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Abstract—Spreadsheet tables are often labeled, and these labels
effectively constitute types for the data in the table. In such
cases tables can be considered to be built from typed data where
the placement of values within the table is controlled by the
types used for rows and columns. We present a new approach
to the transformations of spreadsheet tables that is based on
transformations of row and column types. We illustrate the basic
idea of type-based table construction and transformation and lay
out a series of research questions that should be addressed in
future work.

I. Introduction
Spreadsheets present data and computation with those data

in tabular form. As reported by Harris and Gulwani [1], Excel
users often face the problem of transforming tables. Consider,
for example, the table in Figure 1(a), which is adapted from
[1] and based on the actual transformation needs by an Excel
user1. In our version the table shows the earnings of three
companies for three different quarters. Suppose we want to
transform this table into a list that shows individual earnings
in separate rows for each company and quarter, ignoring empty
cells for non-existing data. The result should look like the table
shown in Figure 1(b).

Harris and Gulwani describe in their paper an algorithm that
can infer transformations of tables such as from (a) to (b) from
input/output examples. In this example, as in many others, we
can observe that the rows and columns of tables contain labels
that explain the (purpose of the) data in the table. These labels
can be interpreted as type information for the data in the table
[2], [3]. In this paper we present an approach that exploits
this fact and lets users describe table transformations based
on transformation of their row and column types.

Based on the concepts of row and column types and typed
tables, we describe in Section II how tables can be sys-
tematically constructed from attributed data driven by types.
In Section III we then show how table transformations can
be expressed through transformations and operations on their
types. We discuss some related work in Section IV and present
conclusions in Section V where we also lay out a plan for
future work. Since this is a short paper reporting on work
in progress, the focus is on explaining the major ideas and
identifying research questions to be addressed in the future.

II. Typed Tables
The data items in a two-dimensional table are uniquely

identified by their row and column positions. When the rows

1http://www.excelforum.com/excel-programming-vba-macros/
698490-using-a-macro-to-extract-and-rearrange-data.html

Q1 Q2 Q3
A 3.5 2.9 4.0
B 3.2 4.3
C 4.9

(a) Original Table

A Q1 3.5
A Q2 2.9
A Q3 4.0
B Q1 3.2
B Q3 4.3
C Q2 4.9

(b) Linearized

A 4.0
B 4.3
C 4.9

(c) Aggregated

Fig. 1. (a) A table showing the earnings of three companies in three different
quarters. (b) The same data in linearized form. (c) The data for each company
aggregated over all quarters.

and columns are labeled, these labels can serve as names for
the table positions, which provides a more high-level, domain-
centered way for talking about data placement in tables. For
example, to find the value 2.9 we can look into the second
row and third column of the table 1(a), or we can look up
the value for company A and quarter Q2. In the following we
formalize this idea.

A. Values and Types
In the context of spreadsheets, values (v ∈ V) include simple

data types such as numbers, dates, or strings. We use the
metavariable n to range over those values (typically strings)
that are used as type names.
A domain type (δ ∈ ∆) consists of a name and a finite set of

values. A domain type is different from predefined types such
as Int or String ordinarily found in programming languages: It
is defined by a user and is used to indicate the nature, origin,
or purpose of other values. A simple example of a domain type
is Company⟨A,B,C⟩ where Company is the name of the type
and A, B, and C are its values. Domain types such as Company
that contain only plain values are called plain. Otherwise, they
are called refined. We will see types with refined values later
in Section III-B.
An attribute is a value, such as Joe, associated with a type

name, such Name, and is written as Name=Joe. Note that
attributes can be formed arbitrarily; in particular, the value
does not have to be an element of the associated type. A set
of attributes is called a record, and a value with an associated
record is called an attributed value.
Finally, a table type (τ ∈ δ× δ) consists of a pair of domain

types, the first representing the column type and the second
representing the row type, and a table t ∈ T is a mapping from
addresses, represented as pairs of natural numbers, to values.
The syntax of values and types is summarized in Figure 2. The
attentive reader will notice that we do not consider formulas
in this model.
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Values & Type Names v, n ∈ V
Refined Values v̂ ∈ V̂ ∶∶= v ∣ v * δ

Domain Types δ, γ, ρ ∈ ∆ ∶∶= n⟨v̂∗⟩
Table Types τ ∈ δ × δ

Attributes a ∈ A ∶∶= n=v
Records r ∈ R ∶∶= {a∗}
Attributed Values v̄ ∈ V̄ ∶∶= vr

Attributed Data d ∈ D = 2V̄
Tables t ∈ T = N ×N→ V

Fig. 2. Syntax of values and types

B. Tables
Our approach to table transformations is based on the

premise that tables are the result of the systematic presentation
of attributed values. Specifically, the construction of tables
is driven by types that are associated with their rows and
columns. For example, the table in Figure 1(a) is the result
of creating a table with column type Quarter⟨Q1,Q2,Q3⟩ and
row type Company⟨A,B,C⟩ from a set of attributed values
such as the following:

{2.9{Company=A,Quarter=Q2,...}, 3.2{Company=B,Quarter=Q1,...}, . . .}

For example, the first attributed value in this set is 2.9, which
has (at least) the two attribute values A of type Company
and Q2 of type Quarter; it may have further attributes, but
these two are relevant for the proper placement of the value in
the Quarter×Company table, which works by looking up the
position of the two attributes in their respective types. Since
Q2 is the second element of the type Quarter and A is the
first element of the type Company, the value 2.9 is placed in
column 2 and row 1 of the core table.2 In the same fashion all
the other values will be positioned based on their attributes.
The locations of empty cells in the table correspond to

attribute combinations for Quarter and Company attributes
that do not occur with values in the data set.

This approach to the construction of tables can be formal-
ized by a function ⊞ ∶ ∆×∆×D→ T. The definition employs the
auxiliary lookup function δ↑r , which searches for an attribute
n=v in the record r given domain type δ = n⟨v̂1, . . . , v̂k⟩
and, if found, determines v’s position among δ’s values
v̂1, . . . , v̂k , which then provides the row or column for v in
the constructed table. The definition for ↑ is obvious if all the
v̂i are plain values. The case for types with refined values is
more involved and will be discussed later. The definition of
⊞ is now straightforward. Note that we generally employ the
metavariable γ for column types and ρ for row types.

γ
ρ⊞D = {((x, y), v) ∣ vr ∈ D ∧ r↑γ = x ∧ r↑ρ = y}

Note that the function ⊞ only builds the core part of the table
consisting of the data values. In addition, we need to add the

2The table row and column headers that are given by the values of the
corresponding row and value types are later added to the core table and are
ignored in this calculation.

column and row headers. Since the corresponding definitions
are not very interesting, we omit them here for brevity.
Assuming that the data source of attributed values is D,

we can now construct the table shown in Figure 1(a) with the
following expression.

t = Quarter
Company⊞D

From the definition of ⊞ we can immediately infer the follow-
ing properties of table construction.
First, as already mentioned, values whose attributes do not

contain values of both row and column type will be not placed,
that is, data with insufficient attributes are simply ignored.
Second, when data items have the same attribute values

for the row and column types, the set definition does not
produce a function and is effectively undefined in terms of
its result type (which is T = N × N → V). In this case the
table construction simply fails, since different values would
be mapped to the same locations, resulting in an ambiguity.
This interpretation is probably too strict, since many appli-
cation scenarios could benefit from constructing tables with
underspecified type information. These cases can be handled
in two different ways: (1) We can preserve multiple values
by mapping a row/column combination not just to a single
cell but to a group of cells. This complicates the computation
of cell locations, but is otherwise not difficult to achieve in
principle. (2) We can apply aggregating functions such as sum
to aggregate a set of values into one value.
Third, it is easy to see that tables built with ⊞ can be

transposed by simply exchanging the column and row type,
that is, we know the following identity holds.

(
γ
ρ⊞D)

T
=

ρ
γ⊞D

III. Table Transformations Through Type Operators

Since the structure of tables built with ⊞ depends on the
row and column types, it is not surprising that changes to
these types result in corresponding changes for the constructed
tables. In this section we present different kinds of type trans-
formations and discuss how they give rise to corresponding
table transformations.

A. Transforming of Row and Column Types

Consider again the table shown in Figure 1(a) and defined as
t in the previous section. Suppose now that we want this table
to show the data only for companies A and C and also only for
the first and third quarter. We can apply the selection criteria to
the row and column types using a selection operation σP(δ)
to filter out all elements from type δ that do not satisfy the
predicate P. By using filtered domain types in the ⊞ operation
we can build the correspondingly amended table.3

σ_≠Q2(Quarter)
σ_≠B(Company)

⊞D

3We use the Purescript notation for partial function application in which
a binary operation applied to one of its arguments denotes a function of its
other remaining argument, for example, _≠x ≡ λy.y≠x.
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Especially for bigger tables and with more complicated selec-
tion criteria, reconstructing the table in this way is probably
faster and less error-prone than directly editing the table in
Excel by repeatedly cutting and pasting rows and columns.

Note that we can achieve the same effect by filtering the data
source D directly with a conjunction of the two predicates.

Quarter
Company⊞(σCompany≠B∧Quarter≠Q2(D))

In general, when γ = n⟨. . .⟩ and ρ = m⟨. . .⟩, we can observe
the following equivalence between type and data selection.

σQ(γ)

σP(ρ)
⊞D =

γ
ρ⊞(σP(n)∧Q(m)(D))

Why then should we bother about the manipulation of row and
column types? Having selection available for table types has
several potential advantages. First, the row and column type
selections show more directly the effect of the selection on
the structure and shape of the table than does the selection of
the data. Second, and more importantly, some effects on table
restructuring cannot be easily achieved by manipulating the
data. Consider, for example, the task of reordering the rows
of table t. This can be accomplished through the following
expression.

Quarter
rev(Company)⊞D

However, it is not clear how to achieve this effect through a
transformation of D.
We can envision a number of other operations on row and

column types that can be put to use in the manipulating tables.
For example, dually to filtering types we can also extend types
by new values, which amounts to growing tables by row or
columns. Of course, this produces results only if the underlying
data also contain correspondingly attributed values.

B. Type Refinement
A close look at the definition of δ in Figure 2 reveals that

a type is essentially a tree structure with a type name as its
root, values as the root’s children, and potentially other types
as subtrees of children that are refined. For plain types these
trees are rather trivial and have height 2, and consequently,
table construction with plain types covers only rather simple,
albeit useful, application scenarios.

Refined types correspond to trees with a more complex
structure, and so more sophisticated table constructions and
transformations can be achieved with type operations that
create or modify types containing refined values.

The first such operation is type refinement δ′⊗δ that refines
a domain type δ′ by another domain type δ which means to
attach the whole type δ to every leaf value in δ′. The formal
definition is as follows.

n⟨v̂1, . . . , v̂k⟩⊗ δ = n⟨v̂1 ⊗ δ, . . . , v̂k ⊗ δ⟩
where (v * δ′)⊗ δ = v *(δ′ ⊗ δ)

v ⊗ δ = v * δ

The notion of type membership gets a bit more interesting for
types with refined values, since values occur at multiple levels.
In fact, each path from the root to a leaf represents a record

of (n, v) pairs. In the following we define a function ⌊_⌋ that
computes for each type the sequence of records it represents. In
the definition we use ⋅ to denote the concatenation of sequences
and ∪ for computing the union of two records.

⌊n⟨ ⟩⌋ = ⟨ ⟩

⌊n⟨v, v̂∗⟩⌋ = ⟨{n=v}⟩ ⋅ ⌊n⟨v̂∗⟩⌋
⌊n⟨v * δ, v̂∗⟩⌋ = ⟨{n=v} ∪ r ∣ r ∈ ⌊δ⌋⟩ ⋅ ⌊n⟨v̂∗⟩⌋

For a type without any refined values, the records contain only
single attributes.

⌊Company⟨A,B⟩⌋ = ⟨{Company=A}, {Company=B}⟩

The following example illustrates how refined values expand
records into multiple attributes.

⌊Company⟨A*Quarter⟨Q1, Q2⟩, B⟩⌋ = ⟨{Company=A, Quarter=Q1},
{Company=A, Quarter=Q2},
{Company=B}⟩

With this extended semantics of types, the placement of
attributed values in tables has to be adapted. Specifically,
instead of locating the position of a value, we now locate the
position of a record that is subsumed by the record of the
attributed value to be placed. We write si for selecting the ith
element from the sequence s. As a special case, we consider
the type Unit, which consists of just one single element and
which is used to specify untyped single rows or columns of
tables: The position of any value is always 1 with respect to
the type Unit.

r↑δ = {
1 if δ = Unit
i such that r ⊇ ⌊δ⌋i otherwise

If domain types do not contain duplicates, there will be at
most one record that r can subsume, and i is unambiguously
defined. With this amended definition of value lookup, the
previous definition for ⊞ works now for types with and without
refined values.
We can now try to construct the table shown in Figure 1(b)

with the following expression.
Unit

Company⊗Quarter⊞D

However, the result of this expression is not quite the table
shown in Figure 1(b), since it still contains empty cells just as
the original table in Figure 1(a) does. We can remove those
by using a table filtering function that eliminates empty rows
(and columns) from a table (using a predicate empty that is
true for an empty data row or column).

σ¬empty(
Unit

Company⊗Quarter⊞D)

If this behavior is needed frequently or maybe even the
expected default, we can easily define a corresponding version
of ⊞ that applies the filter by default.
Note that we can put such filter functionality to a much

wider use. For example, we can produce a list of all companies
and quarters for which no data is available.

σempty(
Unit

Company⊗Quarter⊞D)
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Since the table construction is driven exclusively by the row
and column types, interesting table variations can be achieved
by simple type transformations. Suppose, for example, that we
want to show quarters first and companies nested inside of
quarters. We can accomplish this transformation by changing
the order of type refinement.

Unit
Quarter⊗Company⊞D

This flexibility of type refinement is due to its not being a
commutative operations, that is:

δ′ ≠ δ Ô⇒ δ′ ⊗ δ ≠ δ ⊗ δ′

Type refinement is very similar to cartesian product. The
difference is the tree-shape representation in which the refining
type is attached to each value of the type that is being refined.
This provides additional flexibility for further type operations.
For example, we can define operations for selectively removing
or adding refinements for individual values. In this sense, types
with refined values bear some similarity to dependent sum
types in type theory.

C. Other Type Operations
We can envision several other interesting type operations

that can be exploited for new forms of table constructions
or transformations. One such operation is type coarsening,
which is the inverse of refinement and extracts a type from
refined values. This operation can be used to transform nested
list structures into tables. We could employ coarsening to
transform tables of the kind shown in Figure 1(b) into tables
of the from shown in Figure 1(a). In other words, inverse type
transformations define inverse table transformations.

More interestingly, though, coarsening can be used in con-
nection with aggregating functions to produce summary tables.
For example, if we coarsen the type Company⊗Quarter back to
Company, we have multiple values in the data source matching
each company, which makes the table construction ambiguous.
By aggregating a collection of values into a single value with a
binary function, we can get back a well-defined behavior. For
example, the following construction produces the table shown
in Figure 1(c).

Unit
Company⊞max(D)

Note that the binary function does not have to be commutative
or associative, since the values to be aggregated are ordered.
The function doesn’t need an identity element either, since
empty cells can simply be kept and don’t need to be aggre-
gated.

IV. Related Work
This work is inspired by the work of Harris and Gulwani [1]

in which they present a programming-by-example approach to
infer table transformations from input/output example tables.
They describe an algorithm ProgFromEx that represents in-
ferred table transformations in a language called TableProg.
We haven’t performed a detail comparison of the two ap-
proaches yet, but the obvious advantages of ProgFromEx are

that it needs no programming at all by end users and can
probably deal easier with some more complicated, unstruc-
tured cases. The main advantage of our approach is that the
transformation results are better predictable because transfor-
mations are based on a simple and clear semantics instead
of a complicated inference algorithm. Moreover, our table
transformations are highly reusable and composable, which
promises better scalability. However, a detailed comparison of
the two approaches is subject of future work.
Pivot tables as found, for example, in Excel can also be

used to transform tabular data. While the input table basi-
cally represents an attribute data set (like a relation in a
relational database), constructing Pivot tables is primarily an
interactive process and not based on explicitly applying table
transformation operations. Since Excel Pivot tables don’t have
any associated notion of types, they obviously cannot provide
operations for type transformations. However, given the strong
similarities, typed table transformation could be used as an
underlying formal model for typed Pivot tables.
The table transformations we have considered here are

ad hoc in the sense that they are based on arbitrary type
transformations. However, a large class of systematic table
transformations are the result of controlled evolution of table
data. Several approaches have been proposed to capture such
evolution-based table transformations [4], [5], [6], [7]. An
interesting topic for future work is to identify type transforma-
tions that can represent evolution-based table transformations.

V. Conclusion and Future Work
We have demonstrated that table types and transformations

can be an effective basis for the systematic construction and
manipulation of spreadsheet tables. However, the presented
approach is incomplete and requires several additional com-
ponents to become a versatile and widely applicable table
manipulation tool. In particular, in future work we plan to
address the following questions.

● How do we obtain labeled data sources in the first place?
We can have users mark areas of spreadsheets as data
sources. By using an interactive tool or label inference
[8], [9], values can be turned into attributed values.

● How do we transform tables with formulas? To be able
to place formulas arbitrarily, we have to base cell ref-
erences on labels instead of addresses, just as we did
in [10] or [11]. For generating concrete references when
constructing tables, we also have to distinguish between
aggregating and iterating operations [12].

● We need a comprehensive language definition that in-
cludes operations for turning tables into attributed data
as well as combining different tables.

Tables are the fundamental data structure of spreadsheets.
Investigating the properties of tables as well as their trans-
formations should thus be a priority of spreadsheet research.
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