without having a
formal language deiition. Although this sounds obvious, it

is surprising that only few work has been done about the

semantics of visual languages, and even worseg tkamno
general framework available for the semantics speatifin

of diffeent visual languages. &\present such a framework
that is based on a rather general notion of abstract visual
syntax. This framework allows a logical as well as a deno-
tational appoach to visual semantics, and it facilitates the
formal reasoning about visual languages and theopar
ties. V¢ illustrate the concepts of theoposed apgach by
defning abstract syntax and semantics for the visual lan-
guages VEX, Show andlll and Euler Cicles. For the lat-
ter we also pove a ule for visual easoning.

1. Intr oduction

Investigating the semantics of visual langes is
important for several reasonsfirst of all, a pecise defii-
tion of semantics is indisperisa for a thoough under
standing of ay languae. This in tun is impotant to
appraise a visual langge and to comparit to othes. Fur
themore, this facilitates the deelopment of gtensions or a
re-design of the langga. Secondhaving a pecise specii
cdion of a languge’s semanticst is in maty cases oyl a
small st tovard an implement#on, for instancedenota-
tional semantics can beatrsldaed almost erbdim into
functional languges,so tha an intepreter br the languge
is immediaely available [12]. Third, with a pecise seman-
tics, various popeties of languges can be pved In par
ticular, we can pove syntactic nsbrmations to be sound
w.r.t. the semantics (@, -reduction inVEX can be shan
to realizz function aplication, or rles br syllogistic rea-
soning in Euler digrams can be pwed sound). lally, a
clear semantics of visual langyes is needed to irgeste
them corectly into other emironments.This especiall
applies to hetaageneous or miti-paradigm languges, see
e.g. [7].

Despite the @asons just mentiongteseath on visual
languaye semantics issther spoadic In paticular, there is
no geneal framavork available which could be usedf the
formal speciftaion of visual languges. This situdion is

quite diferent than in tetual languges: There we can
choose among aaviety of different semanticdrmalisms,
suth as denotdonal semantics,structured opestional
semantics,action semanticsgvolving algebras etc, and
some of these couldn principle, be emplged for visual
languayes as wll. A possilde reason iy this does not ha
pen might be thasome of the components thee neces-
say for a semantics &mevork are missing Taking
denotdional semantics as amample we obseve thda — &
least asdr as visuaprogramminglanguaes ae concened
— the necessgarconcts of semantic function and semantic
domain can be used as in thattel case However, the
third componentabstract syntaxcannot be simpl taken
for visual languges, and thee is no equialent notion ér
visual languges \et.

So in the sequel svwill first introduce a conge of
abstract visual syntax in Sectiok before we demonstte
the specifiaion of logical and denot#onal semantics in
Sections3 and4 by two simple &les. In Sectiob we
shav tha also moe compl& visual languges can be dealt
with by the pesented pproac. Section6 comments on
relaed work, and Sectior? presents some colusions.

2. What is Abstract Visual Syntax?

A textual langugeL is a set of sings over an alphbet
A, i.e, LOA* The symbols of ansentence (or ard)
w O L are onl related to eab other ly a linear odeiing. In
contrast, a sentence (or digam or pictue) p of a visual
languaye VL over an alphbetA consists of a set of symbols
of A tha are, in geneal, relaed ly seseral relaionships
{rq, ..., rp} = R Thus ve can satha a pictuepis gven ty
a pair 6, r) where s A is the set of symbols of the pictur
andr 0 sxRxs gives the elaionships thahold in p.~ In
other words, p is nothing It a diected gaph with ed@
labels dewn from R, and a visual langge is simpy a set
of sud gaphs.

Usually, languaes contain a cin stuctur, i.e., thee
are pecise ules defiiing which symbols can occur in
which contets and regarding visual languges, which
symbols my take pat in which relaionships.This stuc-
ture is ecaynized and erdrced duing syntax anafsis,and
it can be assumedhen defiing semanticsTherefore,
semantics ddfitions ae often based on so-callaistract
syntaxwhich defnes a languge on a mae astact lesel

1. Reldionships with aty > 2 can alays be simlated by several
binary relaionships.

with less constints than on the corete level. This means
tha a desdption of concete syntax mst indude every
detail dout the languge whereas the bstract syntax can
sakly ignore all aspects thaare not needed within the
semantics ddfition.

At least br visual languges, we can actuayl distin-
guish diferent lesels of “abstractness”: First, we can
abstract fom concete symbols anddm geometic details,
sudh as sie and position of objecfsSecongwe can ignoe
associtivities thd are used toesole ambiguous sitd@ns
during pasing and typings hich resticts relaionships to
specift subsets of symbols.irfally, we can gen forget
about stuctural constaints; then a picteris just considexd
a directed ldeled gaph with possiby remaining estic-
tions wr.t. node and edglabels.Thus we can defie:

Definition 1. A directed labeled multi-graph of tyfe, (3)

is a quintupleG = (V, E, 1, v, €) consisting of a set of nodes
V and a set of edgE wher 1:E - VxV is a total mpping
defining for eat edge the nodes it conneciBhe mapings
v:V - a ande:E - (3 defne the node and eddébels.

For a gaph g, V(g) (E(g)) denotes the set of nodes
(edges) of g. The successerof a node & denoted P
sucqv), i.e., sucqv) ={wd V|0 V:1(e) = (v, w)}. Like-
wise, predv) denotes/’'s piedecessar.

The ldel typesa andf might just be sets of symbots,
they can be complestructures to enble the ldeling with
tems, semantic alues,or even gaphs (see Sectidh). The
set of all gaphs of typed, B) is denoted vl (a, B).

Definition 2. A visual language of typé, B) is a set of
graphsVL O T (a, pB).

In the sequel & will look & visual languges on this
very abstract level, i.e., the dstract syntax of a visual lan-
guage is specifid as a set ofrgphs of a specifitype

How does this viey relae to the wvell-estdlished gam-
mdtical gpproadh to syntax? Cledy, the syntax of lan-
guagges can be caenienty specifed ky grammas.
Grammas povide a way to geneste all sentences of the
languae and given a suithle pasing algrithm, allow to
test vhether a sentence is a member of the |laggy(@ossi-
bly giving a ppoof for this ty constucting a pase tee br
reconstucting the sentence). Connerg astact syntax,
however, grammas ae usualy not used dér pasing; their
purmpose is just to &&r an inductie or decompositional
view of languge tha facilitates semantics deitions,
especial, denotéional semantics or stctured opeational
semanticsAs demonstted in [B] we can actuajl have a
(de)compositional&cusive viev of graphs without esot-
ing to gammas. So ve can ahieve a highy abstact com-
prehension of pict@s t@ether with an inducte viev of
graphs tha facilitates, say, denotéional semantics defi-

1. At least up to‘topological equvalence”,i.e., as long as @levant)
relaionships betwen objects arnot afected

tions. On the other hanthee ae visual languges whose
semantics & best desdved in a lgical fashion. In tha
case a globalset-theoetic view of languae is needed
which is just gven by abstfact visual syntax (and hich
might be obscuwd when using tammadical formalisms).

As in the tatual case thehmice of &stract syntaxdr a
visual languge is ty no means uniquéJsualy, one has to
trade similaity to the orginal notaion for simplicity of the
semantics ddfition. We will illustrate this point in Section
4,

3. Logical Semantics

In mary cases,a lagical specifcaion of semantics
views the syntactic elements simas sets. & graphs,the
node- and edgrset viev is implicit in the defiition. In Sec-
tion 3.1 we defne syntax and semantics of thellaknown
Euler digrams,and in Sectior8.2 we piove a visual ule
for syllogistic reasoning and thus illuste hav to estalish
propeties of a brmalized visual languge.

3.1 Euler Diagrams

The languge of Euler digrams as desitred in [B, 15]
contains éur kinds of basic pictes epressing lgical
staements:

O (§9 (0»

All AisB NoAisB SomeAisB SomeA is notB
Fig. 1: Euler Diagrams

Ambiguities of Euler digrams and semantic gilems
arising from these a discussed in detail ii}]. Our aim is
not aguing in fvor of or ajainst using Euler dgrams br
reasoningHowever, as a mter of fact, Euler digrams ae
a wide-spead visual not#on, and in oder to discuss the
notaion and compar it with othes, it should be under
stood in the fist place This is what abstract visual syntax
and the semantiofmalism can duieve.

The concete syntax of Euler dimams compeses Cir
cles and sing-labels tayether with the élaionshipsinside
intersects and disjoint. Labels hae two putposes:First,
they provide references to set symbols in piotsrto be
used in gplandions,discussions etSecondtheir position
distinguishes tw different set eldionships br inteisecting
circles. In the bstact syntax & can thezfore omit ldbels
and eplace theintersectsrelaionship ty two ede lebels
identifying the thid and burth situdgions, namey, p-inter-
sectsandnic. The namesasult flom the bllowing obseva-
tions: In order to gve a brmal semantics to Euler djams
one has to amger the bllowing questions (among otrgr
(1) Does the thit situdion also sg: “SomeB is notA” ?
Yes,Euler also speciis tha“SomeA is notB” (and“Some
B isA"). Thus we knaw: (i) An B2, (i) A-B#0, and

(i) B-A#0. So this situon descibes wha we call
properintersection i.e., we sy A p-intersectsB. (2) Is the
reldive position of laels irelevant,i.e., does the lasb@m-
ple also sp“SomeB is notA” ? This would be easonhle,
and although Euleriges as one posséinstance anxam-
ple wher B is complete} inside (i.e, propety included in)
A, he himself uses the nditan in a symmetc way later on
in his lettes. Accordingly, we ignoe relaive positions of
labels. So thisalaionship desdbes tha both diferences
are non-empty \Wwich expresses nothingub the fct tha
two sets a not compable wr.t. indusion; we call this
relaionshipnot indusion-compasgble.

Exceptinside all relationships a@ symmetic.We depict
a symmetic reldgionship ly an undiected edg which is
represented in a dacted gaph by two directed edgs in
both diections. So thelmstiact syntax gaphs br the Euler
diagrams of kgure 1 look like:

inside

- ~ Od|510|ntO O p-|ntersect%D 0 nic O
Fig. 2: Abstract Graphs for Euler Diagrams

The semantics is defd br a diggram elaive to auni-
verseof objectsU. An intempretdion is a maping from the
set of cicles in the digram,i.e., nodes of the igph, to sub-
sets ofU, i.e., f: V ~ 2Y. Now the semantics can be egsil
defined:

J(V,E)]U ={f|f:V - 2Y O0eOE: valid(f, 1(e), £(€))}
where
valid(f, (u, v),) =
%f(u) af(v)
%f(u) nf(vy=0

Of(u) n f(v) 2 0 Of(u) - f(v) 20 Df(yR -f(u) 2 0
O if | = p-intersects

if | =inside

if | = disjoint

%f(u) V20 Of(V)-fuy =0 if | =nic

3.2 Soundness oVisual Reasoning Rules

Having a pecise defiition of what Euler digrams mean it
is quite easy tohled the visual ules br syllogistic reason-
ing. Euler gves textual wversions of sub rules and xplains

them ly pictures. One xample is:

All AisB SomeC isA
SomeC isB

Although this soundsary intuitive, this wle is formally not
comect since'SomeC is B” does ony hold if C - B # [.
But this cannot be cohaed flom the pemises;C might
well be induded inB. Actually, Euler is avare of this fact
and gves pictues illustaeting both casesThe point is tha
there is no brmal corespondence beten popositions
and pictues (since theris no brmal semantics). No the
correct wle is:

All AisB SomeCisA

All CisBor SomeCisB

or equvalently in visual tems:
Lemma 1.
B
©)(6
Proof. We reformulate this wle in tems of dstact syntax.

The pemises can be joined into onegh.

C A B
O— O—»
p-lntersects inside
C B C B

p-intersects inside
The semantics defition ensues br eat valid inteipre-

tation the bllowing propeties:
(1)AOB@)AnC#0 (3)A-C#0 (4)C-Az0

First we obseve from (3) and (4) thaneitherA nor C is
empty By (1) it also bllows tha B is not empty For the
intersection and ditrence of tvo non-empty sets evknaw:

() XnY#0 - 20:20X0zOY
(i) X-Y20 - (Z#0:Z20X0Zn Y=0

Next we transldae the conlusion of the ule into formal
tems.Tha is, have to shav tha the Pbllowing is tue:

(CnB20OC-B200B-C#0)0COB

We can simplify this ten: First, sinceC O B impliesC n B
zO,wehaeCn B0 0OCOB=Cn B#0, and second
C-B#0 OC OB is always tue which can be easil
chedked by consideing all possibilities wr.t. to the inter
section ofC andB. Thus it emains to be shmn:

CnBzO0OB-Cz00COB)

We can pove both pats searately. Frst, from (2) and (i)
we infer[(D # O: (5) D O Aand (6)D O C. By transitvity
it follows from (5) and (1) thaD O B, and this tgether
with (6) and (i) implie<C n B# 0. Secondwe obtain fom
(3) and (ii) the elationshipsCD # O0: (7)D O Aand (8)D n
C = 0. By transitwity it follows from (7) and (1) theD O
B, and this tgether with (8) and (ii) implieB - C £ 0. This
means theB - C# 0 OC OB s also tue]

4. Recursive Semantics

In contast to the mrdicaive view tha was comenient
in the pevious sectionmary languges ae defned induc-
tively, and then a semantics dsfion is easiest toige
when adopting thtanductive viev. We illustrate these ideas

with the visual languge VEX [4], which provides a visual
notaion for the lambda calculugVe choseVEX, since it is
a rather small (lmt computéionally complete) languge and
since ag semantics can be easweified by compaison

with the dassical lambda-calculus.

In Section4.1 we eplain VEX informally, followed in
Section4.2 by two altendive @stact syntax defiitions.
Sections4.3 and 4.4 introduce an inducte/decomposi-
tional view of syntax gaphs thais paticulaly neededdr
the defiition of denottional semantics. Based on thés,
semanticsdr VEX is then dgven in Sectiort.5.

4.1 Example: VEX

VEX [4] is a puely visual languge: Ead identifier is
represented Y an (empty) citle tha is connected Y a
straight line to a so-calletbot node A root node is gain
an empty cicle with one or mag staight lines touking it,
leading to all identirs with the same namA root node
might be intenally tangent to another aite, it then epre-
sents a pameter of an lastaction, otherwise it denotes a
free \arable. An adstiaction hasjn adlition to its paame-
ter circle, a bod expression inside itAn gpplicaion of two
expressions is dacted ly two extemally tangent circles
with an arow at the tangnt point.The head of the eow
lies inside the gument,and the tail of the aow lies inside
the dstraction to be pplied Applicaion order can be con-
trolled by labeling arows with piority numbes which we
will ignore for simplicity.

Figure 3 shavs theVEX expressions dr (Ax.X)y and
AY.((AX.yX)2).

Fig. 3: Two VEX Expressions

Now wha is the &act meaning of thebave diawings?
In [4] graphical ewrite rules ae gven tha can be used to
reduceVEX pictures to nomal forms. This is, however, a
pure syntactical manipulimn. A true semantics defition
mgps VEX into a semantic domain of functions. Inyan
case the frst st@ is a defiition of éstract visual syntax
for VEX.

4.2 Choices ofAbstract Syntax

The VEX conceete syntax consists of symbolsdikir
cles, lines, and arows, and elaionships lile inside or

1. Labels ae sometimes usedff illustration, but stictly, they are not
needed

toudhes.

As already mentionedthere ae quite diferent possibil-
ities for the #stact syntax. In a fst gproad we can
abstract from lines and aows and eplace them ¥ core-
sponding eldionships since lines simplink the use of a
variable to its defnition and arows just indicée the apli-
caion of one cicle to anotherThis is eflected in the
abstract syntax gpph of aVEX expression lg defedges
(i.e., edees ldbeled withdef) tha lead fom a \ariable use to
its defnition and ly apply-edges leading fom the epres-
sion circle to be aplied tavard the agument cicle. It
remains to epresent hstractions.An abstractions is gven
by a non-empty céle c wher an (empty) cale x tha is
intemally tangent toc represents’s paameter and all other
circlesey, ..., e, insidec defne the astraction bog. In the
abstract syntax w represent this irdrmaion by apar-edge
fromc tox and ly bodyedees €, &), ..., (¢, &,). Note tha
we do not need to distinguisbhstraction nodes dm \ari-
able nodes B an «plicit label since the ditrence can
always be told ly looking d the incident edes — ly this the
abstact syntax is mar similar to the conete syntax.
Therefore we do not use annode Idels, and thus the
abstract syntax ér VEX is gven ly graphs of type
(3, {def, apply, par, body}).

Figure 4 gives the bstract syntax ggphs br theVEX
pictures flom Fgure 3.

Fig. 4: Abstract Graphs for VEX Expressions

This representéion is rether dose to the sgal original
and should thexffore be easy torgsp. Hovever, the seman-
tics defhition gets a bit inolved, and defiing B-reduction
on the basis of thisspresentsion is quite dificult. In con-
trast,a DAG representing the lambda¢pression in aather
traditional way allows a ether staightforward denotéonal
semantics dafition.

Sud a epresenttion consists of pplicaion-, dbstac-
tion- and \arable-nodes (with coegonding node lbels:
@, A, O).2 An @-node has an ouwng fun-edge and an
outgoing arg-edge tha lead to the function to bepplied
and the ayument,respectiely. A A-node is connectedyb

2. Note th&awe do not need nodeHals to distinguishafiables.As in
the pevious gproad, uses of arables ae linked by edees to the coe-
sponding defiitions. This medanism is a peetct substitutedr the“equal

name”-method of the xéual lambda-calculu§herefore, nodes epresent-
ing variables ae left unldeled

an out@ing par-edge to its paametey an unléeled node
and ly an out@ing body-edge to the nodeepresenting its
body. Hence this dstract syntax ér VEX uses gaphs of
type ({@,A}, {fun, arg, par, body}).

Figure 5 shavs the &stiact syntax tpphs tha corre-
spond to th&/EX pictures of Fgure 3.

A
pay \ij
fu ar
N@ ’
fu arg
A / \\\Q
par >body
p
g

A
bod ar
a
Fig. 5: Alternative Abstract Graphs for VEX

fun

At this point it is impotant to ecall tha the inormally
staed stuctural propeties ae not catured by abstact syn-
tax gaphs.This means thaa gaph like tha shavn belav
is also a gaph of the &ove type @
although it is cerinly not epresenting 'Fy arg
ary VEX expression Br defning X arg
semantics @ can safly assume stic-
turally correct gaphs be deliered, say, by a syntax angkis
phase or an editoiThe stuctural assumptions can then
appear implicit in the semantics dafion since ve need
only give semanticsdr stucturally well-formed gaphs,
i.e., syntacticaly corect pictues.

Although the secondpresenttion offers adiantagges in
the semantics ddfition, it does ony pooly reflect the
visual stucture of theVEX expression,and might thesby
complicde the undestanding of the dginal visual lan-
guage. The decision of Wwich representdon to dose
depends on \wat is done with the semantics defion: For
just gving a meaning t&/EX pictures, the frst gpproac
might be suicient, however, when tying to pove, eg.,
soundness of-reduction,or deiving an implement#on,
the secondepresenttion would piobably be fvored

Next we would like to define the semantics on the basis
of the dstiact iepresenttions just gven.We theefore need

a stuctured way of accessing all the elements of a syntax

graph. In paticular, we need an induatt view of graphs
tha allows the stuctured step-by-stgp decomposition of
graphs.We will address this issue in the xtetwo subsec-
tions.The concpts pesented thercan also be used to ma
between diferent syntax eépresenttions.

4.3 An Inductive Graph Model

We can vigv a gaph in the style of algbraic dda types
found in functional languges like ML or Haslell: A graph
is either emptyor it is constucted ly a gaphg and a ne
nodev together with edgs flomyv to its successering and

edges fiom its pedecessarin g leading tov. This way we
can constict gaphs epressions with a constant const¥
tor Emptyand a constrctor N taking as aguments a tple
(pred-spegnode-specsucc-spey; callednode contextand
the gaph g to be etended Here, node-speds a node iden-
tifier not alead/ contained irg possilby followed by a lebel
(e.g., d:@) andpred-spedsucc-spekdenotes a listof pre-
decessor (successor) nodes pdgsktended ly labels br
the edgs tha come fom (lead to) the nodes. E,.§d>fun,
€] denotes a list of tav predecessor nodeksande whete the
edge coming fom d has l&el fun and the edg coming
frome has no lael & all. Similaty, [para, bodya] denotes
a single successa tha is readhed via tvo differently
labeled edgs.

E.g, the frst gaph from Hgure 5 is gven by the I-
lowing expression:

N (, d:@, [furb, arg>c]) (N ([l ¢, [])
(N (0, b:A, [para, bodyal) (N ([, &, [I) Empty))

In the sequel & male use of tw abreviations: (1) empty
sequences can be omitieahd (2) a cascade Nfconstuc-
tors is eplaced ly a singleN*-constuctor So the hove
term can be simpliéd to:

N* (d:@, [furpb, argxc]) (c)
(b:A, [pana, bodya]) (a) Empty

Note thather ae, in geneal, mary different gaph expres-
sions denoting the sameagh. E.g, the d&ove tem denotes
the same igph as:

N* ([dbfun], b:A, [para, bodya])
(d:@, [argc]) (c) () Empty

The fllowing result is impatant since it guantees thia
ary graph can be vieed inductvely:

Theorem 1.Any ditected labeled multi-graph can bepre-
sented by a graph exgssion.

The poof is not dificult, see §]. There we also gve a
formal semantics ofrgph types andrgph constuctors.

4.4 Pattern Matching on Graphs

The main use ofrgph constuctors in the contet of this
paper is not to bild nev graphs lut to tale pat in patem
matching on gaphs. Especiajl useful br graphs is the con-
cept of active patterng5]: Usuall, maching a p&tem like
N (p, vil, S) g to a gaph &pression binds the node coxite
inseted last tp, v, |, s and the emaining gaph tog. How-
ever, in order to mee in a contlled way through the
graph, it is necessgrto mdch the contet of a specifi
node This is possite if v is allead/ bound to the node to be
mached Then the contd of v is bound to theemaining

1. Lists ofer a comenient vay for dealing with roltiple edges betveen
two nodes. In thisaspectbags would also be fie but lists can be sted
which eases the pcessing qfe.g., success®; in a specifi order.

variables. E.g, maching the ptem N (p, b:l, s) g against
either gaph epression fom the pevious subsection
results in thedllowing bindings:

p-[d,| - A s-[aal],g- “rest-graph

where rest-graphis an arbitary representdon of the
matched gaph without nodé and its incident edss (eg.,
N* (d:@, [argrC]) (c:v) (a:v) Empty).

We can estict patems futher by adling labels tha
must be pesent or I replacing list \ariables ly lists of a
specift length.We can also igner bindings i simply
omitting the coresponding pas of the ptem. E.g, we can
mach the #&straction nodeb binding the pameter/boy
node top/e by using the piem: N (b:A, [parp, bodye]) g.
Actually, p ande will be bound to the same nqde Since
we did not specify arthing for the pedecessor listho
binding will be poduced If we wanted to enserthd the
mached node has no guecessarwe would hare used the
patem N ([], b:A, [parp, bodye]) g instead This, hovever,
fails to mach our xkample gaph.

4.5 Denotdaional Semantics

Now we can defie the denoténal semantics o¥EX.
We ma eat syntax gaph of a (syntacticall corect)VEX
expression into a alue of a suitale domainD for the
lambda-calculus (g., Scotts constuction D,, or Plotkin’s
graph modelPw [2]). Let d be a ‘ariable denoting alues
fromD. It is inteesting to note than contast to the deno-
tational semantics of thexeual lambda-calculus &vdo not
need ay ervironment br passing aund \ariable bindings;
we can ather emply theVEX root nodes to cay semantic
values.

We defne the semanticsytmoving in a contolled way
through the bstract gaph, i.e.,, semantics & gven wr.t.
specift node contes in the gaph, and in theecussive def-
initions for the semantics pfsa, nodev, the semantics
function S is gplied to the contds of V's successer
Hence S has tvo paametes: a gaph and a node detain-
ing the contet. Using the second pposal br abstiact syn-
tax we can distinguish theollowing cases:first, the
semantics of a node cging a semanticalue is the &lue
itself. (Sud a \alue is assignedybthe wle for astrac-
tions.) Secondthe meaning of anpalication node is gven
by applying the semantics of the node connectgthiefun-
edge, which is xpected to be a functioralug to the \alue
denoted B the agument nodeFnally, the semantics of an
abstraction is defied to be a functionalue (A denotes the
semantic bstraction function) vaich mags aty valued to
the alue denotedybthe bog of the dstraction when the
parameter node is keledd. Note tha in order to dhange
the label of the paameter node to d we hare to decom-
posep from the gaph and e-inset it with the nev label
and the old conte (i.e., with predecessar and no succes-
SOIS).

S[v,N(v.d) g] =d
S[v, N (v:@, [funf, argra]) g] =SIf, g] (S[a d])
S[v, N* (v:A, [parp, bodyb]) (r, p) g] =

Ad.S[b, N (r, p:d, []) d]

Now the semantics of a@ph g representing & EX expres-
sion is gven ty applying S to the pot ofg.

root(g) = {v O V(g) | predv) = [I}
Sg] = S[the(root(g)). gl

Here, the functiornthe simply extracts the one elemenbfn
a singléon set and is undekd otherwisetheg({x}) = x.

5. A More Complex Example

In this section w consider bstract syntax and seman-
tics of a moe comple visual languge: Shaw andTell. The
languaye is inteesting br two reasonsfirst, it is a member
of the ither lage dass ofdata fow languges and thus
indicaes hav semantics could be deéd br mary other
visual languges. Secondt demonstates the dkctive use
of nested syntaxrgphs which goes bgond gammdical
desciptions of visual languges.

Shav andTell (STL) [11, 10] combines d&a flow with
the concpt of completion which means to fii in empty
boxes in a d&a flow graph by either computi#on or dda-
base seah. Computtions ae represented ¥ so-called
box-graphswhich are agclic directed nulti-graphs whose
nodes a rectangles connected farows. A box is empty
or it contains either simple g sud as mmbes or func-
tions, or another Wwole bx-graph. In tha case the bois
calledcomplexand can be eithelosedor open Daa can
flow along the aows from one ba to anotherWheneer
two bakes connectedyban arow contain diferent \alues,
the bo-graph is said to bénconsistentAn open ba con-
taining an inconsistent Begraph popayates this inconsis-
teng, i.e., the bx-graph containing the inconsistent o
also becomes inconsistent. In casttwhen a sed ba
gets inconsistentall tha hgpens is thiathe bx cannot
receve or popagate ary values,i.e., an inconsistentlosed
box can be viered as deletedVith the concpt of inconsis-
teng, conditionals can bexpressed without hang bool-
ean alues.

Figure 6 shavs an STL pogram implementing the -
cal AND. The pogram contains t@ paametes (the tvo
topmost empty bxes) and oneasult (the empty boon the
left). If both aguments a“1”, then the upper compldox
remains consistengnd the*1” can fbw directly into the
result bo. Moreover, the laver comple box gets inconsis-
tent and cannot emit tH8”. On the other handf one agu-
ment is“0”, then the upper complébox gets inconsistent
and cannot send tiato the esult b and to the lwer box.
Then,the“0” can fow from the laver boc into the esult
box.

The dstract syntax maiyl follows the conate syntax

In paticular: (1) Nodes &
,_l ,_l labeled ly constants (@., inte-
gers), function symbols (sut as
+), O (representing empty STL
AETj boxes), and complete mgphs.
Additionally, they cary anopen
or closedtag. (In the bllowing
) we will mention these tg onl
—E when needel)l (2) Edgs ae
labeled ly pairs (,j) where i
Fig. 6: STL program means thethe edg contibutes to
the ith pamameter of the taget
node and sas thd thejth component of thealue & the
edge’'s souce node fiws via this edg (hee * means the
complete alue). (3) Eak edgee = (v, (i, j), w) (i.e., fromv
tow with label (, j)) tha crosses a bder of a compbe bax
u is replaced ly a nev nodex with label k (lying insideu)
and two edgese; ande, as bllows: (i) If wis insideu, then
e; = (v, (k, j), u) (ending &u) ande, = (x, (i, *), w) (con-
nectingx to the taget ofe). (ii) If v is insideu, thene; =
(v (1,]), ¥) ande, = (u, (i, K), w). Here, k ranges fom 1 ton
(m) for all n incoming (outging) edgs. (4)The (top-
level) bak-graph is extended accaling to ule (2) as if it
were endosed ly a b having edges ending athe oots
and leaing the sinks.

The dstract syntax of the STL pgram from FHgure 6
is shav in FHgure 7. Nodes with constants asbkls ae
endosed with cicles and can thus be distinguishednir
newly introduced nodes.

If OPis the set of constants and agiiems used ¥ STL
programs,then STL &stact gaphs without compbe baxes
have typel (ag, B) with:

ag = (OP O {O} U IN) x {open closed
B=INx(ND{}
Since comple baxes ae represented Y nodes laeled with

abstract STL gaphs, the node type can be induetly
defined to intude gaphs of inceasing nesting:

Qg =@ O T (a, B)

=l
r

Hence the type of arbitary STL ébstract gaphs is gven by
M=0ixol (0 B).

We can nw define the semantics of éaSTL DAG as a
functionD" — D™ when ve tale a domain of semanti@k
uesD (e.g., for integers) and ad to it a special alue?¢ for
dealing with inconsisteyc(see belw). The frst equéion
selects all mots of the gpph, assignsD-varables as ne
labels,and yields a functionver these ariables:

SIN* ([, varL,sy) ... ([, Vi,) g =
Ay, -.., &) SIN ([, vaidy, 81) .. ([, Vi, S d]

The used cascadetpan with the ellipsis xtends asdr as
possilte, i.e., it selects all nodes lieled ly integers and
having no pedecessar The recusive gplication of S
denotes theasult tuple (i spplying another semantic func-

Fig. 7: Abstract Syntax of STL program

tion S’ to all sinks of the gph) tagether with the consis-
teng staus of the vinole gaph gven ty C.

SIN* ([pals v,) - ([Ppls Viwm, 1) 0] =
((S’'[p. gl --» S'[Pm 9]). Cld])

(Note tha by defnition of astiact syntax edt sink has
exactly one pedecessor S’ moves in everse diection
through the bstract gaph: It recusively detemines the
tuple of \alues or all predecessarand aplies the function
denoted b the curent node to itThis function is denoted
by the semantic functioR given belov. In the p&em we
assume thathe pedecessar (o)) are odered wr.t. the first
label componenti) of the connecting eds. This ensues
that the paametes gpear in the coect oder Note thathe
values of the m@decessar ae not talken as a Wwole but
only the specifi components as speeifi by the second
label pat (s) of the connecting e@g.This is abieved by
the gplication of pojecting functiond1s; (where M*(x) =
X).

S'[v, N ([pp(L, 1), - Ptk 89, vif) @] =
FIfl (Msy(S’[py, gD, -, Ms(S" [P 91))

The semantic functionS andS’ only defne the meaning
of consistent STL4gphs.An inconsistent node orraph is
defined to etum the \alue¢ which is equal to all otheral-
ues ofD. (In this way, an inconsistent {@sed) node thas
connected Y an edg to a nodes tha is labeled ly a con-
stant or not leeled & all does not déct the esult ofv.) A
graph is inconsistent if gnof its open nodes is inconsistent.
Let openbe a pedicde thd is true ony for open nodes he
consisteng of nodes/gaphs is denotedybC'/C:

C[v,d] = (oper(v) O S’[v, g] #9)
Clgl =0vOV(g): C[v. d]

Now the semantics of an STlaph is simpy given ly:

0ny(STg))

if My(S
s AS[a)

O otherwise

It remains to defie the functions denoted/ Imode ldels.
An opestions onD (like +) denotes itselA constantc is
intermpreted as a function thaheds whether all incoming
values ae equal toc, and an unlaeled node lredks all
incoming \alues br equality Fnally, the semantics of a
node ldeled ly a complete STLigph is gven by S

F[f:D" - D™ =f

F[c:D] =A(dy, ..., dy).if di=...=d,=c thenc else®
FIO] =A(dy, ..., dy).if d;=...=d, thend; elsed
Flg:T]=9d]

6. Related Work

Besides semantics deitions for specift languges,
sud as [LQ], ther is ony few work dealing with semantics
of visual languges in g¢nenl. Wang and Leel[6] take an
algebraic view of modeling pictues. Their goal is to @t a
formal basis ér visual easoning § axiomdic characteiza-
tions of wha can be seen in a pictuiThe work of Bottoni
et al. B] is centeed apund the érmal undestanding of and
reasoning with imges. Both pproaces ae based on con-
crete visual syntax and emot tageted & the semantics
speciftaion of visualprogramminglanguaes.

Ther is also some vk relaed to the use ofrgphs br
descibing pictues:Harel's higaphs B] are a kind of amal-
gam of hiearchical gaphs and Euler/shn digrams.
Higraphs hae a concisedrmal semanticsand ty model-
ing a visual languze VL as a higaph, the semantics ofL
is implicitly defned Although quite may applicaions can,
in principal, be desdbed as higgphs, several of them
requie changes of their conate syntax,and some lan-
guages cannot be desibed 4 all. Moreover, the lak of an
inductive viewv of higraphs malks denotional specifta-
tions dificult, if not impossite. Graph gammas, on the
other handprovide an inductie vienv of graphs, but they
have not et been usedof the specifigion of visual lan-
guage semantics,rather thg have been empiged to
descibe transldions. One eason could be thgraph gam-
mais and gaph rewriting has a non-ivial semantics itself
(caused H complex embedings and non-deterinism),
and it is thus dffcult to desdbe semantics on the basis of
this formalism.Another dificulty is tha graphs ae consid-
ered as globalimpertive variables (thg are not paame-
ters of gammar ules). In paticular, this males nesting of
graph stuctures as used in the syntax ISTL impossite.

Concening astract visual syntaxsome other authsr
also ecommend the partion from concete syntax{, 13,
14]. However, this is ony patially adcieved by those
approades,since thg require a one-to-one cspondence
between conagte and bstact syntax,and thus bstract
syntax is intinsically coupled ery closely to concete syn-

tax. Also, tha work is concened with tansldion of visual
languaes,semantics & not ceered

7. Condusions

We hae pesented aeneal framavork for the specifi
caion of visual languge semanticsA rather unesticted
form of ebstract visual syntaxigen by graphs is the bdc
bone of thedrmalism.The gproat gplies to quite a wide
range of visual languges,and we can gen emply differ-
ent semanticsofmalism, sud as denot#onal or Iajical
semantics. Cuently, we ae using the fimevork to for-
malize other visual langugs,and ve investigate the auto-
mdic geneetion of compiler bakends fom semantics
specifcdions.

8. References

[1] Andries, M., Encels, G. & Relers, J: How to Reresent a
Visual Pogram? Workshop on Thegrof \isual Languagesl996.

[2] Barendegt, H.P: The Lambda Calculus — Its Syntax and
SemanticsNorth Holland 1981.

[3] Bottoni, P, Costdile, M.F., Levialdi, S. & Mussio, P: For-
malising Visual Languges, IEEE Symp. on iSual Languages
1995,45-52.

[4] Citrin, W., Hall, R. & Zom, B.: Programming withVisual
Expressions|EEE Symp. oniSual Languagesl995,294-301.

[5] Erwig, M.: Active Rattems, Int. Workshop on Implementation
of Functional Language4996,95-112.To gopear in LNCS
ftp://ftp.fernuni-hagen.de/pub/fachbl/inf/pri4/papers/ap.ps.gz

[6] Erwig, M.: Functional Psgramming with Gaphs,ACM SIG-
PLAN Int. Conf. on Functional Bgramming 1997.To gpear
ftp://ftp.fernuni-hagen.de/pub/fachbl/inf/prid/papers/fgfl.ps.gz

[7] Erwig, M. & Meyer, B.: HeteogeneousVisual Languges —
Integrating Visual andTextual Pogramming IEEE Symp. on
Visual Languagesl995,318-325.

[8] Euler, L.: Briefe an eine deutsche Prinzessireweg, 1986.

[9] Harel, D.: On Visual Formalisms,Communications of the
ACM, \ol. 31, No. 5,514-530.

[10] Kimura, T.D.: Deteminag of Hierarchical Daaflow Model,
Report WUCS-86-5Washington Uniersity, St. Louis,1986.

[11] Kimura, T.D., Choi, JW. & Mack, JM.: Shav an Tell: A
Visual Pogramming Languge, in E.P Glinett (ed): Visual Pro-
gramming Envionments IEEE Computer Science &%s, Los
Alamitos/CA,1990,397-404.

[12] Mosses,PD.: Denotdional Semanticsjn J van Leeuven
(ed): Handbook of Theetical Computer Science,oV B,
Elsevier, 1990,575-631.

[13] Rekers, J. & Schum, A.: A Graph GammarApproad to
Graphical Rarsing IEEE Symp. oniSual Languagesl995,195-
202.

[14] Relers, J. & Schim, A.: A Graph Based Famevork for the
Implementéion of Visual Ewvironments,JEEE Symp. on iSual
Languages1996.

[15] Shin,S.-J.: The Logical Status of Diagram&ambidge Uni-
versity Press,New York, 1994.

[16] Wang D. & Lee, JR.:Visual Reasoningts Formal Seman-
tics andApplications, Journal of \ual Languages and Comput-
ing, \ol. 4, No. 4,1993,327-356.,

