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Abstract

 

The effective use of visual languages requires a precise
understanding of their meaning. Moreover, it is impossible
to prove properties of visual languages like soundness of
transformation rules or correctness results without having a
formal language definition. Although this sounds obvious, it
is surprising that only few work has been done about the
semantics of visual languages, and even worse, there is no
general framework available for the semantics specification
of different visual languages. We present such a framework
that is based on a rather general notion of abstract visual
syntax. This framework allows a logical as well as a deno-
tational approach to visual semantics, and it facilitates the
formal reasoning about visual languages and their proper-
ties. We illustrate the concepts of the proposed approach by
defining abstract syntax and semantics for the visual lan-
guages VEX, Show and Tell, and Euler Circles. For the lat-
ter we also prove a rule for visual reasoning.

 

1. Intr oduction

 

Investigating the semantics of visual languages is
important for several reasons: First of all, a precise defini-
tion of semantics is indispensable for a thorough under-
standing of any language. This in turn is important to
appraise a visual language and to compare it to others. Fur-
thermore, this facilitates the development of extensions or a
re-design of the language. Second, having a precise specifi-
cation of a language’s semantics, it is in many cases only a
small step toward an implementation, for instance, denota-
tional semantics can be translated almost verbatim into
functional languages, so that an interpreter for the language
is immediately available [12]. Third, with a precise seman-
tics, various properties of languages can be proved. In par-
ticular, we can prove syntactic transformations to be sound
w.r.t. the semantics (e.g., 

 

β

 

-reduction in VEX can be shown
to realize function application, or rules for syllogistic rea-
soning in Euler diagrams can be proved sound). Finally, a
clear semantics of visual languages is needed to integrate
them correctly into other environments. This especially
applies to heterogeneous or multi-paradigm languages, see
e.g. [7].

Despite the reasons just mentioned, research on visual
language semantics is rather sporadic. In particular, there is
no general framework available which could be used for the
formal specification of visual languages. This situation is

quite different than in textual languages: There we can
choose among a variety of different semantic formalisms,
such as denotational semantics, structured operational
semantics, action semantics, evolving algebras etc., and
some of these could, in principle, be employed for visual
languages as well. A possible reason why this does not hap-
pen might be that some of the components that are neces-
sary for a semantics framework are missing. Taking
denotational semantics as an example, we observe that – at
least as far as visual 

 

programming

 

 languages are concerned
– the necessary concepts of semantic function and semantic
domain can be used as in the textual case. However, the
third component, 

 

abstract syntax

 

, cannot be simply taken
for visual languages, and there is no equivalent notion for
visual languages yet.

So in the sequel we will first introduce a concept of
abstract visual syntax in Section 2 before we demonstrate
the specification of logical and denotational semantics in
Sections 3 and 4 by two simple examples. In Section 5 we
show that also more complex visual languages can be dealt
with by the presented approach. Section 6 comments on
related work, and Section 7 presents some conclusions.

 

2. What is Abstract Visual Syntax?

 

A textual language 

 

L

 

 is a set of strings over an alphabet

 

A

 

, i.e., 

 

L

 

 

 

⊆

 

 

 

A

 

*. The symbols of any sentence (or word)

 

w

 

 

 

∈

 

 

 

L

 

 are only related to each other by a linear ordering. In
contrast, a sentence (or diagram or picture) 

 

p

 

 of a visual
language 

 

VL 

 

over an alphabet 

 

A

 

 consists of a set of symbols
of 

 

A

 

 that are, in general, related by several relationships
{

 

r

 

1

 

, …, 

 

r

 

n

 

} = 

 

R

 

. Thus we can say that a picture 

 

p

 

 is given by
a pair (

 

s

 

, 

 

r

 

) where 

 

s

 

 

 

⊆

 

 

 

A

 

 is the set of symbols of the picture
and 

 

r

 

 

 

⊆

 

 

 

s

 

×

 

R

 

×

 

s

 

 gives the relationships that hold in 

 

p

 

.

 

1

 

 In
other words, 

 

p

 

 is nothing but a directed graph with edge
labels drawn from 

 

R

 

, and a visual language is simply a set
of such graphs.

Usually, languages contain a certain structure, i.e., there
are precise rules defining which symbols can occur in
which contexts and, regarding visual languages, which
symbols may take part in which relationships. This struc-
ture is recognized and enforced during syntax analysis, and
it can be assumed when defining semantics. Therefore,
semantics definitions are often based on so-called 

 

abstract
syntax

 

 which defines a language on a more abstract level

 

1. Relationships with arity > 2 can always be simulated by several
binary relationships.
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with less constraints than on the concrete level. This means
that a description of concrete syntax must include every
detail about the language whereas the abstract syntax can
safely ignore all aspects that are not needed within the
semantics definition. 

At least for visual languages, we can actually distin-
guish different levels of “abstractness”: First, we can
abstract from concrete symbols and from geometric details,
such as size and position of objects.

 

1

 

 Second, we can ignore
associativities that are used to resolve ambiguous situations
during parsing and typings which restricts relationships to
specific subsets of symbols. Finally, we can even forget
about structural constraints; then a picture is just considered
a directed labeled graph with possibly remaining restric-
tions w.r.t. node and edge labels. Thus we can define:

 

Definition 1. 

 

A 

 

directed labeled multi-graph of type

 

 (

 

α

 

, 

 

β

 

)
is a quintuple 

 

G

 

 = (

 

V

 

, 

 

E

 

, 

 

ι

 

, 

 

ν

 

, 

 

ε

 

) consisting of a set of nodes

 

V

 

 and a set of edges 

 

E

 

 where 

 

ι

 

:

 

E

 

 

 

→

 

 

 

V

 

×

 

V

 

 is a total mapping
defining for each edge the nodes it connects. The mappings

 

ν

 

:

 

V

 

 

 

→

 

 

 

α

 

 and 

 

ε

 

:

 

E

 

 

 

→

 

 

 

β

 

 define the node and edge labels.

For a graph 

 

g

 

, 

 

V

 

(

 

g

 

) (

 

E

 

(

 

g

 

)) denotes the set of nodes
(edges) of 

 

g

 

. The successors of a node are denoted by

 

succ

 

(

 

v

 

), i.e., 

 

succ

 

(

 

v

 

) = {

 

w

 

 

 

∈

 

 

 

V

 

 | 

 

∃

 

e

 

 

 

∈

 

 

 

V

 

: 

 

ι

 

(

 

e

 

) = (

 

v

 

, 

 

w

 

)}. Lik e-
wise, 

 

pred

 

(

 

v

 

) denotes 

 

v

 

’s predecessors.
The label types 

 

α

 

 and 

 

β

 

 might just be sets of symbols, or
they can be complex structures to enable the labeling with
terms, semantic values, or even graphs (see Section 5). The
set of all graphs of type (

 

α

 

, 

 

β

 

) is denoted by 

 

Γ

 

(

 

α

 

, 

 

β

 

).

 

Definition 2. 

 

A 

 

visual language of type

 

 (

 

α

 

, 

 

β

 

) is a set of
graphs 

 

VL

 

 

 

⊆

 

 

 

Γ

 

(

 

α

 

, 

 

β

 

).

In the sequel we will look at visual languages on this
very abstract level, i.e., the abstract syntax of a visual lan-
guage is specified as a set of graphs of a specific type.

How does this view relate to the well-established gram-
matical approach to syntax? Clearly, the syntax of lan-
guages can be conveniently specified by grammars.
Grammars provide a way to generate all sentences of the
language and, given a suitable parsing algorithm, allow to
test whether a sentence is a member of the language (possi-
bly giving a proof for this by constructing a parse tree for
reconstructing the sentence). Concerning abstract syntax,
however, grammars are usually not used for parsing; their
purpose is just to offer an inductive or decompositional
view of language that facilitates semantics definitions,
especially, denotational semantics or structured operational
semantics. As demonstrated in [6] we can actually have a
(de)compositional/recursive view of graphs without resort-
ing to grammars. So we can achieve a highly abstract com-
prehension of pictures together with an inductive view of
graphs that facilitates, say, denotational semantics defini-

 

1. At least up to “topological equivalence”, i.e., as long as (relevant)
relationships between objects are not affected.

 

tions. On the other hand, there are visual languages whose
semantics are best described in a logical fashion. In that
case a global, set-theoretic view of language is needed,
which is just given by abstract visual syntax (and which
might be obscured when using grammatical formalisms).

As in the textual case the choice of abstract syntax for a
visual language is by no means unique. Usually, one has to
trade similarity to the original notation for simplicity of the
semantics definition. We will illustrate this point in Section
4.

 

3. Logical Semantics

 

In many cases, a logical specification of semantics
views the syntactic elements simply as sets. For graphs, the
node- and edge-set view is implicit in the definition. In Sec-
tion 3.1 we define syntax and semantics of the well-known
Euler diagrams, and in Section 3.2 we prove a visual rule
for syllogistic reasoning and thus illustrate how to establish
properties of a formalized visual language.

 

3.1 Euler Diagrams

 

The language of Euler diagrams as described in [8, 15]
contains four kinds of basic pictures expressing logical
statements:

Ambiguities of Euler diagrams and semantic problems
arising from these are discussed in detail in [15]. Our aim is
not arguing in favor of or against using Euler diagrams for
reasoning. However, as a matter of fact, Euler diagrams are
a wide-spread visual notation, and in order to discuss the
notation and compare it with others, it should be under-
stood in the first place. This is what abstract visual syntax
and the semantic formalism can achieve.

The concrete syntax of Euler diagrams comprises cir-
cles and string-labels together with the relationships 

 

inside

 

,

 

intersects

 

, and 

 

disjoint

 

. Labels have two purposes: First,
they provide references to set symbols in pictures to be
used in explanations, discussions etc. Second, their position
distinguishes two different set relationships for intersecting
circles. In the abstract syntax we can therefore omit labels
and replace the 

 

intersects

 

-relationship by two edge labels
identifying the third and fourth situations, namely, 

 

p-inter-
sects

 

 and 

 

nic

 

. The names result from the following observa-
tions: In order to give a formal semantics to Euler diagrams
one has to answer the following questions (among others):
(1) Does the third situation also say: “Some 

 

B

 

 is not 

 

A

 

”  ?
Yes, Euler also specifies that “Some 

 

A

 

 is not 

 

B

 

”  (and “Some

 

B

 

 is 

 

A

 

”). Thus we know: (i) 

 

A

 

 

 

∩

 

 

 

B

 

 

 

≠

 

 

 

∅

 

, (ii) 

 

A

 

 - 

 

B

 

 

 

≠

 

 

 

∅

 

, and

 

A
B

 

All 

 

A

 

 is 

 

B

A B

 

No 

 

A

 

 is 

 

B

A B

 

Some 

 

A

 

 is 

 

B

 

Fig. 1: Euler Diagrams

 

A B

 

Some 

 

A

 

 is not 

 

B
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(iii) 

 

B

 

 - 

 

A

 

 

 

≠

 

 

 

∅

 

. So this situation describes what we call

 

proper

 

 

 

intersection

 

, i.e., we say 

 

A

 

 

 

p-intersects

 

 

 

B

 

. (2) Is the
relative position of labels irrelevant, i.e., does the last exam-
ple also say “Some 

 

B

 

 is not 

 

A

 

”  ? This would be reasonable,
and although Euler gives as one possible instance an exam-
ple where 

 

B

 

 is completely inside (i.e., properly included in)

 

A

 

, he himself uses the notation in a symmetric way later on
in his letters. Accordingly, we ignore relative positions of
labels. So this relationship describes that both differences
are non-empty which expresses nothing but the fact that
two sets are not comparable w.r.t. inclusion; we call this
relationship 

 

n

 

ot 

 

i

 

nclusion-

 

c

 

omparable.
Except 

 

inside

 

, all relationships are symmetric.We depict
a symmetric relationship by an undirected edge which is
represented in a directed graph by two directed edges in
both directions. So the abstract syntax graphs for the Euler
diagrams of Figure 1 look like:

The semantics is defined for a diagram relative to a 

 

uni-
verse

 

 of objects 

 

U

 

. An interpretation is a mapping from the
set of circles in the diagram, i.e., nodes of the graph, to sub-
sets of 

 

U

 

, i.e., 

 

f 

 

: 

 

V

 

 

 

→

 

 2

 

U

 

. Now the semantics can be easily
defined:

 

S

  

[[

 

(

 

V

 

, 

 

E

 

)

  

]]

 

U

 

 = {

 

f

 

 |

 

 f

 

 : 

 

V

 

 

 

→

 

 2

 

U

 

 

 

∧

 

 

 

∀

 

e

 

 

 

∈

 

 

 

E

 

: 

 

valid

 

(

 

f

 

, 

 

ι

 

(

 

e

 

), 

 

ε

 

(

 

e

 

))}

where

 

valid

 

(

 

f

 

,

 

 

 

(

 

u

 

,

 

 

 

v

 

),

 

 

 

l

 

)

 

 

 

=

 

 

 

f

 

(

 

u

 

) 

 

⊆

 

 

 

f

 

(

 

v

 

) if 

 

l

 

 

 

=

 

 

 

inside

 


 

 

f

 

(

 

u

 

) 

 

∩

 

 

 

f

 

(

 

v

 

)

 

 

 

= 

 

∅

 

if 

 

l

 

 

 

=

 

 

 

disjoint

 


 

 

f

 

(

 

u

 

)

 

 

 

∩

 

 

 

f

 

(

 

v

 

)

 

 

 

≠

 

 

 

∅ ∧ 

 

f

 

(

 

u

 

)

 

 

 

-

 

 

 

f

 

(

 

v

 

) 

 

≠

 

 

 

∅

 

 

 

∧

 

 

 

f

 

(

 

v

 

)

 

 

 

-

 

 

 

f

 

(

 

u

 

) 

 

≠

 

 

 

∅
 

 

if 

 

l

 

 

 

=

 

 

 

p-intersects

 


 

 

f

 

(

 

u

 

)

 

 

 

-

 

 

 

f

 

(

 

v

 

) 

 

≠

 

 

 

∅

 

 

 

∧

 

 

 

f

 

(

 

v

 

)

 

 

 

-

 

 

 

f

 

(

 

u

 

) 

 

≠

 

 

 

∅

 

if 

 

l

 

 

 

=

 

 

 

nic

 

3.2 Soundness of Visual Reasoning Rules

 

Having a precise definition of what Euler diagrams mean it
is quite easy to check the visual rules for syllogistic reason-
ing. Euler gives textual versions of such rules and explains
them by pictures. One example is:

All 

 

A

 

 is 

 

B

 

Some 

 

C

 

 is 

 

A

 

Some 

 

C

 

 is 

 

B

 

Although this sounds very intuitive, this rule is formally 

 

not

 

correct since “Some 

 

C

 

 is 

 

B

 

”  does only hold if 

 

C

 

 - 

 

B

 

 

 

≠

 

 

 

∅

 

.
But this cannot be concluded from the premises; 

 

C

 

 might
well be included in 

 

B

 

. Actually, Euler is aware of this fact
and gives pictures illustrating both cases. The point is that
there is no formal correspondence between propositions
and pictures (since there is no formal semantics). Now the
correct rule is:

All 

 

A

 

 is 

 

B

 

Some 

 

C

 

 is 

 

A

 

All 

 

C

 

 is 

 

B

 

 or Some 

 

C

 

 is 

 

B

 

or equivalently in visual terms:

 

Proof.

 

 We reformulate this rule in terms of abstract syntax.
The premises can be joined into one graph.

The semantics definition ensures for each valid interpre-
tation the following properties:

(1) 

 

A

 

 

 

⊆

 

 

 

B

 

 (2) 

 

A

 

 

 

∩

 

 

 

C

 

 

 

≠

 

 

 

∅

 

 (3) 

 

A

 

 - 

 

C

 

 

 

≠

 

 

 

∅

 

 (4) 

 

C

 

 - 

 

A

 

 

 

≠

 

 

 

∅

 

First we observe from (3) and (4) that neither 

 

A

 

 nor 

 

C

 

 is
empty. By (1) it also follows that 

 

B

 

 is not empty. For the
intersection and difference of two non-empty sets we know:

(i)

 

X

 

 

 

∩

 

 

 

Y

 

 

 

≠

 

 

 

∅

 

 

 

⇔

 

 

 

∃

 

Z

 

 

 

≠

 

 

 

∅

 

: 

 

Z

 

 

 

⊆

 

 

 

X 

 

∧

 

 

 

Z

 

 

 

⊆

 

 

 

Y

 

 
(ii)

 

X

 

 - 

 

Y

 

 

 

≠

 

 

 

∅

 

 

 

⇔

 

 

 

∃

 

Z

 

 

 

≠

 

 

 

∅

 

: 

 

Z

 

 

 

⊆

 

 

 

X 

 

∧

 

 

 

Z

 

 

 

∩

 

 

 

Y

 

 = 

 

∅

 

Next we translate the conclusion of the rule into formal
terms. That is, have to show that the following is true:

(

 

C

 

 

 

∩

 

 

 

B

 

 

 

≠

 

 

 

∅

 

 

 

∧

 

 

 

C

 

 - 

 

B

 

 

 

≠

 

 

 

∅

 

 

 

∧

 

 

 

B

 

 - 

 

C

 

 

 

≠

 

 

 

∅

 

) 

 

∨

 

 

 

C

 

 

 

⊆

 

 

 

B

 

We can simplify this term: First, since 

 

C

 

 

 

⊆

 

 

 

B

 

 implies 

 

C

 

 

 

∩

 

 

 

B

 

≠

 

 

 

∅

 

, we have 

 

C

 

 

 

∩

 

 

 

B

 

 

 

≠

 

 

 

∅

 

 

 

∨

 

 

 

C

 

 

 

⊆

 

 

 

B

 

 = 

 

C

 

 

 

∩

 

 

 

B

 

 

 

≠

 

 

 

∅

 

, and second,

 

C

 

 - 

 

B

 

 

 

≠

 

 

 

∅

 

 

 

∨

 

 

 

C

 

 

 

⊆

 

 

 

B

 

 is always true which can be easily
checked by considering all possibilities w.r.t. to the inter-
section of 

 

C

 

 and 

 

B

 

. Thus it remains to be shown:

 

C

 

 

 

∩

 

 

 

B

 

 

 

≠

 

 

 

∅

 

 

 

∧

 

 (

 

B

 

 - 

 

C

 

 

 

≠

 

 

 

∅

 

 

 

∨

 

 

 

C

 

 

 

⊆

 

 

 

B

 

)

We can prove both parts separately. First, from (2) and (i)
we infer 

 

∃

 

D

 

 

 

≠

 

 

 

∅

 

: (5) 

 

D

 

 

 

⊆

 

 

 

A

 

 and (6) 

 

D

 

 

 

⊆

 

 

 

C

 

. By transitivity
it follows from (5) and (1) that 

 

D

 

 

 

⊆

 

 

 

B

 

, and this together
with (6) and (i) implies 

 

C

 

 

 

∩

 

 

 

B

 

 

 

≠

 

 

 

∅

 

. Second, we obtain from
(3) and (ii) the relationships 

 

∃

 

D

 

 

 

≠

 

 

 

∅

 

: (7) 

 

D

 

 

 

⊆

 

 

 

A

 

 and (8) 

 

D

 

 

 

∩

 

C

 

 = 

 

∅

 

. By transitivity it follows from (7) and (1) that 

 

D

 

 

 

⊆

 

B

 

, and this together with (8) and (ii) implies 

 

B

 

 - 

 

C

 

 

 

≠

 

 

 

∅

 

. This
means that 

 

B

 

 - 

 

C

 

 

 

≠

 

 

 

∅

 

 

 

∨

 

 

 

C

 

 

 

⊆

 

 

 

B

 

 is also true.

 

4. Recursive Semantics

 

In contrast to the predicative view that was convenient
in the previous section, many languages are defined induc-
tively, and then a semantics definition is easiest to give
when adopting that inductive view. We illustrate these ideas

 

Fig. 2: Abstract Graphs for Euler Diagrams

 

inside disjoint p-intersects nic

 

A
B

C A

C
B

 

or

 

C B

 

Lemma 1.

 

C B

 

or

 

insidep-intersects

 

A

C

 

p-intersects

 

B B

 

inside

 

C
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with the visual language VEX [4], which provides a visual
notation for the lambda calculus. We chose VEX, since it is
a rather small (but computationally complete) language and
since any semantics can be easily verified by comparison
with the classical lambda-calculus. 

In Section 4.1 we explain VEX informally, followed in
Section 4.2 by two alternative abstract syntax definitions.
Sections 4.3 and 4.4 introduce an inductive/decomposi-
tional view of syntax graphs that is particularly needed for
the definition of denotational semantics. Based on this, a
semantics for VEX is then given in Section 4.5.

 

4.1 Example: VEX

 

VEX [4] is a purely

 

1

 

 visual language: Each identifier is
represented by an (empty) circle that is connected by a
straight line to a so-called 

 

root node

 

. A root node is again
an empty circle with one or more straight lines touching it,
leading to all identifiers with the same name. A root node
might be internally tangent to another circle, it then repre-
sents a parameter of an abstraction, otherwise it denotes a
free variable. An abstraction has, in addition to its parame-
ter circle, a body expression inside it. An application of two
expressions is depicted by two externally tangent circles
with an arrow at the tangent point. The head of the arrow
lies inside the argument, and the tail of the arrow lies inside
the abstraction to be applied. Application order can be con-
trolled by labeling arrows with priority numbers which we
will ignore for simplicity.

Figure 3 shows the VEX expressions for (

 

λ

 

x

 

.

 

x

 

)

 

y

 

 and

 

λ

 

y

 

.((

 

λ

 

x

 

.

 

yx

 

)

 

z

 

).

Now what is the exact meaning of the above drawings?
In [4] graphical rewrite rules are given that can be used to
reduce VEX pictures to normal forms. This is, however, a
pure syntactical manipulation. A true semantics definition
maps VEX into a semantic domain of functions. In any
case, the first step is a definition of abstract visual syntax
for VEX.

 

4.2 Choices of Abstract Syntax

 

The VEX concrete syntax consists of symbols like cir-
cles, lines, and arrows, and relationships like inside or

 

1.  Labels are sometimes used for illustration, but strictly, they are not
needed.

 

touches. 
As already mentioned, there are quite different possibil-

ities for the abstract syntax. In a first approach we can
abstract from lines and arrows and replace them by corre-
sponding relationships since lines simply link the use of a
variable to its definition and arrows just indicate the appli-
cation of one circle to another. This is reflected in the
abstract syntax graph of a VEX expression by 

 

def-

 

edges
(i.e., edges labeled with 

 

def

 

) that lead from a variable use to
its definition and by 

 

apply

 

-edges leading from the expres-
sion circle to be applied toward the argument circle. It
remains to represent abstractions. An abstractions is given
by a non-empty circle 

 

c

 

 where an (empty) circle 

 

x

 

 that is
internally tangent to 

 

c

 

 represents 

 

c

 

’s parameter and all other
circles 

 

e

 

1

 

, …, 

 

e

 

n

 

 inside 

 

c

 

 define the abstraction body. In the
abstract syntax we represent this information by a 

 

par

 

-edge
from 

 

c

 

 to 

 

x

 

 and by 

 

body

 

-edges (

 

c

 

, 

 

e

 

1

 

), …, (

 

c

 

, 

 

e

 

n

 

). Note that
we do not need to distinguish abstraction nodes from vari-
able nodes by an explicit label since the difference can
always be told by looking at the incident edges – by this the
abstract syntax is more similar to the concrete syntax.
Therefore we do not use any node labels, and thus the
abstract syntax for VEX is given by graphs of type
(

 

∅

 

, {

 

def

 

, 

 

apply

 

, 

 

par

 

, 

 

body

 

}).
Figure 4 gives the abstract syntax graphs for the VEX

pictures from Figure 3.

This representation is rather close to the spatial original
and should therefore be easy to grasp. However, the seman-
tics definition gets a bit involved, and defining 

 

β

 

-reduction
on the basis of this representation is quite difficult. In con-
trast, a DAG representing the lambda-expression in a rather
traditional way allows a rather straightforward denotational
semantics definition.

Such a representation consists of application-, abstrac-
tion- and variable-nodes (with corresponding node labels:
@, 

 

λ

 

, ).

 

2

 

 An @-node has an outgoing 

 

fun

 

-edge and an
outgoing 

 

arg

 

-edge that lead to the function to be applied
and the argument, respectively. A 

 

λ

 

-node is connected by

 

2. Note that we do not need node labels to distinguish variables. As in
the previous approach, uses of variables are linked by edges to the corre-
sponding definitions. This mechanism is a perfect substitute for the “equal
name”-method of the textual lambda-calculus. Therefore, nodes represent-
ing variables are left unlabeled.

 

Fig. 3: Two VEX Expressions

 

Fig. 4: Abstract Graphs for VEX Expressions
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an outgoing 

 

par

 

-edge to its parameter, an unlabeled node,
and by an outgoing 

 

body

 

-edge to the node representing its
body. Hence, this abstract syntax for VEX uses graphs of
type ({@, 

 

λ

 

}, {

 

fun

 

, 

 

arg

 

, 

 

par

 

, 

 

body

 

}).
Figure 5 shows the abstract syntax graphs that corre-

spond to the VEX pictures of Figure 3.

At this point it is important to recall that the informally
stated structural properties are not captured by abstract syn-
tax graphs. This means that a graph like that shown below
is also a graph of the above type
although it is certainly not representing
any VEX expression For defining
semantics we can safely assume struc-
turally correct graphs be delivered, say, by a syntax analysis
phase or an editor. The structural assumptions can then
appear implicit in the semantics definition since we need
only give semantics for structurally well-formed graphs,
i.e., syntactically correct pictures.

Although the second representation offers advantages in
the semantics definition, it does only poorly reflect the
visual structure of the VEX expression, and might thereby
complicate the understanding of the original 

 

visual

 

 lan-
guage. The decision of which representation to chose
depends on what is done with the semantics definition: For
just giving a meaning to VEX pictures, the first approach
might be sufficient, however, when trying to prove, e.g.,
soundness of 

 

β

 

-reduction, or deriving an implementation,
the second representation would probably be favored.

Next we would like to define the semantics on the basis
of the abstract representations just given. We therefore need
a structured way of accessing all the elements of a syntax
graph. In particular, we need an inductive view of graphs
that allows the structured, step-by-step decomposition of
graphs. We will address this issue in the next two subsec-
tions. The concepts presented there can also be used to map
between different syntax representations.

 

4.3 An Inducti ve Graph Model

 

We can view a graph in the style of algebraic data types
found in functional languages like ML or Haskell: A graph
is either empty, or it is constructed by a graph 

 

g

 

 and a new
node 

 

v

 

 together with edges from 

 

v

 

 to its successors in 

 

g

 

 and

edges from its predecessors in 

 

g

 

 leading to 

 

v

 

. This way we
can construct graphs expressions with a constant construc-
tor 

 

Empty

 

 and a constructor 

 

N

 

 taking as arguments a triple
(

 

pred-spec

 

, 

 

node-spec

 

, 

 

succ-spec

 

), called 

 

node context

 

, and
the graph 

 

g

 

 to be extended. Here, 

 

node-spec

 

 is a node iden-
tifier not already contained in 

 

g

 

 possibly followed by a label
(e.g., 

 

d

 

:@) and 

 

pred-spec

 

 (

 

succ-spec

 

) denotes a list

 

1

 

 of pre-
decessor (successor) nodes possibly extended by labels for
the edges that come from (lead to) the nodes. E.g., [

 

d

 

›

 

fun

 

,

 

e

 

] denotes a list of two predecessor nodes 

 

d

 

 and 

 

e

 

 where the
edge coming from 

 

d

 

 has label 

 

fun

 

 and the edge coming
from 

 

e

 

 has no label at all. Similarly, [

 

par

 

›

 

a

 

, 

 

body

 

›

 

a

 

] denotes
a single successor 

 

a

 

 that is reached via two differently
labeled edges.

E.g., the first graph from Figure 5 is given by the fol-
lowing expression:

 

N

 

 ([], 

 

d

 

:@, [

 

fun

 

›

 

b

 

, 

 

arg

 

›

 

c

 

]) (

 

N

 

 ([], 

 

c

 

, [])
(

 

N

 

 ([], 

 

b

 

:

 

λ

 

, [

 

par

 

›

 

a

 

, 

 

body

 

›

 

a

 

]) (

 

N

 

 ([], 

 

a

 

, []) 

 

Empty

 

)))

In the sequel we make use of two abbreviations: (1) empty
sequences can be omitted, and (2) a cascade of 

 

N

 

-construc-
tors is replaced by a single 

 

N

 

*-constructor. So the above
term can be simplified to:

 

N

 

* (

 

d

 

:@, [

 

fun

 

›

 

b

 

, 

 

arg

 

›

 

c

 

]) (

 

c

 

) 
(

 

b

 

:

 

λ

 

, [

 

par

 

›

 

a

 

, 

 

body

 

›

 

a

 

]) (

 

a

 

) 

 

Empty

 

Note that there are, in general, many different graph expres-
sions denoting the same graph. E.g., the above term denotes
the same graph as:

 

N

 

* ([

 

d

 

›

 

fun

 

], 

 

b

 

:

 

λ

 

, [

 

par

 

›

 

a

 

, 

 

body

 

›

 

a

 

])
(

 

d

 

:@, [

 

arg

 

›

 

c

 

]) (

 

c

 

) (

 

a

 

) 

 

Empty

 

The following result is important since it guarantees that
any graph can be viewed inductively:

 

Theorem 1. 

 

Any directed labeled multi-graph can be repre-
sented by a graph expression.

 

The proof is not difficult, see [6]. There we also give a
formal semantics of graph types and graph constructors.

 

4.4 Pattern Matching on Graphs

 

The main use of graph constructors in the context of this
paper is not to build new graphs but to take part in pattern
matching on graphs. Especially useful for graphs is the con-
cept of 

 

active patterns

 

 [5]: Usually, matching a pattern like

 

N

 

 (

 

p

 

, 

 

v

 

:

 

l

 

, 

 

s

 

) 

 

g

 

 to a graph expression binds the node context
inserted last to 

 

p

 

, 

 

v

 

, 

 

l

 

, 

 

s

 

 and the remaining graph to 

 

g

 

. How-
ever, in order to move in a controlled way through the
graph, it is necessary to match the context of a specific
node. This is possible if 

 

v

 

 is already bound to the node to be
matched. Then the context of 

 

v

 

 is bound to the remaining

 

1. Lists offer a convenient way for dealing with multiple edges between
two nodes. In this respect, bags would also be fine, but lists can be sorted
which eases the processing of, e.g., successors, in a specific order.

 

Fig. 5: Alternative Abstract Graphs for VEX

 

fun arg

 

@

 

par body

 

λ

 

parbody

 

λ

 

@

 

fun
arg

fun arg

 

@

 

par

 

λ

 

body

 

par

arg

 

@

 

λ

 

arg
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variables. E.g., matching the pattern 

 

N

 

 (

 

p

 

, 

 

b

 

:

 

l

 

, 

 

s

 

) 

 

g

 

 against
either graph expression from the previous subsection
results in the following bindings:

 

p

 

 

 

→

 

 [

 

d

 

], 

 

l

 

 

 

→

 

 

 

λ

 

, 

 

s

 

 

 

→

 

 [

 

a

 

, 

 

a

 

], 

 

g

 

 

 

→

 

 “

 

rest-graph

 

”

where 

 

rest-graph

 

 is an arbitrary representation of the
matched graph without node 

 

b

 

 and its incident edges (e.g.,

 

N

 

* (

 

d

 

:@, [

 

arg

 

›

 

c

 

]) (

 

c

 

:

 

v

 

) (

 

a

 

:

 

v

 

) 

 

Empty

 

).
We can restrict patterns further by adding labels that

must be present or by replacing list variables by lists of a
specific length. We can also ignore bindings by simply
omitting the corresponding parts of the pattern. E.g., we can
match the abstraction node 

 

b

 

 binding the parameter/body
node to 

 

p

 

/

 

e

 

 by using the pattern: 

 

N

 

 (

 

b

 

:

 

λ

 

, [

 

par

 

›

 

p

 

, 

 

body

 

›

 

e

 

]) 

 

g

 

.
Actually, 

 

p

 

 and 

 

e

 

 will be bound to the same node, 

 

a

 

. Since
we did not specify anything for the predecessor list, no
binding will be produced. If we wanted to ensure that the
matched node has no predecessors we would have used the
pattern 

 

N

 

 ([], 

 

b

 

:

 

λ

 

, [

 

par

 

›

 

p

 

, 

 

body

 

›

 

e

 

]) 

 

g

 

 instead. This, however,
fails to match our example graph.

 

4.5 Denotational Semantics

 

Now we can define the denotational semantics of VEX.
We map each syntax graph of a (syntactically correct) VEX
expression into a value of a suitable domain 

 

D

 

 for the
lambda-calculus (e.g., Scott’s construction 

 

D

 

∞

 

 or Plotkin’s
graph model 

 

P

 

ω

 

 [2]). Let 

 

d

 

 be a variable denoting values
from 

 

D

 

. It is interesting to note that in contrast to the deno-
tational semantics of the textual lambda-calculus we do not
need any environment for passing around variable bindings;
we can rather employ the VEX root nodes to carry semantic
values. 

We define the semantics by moving in a controlled way
through the abstract graph, i.e., semantics are given w.r.t.
specific node contexts in the graph, and in the recursive def-
initions for the semantics of, say, node 

 

v

 

, the semantics
function 

 

S

 

’ is applied to the contexts of 

 

v

 

’s successors.
Hence, 

 

S

 

’ has two parameters: a graph and a node determin-
ing the context. Using the second proposal for abstract syn-
tax we can distinguish the following cases: first, the
semantics of a node carrying a semantic value is the value
itself. (Such a value is assigned by the rule for abstrac-
tions.) Second, the meaning of an application node is given
by applying the semantics of the node connected by the 

 

fun

 

-
edge, which is expected to be a function value, to the value
denoted by the argument node. Finally, the semantics of an
abstraction is defined to be a function value (

 

Λ

 

 denotes the
semantic abstraction function) which maps any value 

 

d

 

 to
the value denoted by the body of the abstraction when the
parameter node is labeled 

 

d

 

. Note that in order to change
the label of the parameter node 

 

p

 

 to 

 

d

 

 we have to decom-
pose 

 

p

 

 from the graph and re-insert it with the new label
and the old context (i.e., with predecessors 

 

r

 

 and no succes-
sors).

 

S

 

’

  

[[

 

v

 

, 

 

N 

 

(

 

v

 

:

 

d

 

) 

 

g

  

]]

 

 = 

 

d

 

S

 

’

  

[[

 

v

 

, 

 

N 

 

(

 

v

 

:@, [

 

fun

 

›

 

f

 

, 

 

arg

 

›

 

a

 

]) 

 

g

  

]]

 

 = 

 

S

 

’

  

[[

 

f

 

, 

 

g

  

]]

 

 (

 

S

 

’

  

[[

 

a

 

, 

 

g

  

]]

 

)

 

S

 

’

  

[[

 

v

 

, 

 

N

 

*

 

 

 

(

 

v

 

:

 

λ

 

, [

 

par

 

›

 

p

 

, 

 

body

 

›

 

b

 

]) (

 

r

 

, 

 

p

 

) 

 

g

  

]]

 

 =

 

Λ

 

d

 

.

 

S

 

’

  

[[

 

b

 

, 

 

N

 

 (

 

r

 

, 

 

p

 

:

 

d

 

, []) 

 

g

  

]]

 

 

Now the semantics of a graph 

 

g

 

 representing a VEX expres-
sion is given by applying 

 

S

 

’ to the root of 

 

g

 

.

 

root

 

(

 

g

 

) = {

 

v

 

 

 

∈

 

 

 

V

 

(

 

g

 

) | 

 

pred

 

(

 

v

 

) = []}

 

S

  

[[

 

g

  

]]

 

 = 

 

S

 

’

  

[[

 

the

 

(

 

root

 

(

 

g

 

)), 

 

g

  

]]

 

 

Here, the function 

 

the

 

 simply extracts the one element from
a singleton set and is undefined otherwise: 

 

the

 

({

 

x

 

}) = 

 

x

 

.

 

5. A Mor e Complex Example

 

In this section we consider abstract syntax and seman-
tics of a more complex visual language: Show and Tell. The
language is interesting for two reasons: first, it is a member
of the rather large class of 

 

data flow

 

 languages and thus
indicates how semantics could be defined for many other
visual languages. Second, it demonstrates the effective use
of nested syntax graphs which goes beyond grammatical
descriptions of visual languages.

Show and Tell (STL) [11, 10] combines data flow with
the concept of 

 

completion

 

, which means to fill in empty
boxes in a data flow graph by either computation or data-
base search. Computations are represented by so-called

 

box-graphs

 

, which are acyclic directed multi-graphs whose
nodes are rectangles connected by arrows. A box is empty
or it contains either simple data, such as numbers or func-
tions, or another whole box-graph. In that case the box is
called 

 

complex

 

 and can be either 

 

closed

 

 or 

 

open

 

. Data can
flow along the arrows from one box to another. Whenever
two boxes connected by an arrow contain different values,
the box-graph is said to be 

 

inconsistent

 

. An open box con-
taining an inconsistent box-graph propagates this inconsis-
tency, i.e., the box-graph containing the inconsistent box
also becomes inconsistent. In contrast, when a closed box
gets inconsistent, all that happens is that the box cannot
receive or propagate any values, i.e., an inconsistent closed
box can be viewed as deleted. With the concept of inconsis-
tency, conditionals can be expressed without having bool-
ean values. 

Figure 6 shows an STL program implementing the logi-
cal AND. The program contains two parameters (the two
topmost empty boxes) and one result (the empty box on the
left). If both arguments are “1”,  then the upper complex box
remains consistent, and the “1”  can flow directly into the
result box. Moreover, the lower complex box gets inconsis-
tent and cannot emit the “0”. On the other hand, if one argu-
ment is “0”,  then the upper complex box gets inconsistent
and cannot send data to the result box and to the lower box.
Then, the “0”  can flow from the lower box into the result
box.

The abstract syntax mainly follows the concrete syntax 
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In particular: (1) Nodes are
labeled by constants (e.g., inte-
gers), function symbols (such as
+),  (representing empty STL
boxes), and complete graphs.
Additionally, they carry an 

 

open

 

-
or 

 

closed

 

-tag. (In the following
we will mention these tags only
when needed.) (2) Edges are
labeled by pairs (

 

i

 

, 

 

j

 

) where 

 

i

 

means that the edge contributes to
the 

 

i

 

th parameter of the target
node and 

 

j

 

 says that the 

 

j

 

th component of the value at the
edge’s source node flows via this edge (here * means the
complete value). (3) Each edge 

 

e

 

 = (

 

v

 

, (

 

i

 

, 

 

j

 

), 

 

w

 

) (i.e., from 

 

v

 

to 

 

w

 

 with label (

 

i

 

, 

 

j

 

)) that crosses a border of a complex box

 

u

 

 is replaced by a new node 

 

x

 

 with label 

 

k

 

 (lying inside 

 

u

 

)
and two edges 

 

e

 

1

 

 and 

 

e

 

2

 

 as follows: (i) If 

 

w

 

 is inside 

 

u

 

, then

 

e

 

1

 

 = (

 

v

 

, (

 

k

 

, 

 

j

 

), 

 

u

 

) (ending at 

 

u

 

) and 

 

e

 

2

 

 = (

 

x

 

, (

 

i

 

, *), 

 

w

 

) (con-
necting 

 

x

 

 to the target of 

 

e

 

). (ii) If 

 

v

 

 is inside 

 

u

 

, then 

 

e

 

1

 

 =
(

 

v

 

, (1, 

 

j

 

), 

 

x

 

) and 

 

e

 

2

 

 = (

 

u

 

, (

 

i

 

, 

 

k

 

), 

 

w

 

). Here, 

 

k

 

 ranges from 1 to 

 

n

 

(

 

m

 

) for all 

 

n

 

 incoming (

 

m

 

 outgoing) edges. (4) The (top-
level) box-graph is extended according to rule (2) as if it
were enclosed by a box having edges ending at the roots
and leaving the sinks.

The abstract syntax of the STL program from Figure 6
is show in Figure 7. Nodes with constants as labels are
enclosed with circles and can thus be distinguished from
newly introduced nodes.

If 

 

OP

 

 is the set of constants and operations used by STL
programs, then STL abstract graphs without complex boxes
have type 

 

Γ

 

(

 

α

 

0

 

, 

 

β

 

) with:

 

α

 

0

 

 = (

 

OP

 

 

 

∪

 

 { } 

 

∪

 

 IN) 

 

×

 

 {

 

open

 

, 

 

closed

 

}

 

β

 

 = IN 

 

×

 

 (IN 

 

∪

 

 {*})

Since complex boxes are represented by nodes labeled with
abstract STL graphs, the node type can be inductively
defined to include graphs of increasing nesting:

 

α

 

i

 

+1

 

 = 

 

α

 

i

 

 

 

∪

 

 

 

Γ

 

(

 

α

 

i

 

, 

 

β

 

) 

Hence, the type of arbitrary STL abstract graphs is given by

 

Γ

 

 = 

 

∪

 

i

 

 

 

≥

 

 0

 

 

 

Γ

 

(

 

α

 

i

 

, 

 

β

 

).
We can now define the semantics of each STL DAG as a

function 

 

D

 

n

 

 

 

→

 

 

 

D

 

m

 

 when we take a domain of semantic val-
ues 

 

D

 

 (e.g., for integers) and add to it a special value 

 

◊

 

 for
dealing with inconsistency (see below). The first equation
selects all roots of the graph, assigns 

 

D

 

-variables as new
labels, and yields a function over these variables:

 

S

 

’

  

[[

 

N

 

* ([],  

 

v

 

1

 

:1, 

 

s

 

1

 

) … ([], 

 

v

 

n

 

:

 

n

 

, 

 

s

 

n

 

) 

 

g

  

]]

 

 = 

 

Λ

 

(

 

d

 

1

 

, …, 

 

d

 

n

 

).

 

S

 

’

  

[[

 

N

 

* ([],  

 

v

 

1

 

:

 

d

 

1

 

, 

 

s

 

1

 

) … ([], 

 

v

 

n

 

:

 

d

 

n

 

, 

 

s

 

n

 

) 

 

g

  

]]

 

The used cascade pattern with the ellipsis extends as far as
possible, i.e., it selects all nodes labeled by integers and
having no predecessors. The recursive application of 

 

S

 

’
denotes the result tuple (by applying another semantic func-

tion 

 

S

 

’’ to all sinks of the graph) together with the consis-
tency status of the whole graph given by 

 

C

 

.

 

S

 

’

  

[[

 

N

 

* ([

 

p

 

1

 

], 

 

v

 

1

 

:1, []) … ([

 

p

 

m

 

], 

 

v

 

m

 

:

 

m

 

, []) 

 

g

  

]]

 

 = 
((

 

S

 

’’

  

[[

 

p

 

1

 

, 

 

g

  

]]

 

, …, 

 

S

 

’’

  

[[

 

p

 

m

 

, 

 

g

  

]]

 

), 

 

C

  

[[

 

g

  

]]

 

)

(Note that by definition of abstract syntax each sink has
exactly one predecessor.) 

 

S

 

’’ moves in reverse direction
through the abstract graph: It recursively determines the
tuple of values for all predecessors and applies the function
denoted by the current node to it. This function is denoted
by the semantic function 

 

F

 

 given below. In the pattern we
assume that the predecessors (

 

p

 

i

 

) are ordered w.r.t. the first
label component (

 

i

 

) of the connecting edges. This ensures
that the parameters appear in the correct order. Note that the
values of the predecessors are not taken as a whole, but
only the specific components as specified by the second
label part (

 

s

 

i

 

) of the connecting edges. This is achieved by
the application of projecting functions 

 

Π

 

s

 

i

 

 (where 

 

Π

 

*(

 

x

 

) =

 

x

 

).

 

S

 

’’

  

[[

 

v

 

, 

 

N

 

 ([

 

p

 

1

 

›(1, 

 

s

 

1

 

), …, 

 

p

 

k

 

›(

 

k

 

, 

 

s

 

k

 

)], 

 

v

 

:

 

f

 

) 

 

g

  

]]

 

 = 

 

F

  

[[

 

f

  

]]

 

 (

 

Π

 

s

 

1

 

(

 

S

 

’’

  

[[

 

p

 

1

 

, 

 

g

  

]]

 

), …, 

 

Π

 

s

 

k

 

(

 

S

 

’’

  

[[

 

p

 

k

 

, 

 

g

  

]]

 

))

The semantic functions 

 

S

 

’ and 

 

S

 

’’ only define the meaning
of consistent STL-graphs. An inconsistent node or graph is
defined to return the value 

 

◊

 

 which is equal to all other val-
ues of 

 

D

 

. (In this way, an inconsistent (closed) node that is
connected by an edge to a node 

 

v

 

 that is labeled by a con-
stant or not labeled at all does not affect the result of 

 

v

 

.) A
graph is inconsistent if any of its open nodes is inconsistent.
Let 

 

open

 

 be a predicate that is true only for open nodes. The
consistency of nodes/graphs is denoted by 

 

C

 

’/

 

C

 

:

 

C

 

’

  

[[

 

v

 

, 

 

g

  

]]

 

 = (

 

open

 

(

 

v

 

) 

 

⇒

 

 

 

S

 

’’

  

[[

 

v

 

, 

 

g

  

]]

 

 

 

≠

 

 

 

◊

 

)

 

C

  

[[

 

g

  

]]

 

 = 

 

∀

 

v

 

 

 

∈

 

 

 

V

 

(

 

g

 

): 

 

C

 

’

  

[[

 

v

 

, 

 

g

  

]]

 

Now the semantics of an STL graph is simply given by:

 

Fig. 6: STL program 

 

1

0

 

Fig. 7: Abstract Syntax of STL program 

 

1 2
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2

1 2

1
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(2,*)

(1,*) (1,*)

1

1

0

(1,*)

(1,*)

1

(1,*) (2,*)

(1,*) (1,*)

(1,2)

(1,1)

(2,1)

(1,*)
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 Π

 

1

 

(

 

S

 

’

  

[[

 

g

  

]]

 

) if 

 

Π

 

2

 

(

 

S

 

’

  

[[

 

g

  

]]

 

)

 

S

  

[[

 

g

  

]]

 

 =

 


 

 

◊

 

otherwise

It remains to define the functions denoted by node labels.
An operations on 

 

D

 

 (like +) denotes itself. A constant 

 

c

 

 is
interpreted as a function that checks whether all incoming
values are equal to 

 

c

 

, and an unlabeled node checks all
incoming values for equality. Finally, the semantics of a
node labeled by a complete STL graph is given by 

 

S

 

.

 

F

  

[[

 

f

 

 : 

 

D

 

n

 

 

 

→

 

 

 

D

 

m

  

]]

 

 = 

 

f

 

 

 

F

  

[[

 

c

 

 : 

 

D

  

]]

 

 = 

 

Λ

 

(

 

d

 

1

 

, …, 

 

d

 

n

 

).

 

if

 

 

 

d

 

1

 

=…=

 

d

 

n

 

=

 

c

 

 

 

then

 

 

 

c

 

 

 

else

 

 

 

◊

 

F

  

[[ ]]

 

 = 

 

Λ

 

(

 

d

 

1

 

, …, 

 

d

 

n

 

).

 

if

 

 

 

d

 

1

 

=…=

 

d

 

n

 

 

 

then

 

 

 

d

 

1

 

 

 

else

 

 

 

◊

 

F

  

[[

 

g

 

 : 

 

Γ

  

]]

 

 = 

 

S

  

[[

 

g

  

]]

 

 

 

6. Related Work

 

Besides semantics definitions for specific languages,
such as [10], there is only few work dealing with semantics
of visual languages in general. Wang and Lee [16] take an
algebraic view of modeling pictures. Their goal is to get a
formal basis for visual reasoning by axiomatic characteriza-
tions of what can be seen in a picture. The work of Bottoni
et al. [3] is centered around the formal understanding of and
reasoning with images. Both approaches are based on con-
crete visual syntax and are not targeted at the semantics
specification of visual 

 

programming

 

 languages.
There is also some work related to the use of graphs for

describing pictures: Harel’s higraphs [9] are a kind of amal-
gam of hierarchical graphs and Euler/Venn diagrams.
Higraphs have a concise formal semantics, and by model-
ing a visual language 

 

VL

 

 as a higraph, the semantics of VL
is implicitly defined. Although quite many applications can,
in principal, be described as higraphs, several of them
require changes of their concrete syntax, and some lan-
guages cannot be described at all. Moreover, the lack of an
inductive view of higraphs makes denotational specifica-
tions difficult, if not impossible. Graph grammars, on the
other hand, provide an inductive view of graphs, but they
have not yet been used for the specification of visual lan-
guage semantics, rather they have been employed to
describe translations. One reason could be that graph gram-
mars and graph rewriting has a non-trivial semantics itself
(caused by complex embeddings and non-determinism),
and it is thus difficult to describe semantics on the basis of
this formalism. Another difficulty is that graphs are consid-
ered as global, imperative variables (they are not parame-
ters of grammar rules). In particular, this makes nesting of
graph structures as used in the syntax for STL impossible.

Concerning abstract visual syntax, some other authors
also recommend the separation from concrete syntax [1, 13,
14]. However, this is only partially achieved by those
approaches, since they require a one-to-one correspondence
between concrete and abstract syntax, and thus abstract
syntax is intrinsically coupled very closely to concrete syn-

tax. Also, that work is concerned with translation of visual
languages, semantics are not covered.

 

7. Conclusions

 

We have presented a general framework for the specifi-
cation of visual language semantics. A rather unrestricted
form of abstract visual syntax given by graphs is the back-
bone of the formalism. The approach applies to quite a wide
range of visual languages, and we can even employ differ-
ent semantics formalism, such as denotational or logical
semantics. Currently, we are using the framework to for-
malize other visual languages, and we investigate the auto-
matic generation of compiler backends from semantics
specifications.

 

8. References

 

[1] Andries, M., Engels, G. & Rekers, J.: How to Represent a
Visual Program?, 

 

Workshop on Theory of Visual Languages

 

, 1996.

[2] Barendregt, H.P.: 

 

The Lambda Calculus – Its Syntax and
Semantics

 

, North Holland, 1981.

[3] Bottoni, P., Costabile, M.F., Levialdi, S. & Mussio, P.: For-
malising Visual Languages, 

 

IEEE Symp. on Visual Languages

 

,
1995, 45-52.

[4] Citrin, W., Hall, R. & Zorn, B.: Programming with Visual
Expressions, 

 

IEEE Symp. on Visual Languages

 

, 1995, 294-301.

[5] Erwig, M.: Active Patterns,

 

 Int. Workshop on Implementation
of Functional Languages

 

, 1996, 95-112. To appear in LNCS. 

 

ftp://ftp.fernuni-hagen.de/pub/fachb/inf/pri4/papers/ap.ps.gz

 

[6] Erwig, M.: Functional Programming with Graphs, 

 

ACM SIG-
PLAN Int. Conf. on Functional Programming

 

, 1997. To appear.

 

ftp://ftp.fernuni-hagen.de/pub/fachb/inf/pri4/papers/fgfl.ps.gz

 

[7] Erwig, M. & Meyer, B.: Heterogeneous Visual Languages –
Integrating Visual and Textual Programming, 

 

IEEE Symp. on
Visual Languages

 

, 1995, 318-325.

[8] Euler, L.: 

 

Briefe an eine deutsche Prinzessin

 

. Vieweg, 1986.

[9] Harel, D.: On Visual Formalisms, 

 

Communications of the
ACM, Vol. 31

 

, No. 5, 514-530.

[10] Kimura, T.D.: Determinacy of Hierarchical Dataflow Model,
Report WUCS-86-5, Washington University, St. Louis, 1986.

[11] Kimura, T.D., Choi, J.W. & Mack, J.M.: Show an Tell: A
Visual Programming Language, in E.P. Glinert (ed.): 

 

Visual Pro-
gramming Environments

 

, IEEE Computer Science Press, Los
Alamitos/CA, 1990, 397-404.

[12] Mosses, P.D.: Denotational Semantics, in J. van Leeuwen
(ed.): 

 

Handbook of Theoretical Computer Science, Vol. B

 

,
Elsevier, 1990, 575-631.

[13] Rekers, J. & Schürr, A.: A Graph Grammar Approach to
Graphical Parsing, 

 

IEEE Symp. on Visual Languages

 

, 1995, 195-
202.

[14] Rekers, J. & Schürr, A.: A Graph Based Framework for the
Implementation of Visual Environments, 

 

IEEE Symp. on Visual
Languages

 

, 1996.

[15] Shin, S.-J.: 

 

The Logical Status of Diagrams

 

, Cambridge Uni-
versity Press, New York, 1994.

[16] Wang, D. & Lee, J.R.: Visual Reasoning: its Formal Seman-
tics and Applications, 

 

Journal of Visual Languages and Comput-
ing, Vol. 4

 

, No. 4, 1993, 327-356.„


