Type-Safe Update Programming

Martin Erwig and Deling Ren

Oregon State University
Department of Computer Science
[erwig|rende]@cs.orst.edu

Abstract. Many software maintenance problems are caused by using
text editors to change programs. A more systematic and reliable way
of performing program updates is to express changes with an update
language. In particular, updates should preserve the syntax- and type-
correctness of the transformed object programs.

We describe an update calculus that can be used to update lambda-
calculus programs. We develop a type system for the update language
that infers the possible type changes that can be caused by an update
program. We demonstrate that type-safe update programs that fulfill
certain structural constraints preserve the type-correctness of lambda
terms.

1 Introduction

A major fraction of all programming activities is spent in the process of updating
programs in response to changed requirements. The way in which these updates
are performed has a considerable influence on the reliability, efficiency, and costs
of this process. Text editors are a common tool used to change programs, and
this fact causes many problems: for example, it happens quite often that, after
having performed only a few minor changes to a correct program, the program
consists of syntax and type errors. Even worse, logical errors can be introduced
by program updates that perform changes inconsistently. These logical errors are
especially dangerous because they might stay in a program undetected for a long
time. These facts are not surprising because the “text-editor method” reveals
a low-level view of programs, namely that of sequences of characters, and the
operation on programs offered by text editors is basically just that of changing
characters in the textual program representation.

Alternatively, one can view a program as an element of an abstract data type
and program changes as well-defined operations on the program ADT. Together
with a set of combinators, these basic update operations can then be used to write
arbitrarily complex update programs. Update programs can prevent certain kinds
of logical errors, for example, those that result from “forgetting” to change some
occurrences of an expression. Using string-oriented tools like awk or perl for this
purpose is difficult, if not impossible, since the identification of program structure
generally requires parsing. Moreover, using text-based tools is generally unsafe
since these tools have no information about the languages of the programs to be

transformed, which makes the correct treatment of variables impossible because
that requires knowledge of the languages’ scoping rules. In contrast, a promising
opportunity offered by the ADT approach is that effectively checkable criteria
can guarantee that update programs preserve properties of object programs to
which they are applied; one example is type correctness. Even though type errors
can be detected by compilers, type-safe update programs have the advantage
that they document the performed changes well. In contrast, performing several
corrective updates to a program in response to errors reported by a compiler
leaves the performed updates hidden in the resulting changed program.

Generic updates can be collected in libraries that facilitate the reuse of up-
dates and that can serve as a repository for executable software maintenance
knowledge. In contrast, with the text-editor approach, each update must be
performed on its own. At this point the safety of update programs shows an
important advantage: whereas with the text-editor approach the same (or dif-
ferent) errors can be made over and over again, an update program satisfying
the safety criteria will preserve the correctness for all object programs to which
it applies. In other words, the correctness of an update is established once and
for all. One simple, but frequently used update is the safe (that is, capture-free)
renaming of variables. Other examples are extending a data type by a new con-
structor, changing the type of a constructor, or the generalization of functions.
In all these cases the update of the definition of an object must be accompanied
by corresponding updates to all the uses of the object. Many more examples of
generic program updates are given by program refactorings [10] or by all kinds
of so-called “cross-cutting” concerns in the fast-growing area of aspect-oriented
programming [1], which demonstrates the need for tools and languages to express
program changes.

The update calculus presented in this paper can serve as an underlying model
to study program updates and as a basis on which update languages can be
defined and into which they can be translated.

Our goal is not to replace the use of text editors for programming; rather, we
would like to complement it: there will always be small or simple changes that
can be most easily accomplished by using an editor. Moreover, programmers
are used to writing programs with their favorite editor, so we cannot expect
that they will instantly switch to a completely new way of performing program
updates. However, there are occasions when a tedious task calls for automatic
support. We can add safe update programs for frequently used tasks to an editor,
for instance, in an additional menu.t

Writing update programs, like meta programming, is in general a difficult
task—probably more difficult than creating “normal” object programs. The pro-
posed approach does not imply or suggest that every programmer is supposed to
write update programs. The idea is that update programs are written by a ex-
perts and used by a much wider audience of programmers (for example, through

! This integration requires resolving a couple of other non-trivial issues, such as how
to preserve the layout and comments of the changed program and how to deal with
syntactically incorrect programs.

a menu interface for text editors as described above). In other words, the update
programming technology can be used by people who do not understand all the
details of update programs.

In the next section we illustrate the idea of update programming with a
couple of examples. In Section 3 we discuss related work. In Section 4 we define
our object language. The update calculus is introduced in Section 5, and a type
system for the update calculus is developed in Section 6. Conclusions given in
Section 7 complete this paper.

2 Update Programming

To give an impression of the concept of update programming we show some
updates to Haskell programs and how they can be implemented in HULA, the
Haskell Update LAnguage [8] that we are currently developing.

Suppose a programmer wants to extend a module for binary search trees by
a size operation giving the number of nodes in a tree. Moreover, she wants
to support this operation in constant time and therefore plans to extend the
representation of the tree data type by an integer field for storing the information
about the number of nodes contained in a tree. The definition of the original tree
data type and an insert function are as follows:

data Tree = Leaf | Node Int Tree Tree

insert :: Int -> Tree -> Tree

insert x Leaf = Node x Leaf Leaf

insert x (Node y 1 r) = if x<y then Node y (insert x 1) r
else Node y 1 (insert x r)

The desired program extension requires a new function definition size, a
changed type for the Node constructor (since a leaf always contains zero nodes,
no change for this constructor is needed), and a corresponding change for all
occurrences of Node in patterns and expressions. Adding the definition for the
size function is straightforward and is not very exciting from the update pro-
gramming point of view. The change of the Node constructor is more interesting
since the change of its type in the data definition has to be accompanied by cor-
responding changes in all Node patterns and Node expressions. We can express
this update as follows.

con Node : {Int} t in
(case Node {s} -> Node {succ s}
| Leaf -> Node {1}); Node {1}

The update can be read as follows: the con update operation adds the type Int
as a new first parameter to the definition of the Node constructor. The notation
a {r}bis an abbreviation for the rewrite rule a b~~arb. So {Int} t means extend
the type t on the left by Int. The keyword in introduces the updates that apply

to the scope of the Node constructor. Here, a case update specifies how to change
all pattern matching rules that use the Node constructor: Node patterns are
extended by a new variable s, and to each application of the Node constructor in
the return expression of that rule, the expression succ s is added as a new first
argument (succ denotes the successor function on integers, which is predefined
in Haskell). The Leaf pattern is left unchanged, and occurrences of the Node
constructor within its return expression are extended by 1. As an alternative to
the case update, the rule Node {1} extends all other Node expressions by 1.

The application of the update to the original program yields the new object
program:

data Tree = Leaf | Node Int Int Tree Tree

insert :: Int -> Tree -> Tree
insert x Leaf = Node 1 x Leaf Leaf
insert x (Node s y 1 r) =
if x<y then Node (succ s) y (imsert x 1) r
else Node (succ s) y 1 (insert x r)

It is striking that with the shown definition the case update is applied to all
case expressions in the whole program. In our example, this works well since we
have only one function definition in the program. In general, however, we want
to be able to restrict case updates to specific functions or specify different case
updates for different functions. This can be achieved by using a further update
operation that performs updates on function definitions:

con Node : {Int} t in
fun ‘insert x y:
(case Node {s} -> Node {succ s}
| Leaf -> Node {1}); Node {1}

This update applies the case update only to the definition of the function
insert. Here the backquote is used to distinguish Haskell variables from meta
variables of the update language.? Uses of the function insert need not be
updated, which is indicated by the absence of the keyword in and a following
update. We can add further fun updates for other functions in the program to
be updated each with its own case update. Note that the variables x and y of
the update language are meta variables with respect to Haskell that match any
object (that is, Haskell) variable.

We can observe a general pattern in the shown program update: a constructor
is extended by a type, all patterns are extended at the (corresponding position)
by a new variable, and expressions built by the constructor are extended either
by a function which is applied to the newly introduced variable (in the case that

2 The backquote is not needed for succ and s since they appear as free variables in
RHSs of rules, which means that they cannot reasonably be meta variables since they
would be unbound. Therefore they are automatically identified as object variables.

the expression occurs in the scope of a pattern for this constructor) or by an
expression. We can define such a generic update, say extCon, once and store it
in an update library, so that constructor extensions as the one for Node can be
expressed as applications of extCon [8]. For example, the size update can then
be expressed by:

extCon Node Int succ 1

which would have exactly the effect as the update shown above. We plan to
implement extensions to text editors like Emacs or Vim that offer generic type-
correctness preserving updates like renaming or extCon via menus.

Of course, it is very difficult (if not generally impossible) to write generic up-
date programs that guarantee overall semantic correctness. Any change to a pro-
gram requires careful consideration by the programmer, and this responsibility is
still required when using update programs. We do not claim to free the update
process from any semantics consideration; however, we do claim that update
programs make the update process more reliable by offering type-preservation
guarantees and consistency in updates.

Other examples, such as generalizing function definitions or a collection of
updates to maintain variations of a lambda-calculus implementation are dis-
cussed in [9] where we also indicate how update programming could be applied
to Java.

3 Related Work

There is a large body of work on impact analysis that tries to address the prob-
lems that come with performing changes to software [2,4]. However, we know
of no work that attempts to exploit impact analysis to perform fully automated
software changes.

Performing structured program updates is supported by program editors that
can guarantee syntactic or even type correctness and other properties of changed
programs. Examples for such systems are Centaur [6], the synthesizer generator
[11], or CYNTHIA [15]. The view underlying these tools are either that of syntax
trees or, in the case of CYNTHIA, proofs in a logical system for type information.

We have introduced a language-based view of program updates in [7]. Viewing
programs as abstract data types goes beyond the idea of syntax-directed program
editors because it allows a programmer to combine basic updates into update
programs that can be stored, reused, changed, shared, and so on. The update
programming approach has, in particular, the following two advantages: First,
we can work on program updates offline, that is, once we have started a program
change, we can pause and resume our work at any time without affecting the
object program. Although the same could be achieved by using a program editor
together with a versioning tool, the update program has the advantage of much
better reflecting the changes performed so far than a partially changed object
program that only shows the result of having applied a number of update steps.
Second, independent updates can be defined and applied independently. For

example, assume an update u; followed by an update us (that does not depend
on or interfere with w;) is applied to a program. With the editor approach, we
can undo uy and also ug and u;, but we cannot undo just u; because the changes
performed by us are only implicitly contained in the final version that has to be
discarded to undo u;. In contrast, we can undo each of the two updates with
the proposed update programming approach by simply applying only the other
update to the original program.

Programs that manipulate programs are also considered in the area of
meta programming [12]. However, existing meta programming systems, such
as MetaML [13], are mainly concerned with the generation of programs and do
not offer means for analyzing programs (which is needed for program transfor-
mation). Refactoring [10] is an area of fast-growing interest. Refactoring (like
the huge body of work on program optimization and partial evaluation) leaves
the semantics of a program unchanged. Program transformations that change
the behavior of programs are also considered in the area of aspect-oriented pro-
gramming [1], which is concerned with performing “cross-cutting” changes to a
program.

Our approach is based in part on applying update rules to specific parts of
a program. There has been some work in the area of term rewriting to address
this issue. The ELAN logical framework introduced a strategy language that
allows users to specify their own tactics with operators and recursion [5]. Visser
has extended the set of strategy operators and has put all these parts together
into a system for program transformation, called Stratego [14]. These proposals
allow a very flexible specification of rule application strategies, but they do not
guarantee type correctness of the transformed programs.

A related approach that is concerned with type-safe program transformations
is pursued by Bjgrner who has investigated a simple two-level lambda calculus
that offers constructs to generate and to inspect (by pattern matching) lambda
calculus terms [3]. In particular, he describes a type system for dependent types
for this language. However, in his system symbols must retain their types over
transformations whereas in our approach it is possible that symbols change their
type (and name).

4 The Object Language

To keep the following description short and simple, we use lambda calculus
together with a standard Hindley /Milner type system as the working object lan-
guage. The syntax of lambda-calculus expressions and types is shown in Figure
1. In addition to expressions e, types t, and type schemas s, we use ¢ to range
over constants, v to range over variables, and b over basic types. The definition
of the type rules is standard and is omitted for lack of space.

Since the theory of program updates is independent of the particular dynamic
semantics of the object language (call-by-value, call-by-need, ...), we do not have
to consider a dynamic semantics.

ex=cl|lv|ee|v.e|letv=eine
tu=bla|t—t
su=1t|Vat

Fig. 1. Syntax and types of lambda calculus.

The main idea to achieve a manageable update mechanism is to perform
somehow “coordinated” updates of the definition and all corresponding uses of
a symbol in a program. We therefore consider the available forms of symbol
definitions more closely. In general, a definition has the following form:

let v=d ine

where v is the symbol (variable) being defined, d is the defining expression, and
e is the scope of the definition, that is, e is an expression in which v will be
used with the definition d (unless hidden by another nested definition for v). We
call v the symbol, d the defining expression, and e the scope of the definition.
If no confusion can arise, we sometimes refer to d also as the definition (of v).
B-redexes also fit the shape of a definition since a (non-recursive) let v=d in e
is just an abbreviation for (A\v.e) d.

Several extensions of lambda calculus that make it a more realistic model for
a language like Haskell also fit the general pattern of a definition, for example,
data type/constructor definitions and pattern matching rules. We will comment
on this in Section 5.2.

5 The Update Calculus

The update calculus basically consists of rewrite rules and a scope-aware update
operation that is able to perform updates of the definition and uses of a sym-
bol. In addition, we need operations for composing updates and for recursive
application of updates.

5.1 Rules

A rewrite rule has the form [~» r where [and r are expressions that might contain
meta variables (m), that is, variables that are different from object variables
and can represent arbitrary expressions. Expressions that possibly contain meta
variables are called patterns. The type system for lambda calculus has to be
extended by a rule for meta variables that is almost identical to the rule for
variables (except that meta variables have monomorphic types).

An update can be performed on an expression e by applying a rule [~ to
e which means to match [against e, which, if successful, results in a binding o
(called substitution) for the meta variables in [. The fact that a pattern like [
matches an expression e (under the substitution o) is also written as: [- e (1= e).
We assume that [is linear, that is, [does not contain any meta variable twice.

The result of the update operation is o(r), that is, » with all meta variables
being substituted according to o. If [does not match e, the update described by
the rule is not performed, and e remains unchanged.

We use the matching definitions and notations also for types. If a type ¢
matches another type t' (that is, ¢ ~¢'), then we also say that ¢’ is an instance
of t.

5.2 Update Combinators

We can build more complex updates from rules by alternation and recursion. For
example, the alternation of two updates w1 and uo, written as ui ; us, first tries
to perform the update u;. If u; can be applied, the resulting expression is also
the result of uy ; uz. Only if u; does not apply, the update ug is tried. Recursion
is needed to move updates arbitrarily deep into expressions. For example, since
a rule is always tried at the root of an expression, an update like 1~»2 has
no effect when applied to the expression 1+(1+1). We therefore introduce a
recursion operator | that causes its argument update to be applied (in a top-
down manner) to all subexpressions. For example, the update |(1~-2) applied
to 1+(1+1) results in the expression 2+(2+2). (We use the recursion operator
only implicitly in scope updates and do not offer it to the user.)

In a scope update, each element of a definition let v=d in e, that is, v, d,
or e, can be changed. Therefore, we need an update for each part. The update
of the variable can just be a simple renaming, but the update of the definition
and of the scope can be given by arbitrarily complex updates. We use the syntax
{v~v": uq}u, for an update that renames v to v’, changes v’s definition by wg4,
and all of its uses by u,. (We also call uy the definition update and u,, the use
update.) Note that u, is always applied recursively, whereas u,4 is only applied to
the root of the definition. However, to account for recursive let definitions we
apply u,, also recursively to the result obtained by the update uq. We use x to
range over variables (v) and meta variables (m), which means that we can use a
scope update to update specific bindings (by using an object variable) or to apply
to arbitrary bindings (by using a meta variable). Either one of the variables (but
not both) can be missing. These special cases describe the creation or removal
of a binding. In both cases, we have an expression instead of a definition update.
This expression is required in the case of binding removal where it is used to
replace all occurrences of the removed variable. (Note that e must neither contain
x nor a possible object variable that matches z in case = is a meta variable.) In
the case of binding creation, e is optional and is used, if present, to create an
expression let v=e in ¢” where €” is the result of applying u to e’. Otherwise,
the result is \v.e”’. The syntax of updates is shown in Figure 2.

We use an abbreviated notation for scope updates that do not change names,
that is, we write {v:ug4}u, instead of {v~»v:ug}u,. The updates of either the
defining expression or the scope can be empty, which means that there is no
update for that part. The updates are then simply written as {v: ug} and {v}u,,
respectively, and are equivalent to updates {v:ug}t and {v: t}u,, respectively.

U= Identity (No Update)
| p~p Rule
| {z~z:utu Change Scope
| {~v[=€l}u Insert Scope
| {z~e}u Delete Scope
| usu Alternative
| lu Recursion

Fig. 2. Syntax of updates.

Let us consider some examples. We already have seen examples for rules. A
simple example for change scope is an update for consistently renaming variables
{v~>w}v~>w. This update applies to a lambda- or let-bound variable v and
renames it and all of its occurrences that are bound by that definition to w.
The definition of v is usually not changed by this update. However, if v has a
recursive definition, references to v in the definition will be changed to w, too,
because the use update is also applied to the definition of a symbol.

A generalization of a function f can be expressed by the update u =
{f:{~w}1l~w}f~>f 1. u is a change-scope update for £, which does not rename
f, but whose definition update introduces a new binding for w and replaces all
occurrences of a particular constant expression (here 1) by w in the definition
of f. u’s use update makes sure that all uses of £ are extended by supplying a
new argument for the newly introduced parameter. Here we use the same ex-
pression that was generalized in f’s definition, which preserves the semantics of
the program.

To express the size update example in the update calculus we have to ex-
tend the object language by constructors and case expressions and the update
calculus by corresponding constructs, which is rather straightforward (in fact,
we have already implemented it in our prototype). An interesting aspect is that
each alternative of a case expression is a separate binding construct that in-
troduces bindings for variables in the pattern. The scope of the variables is the
corresponding right hand side of the case alternative. Since these variables do
not have their own definitions, we can represent a case alternative by a lambda
abstraction—just for the sake of performing an update. A case update can
then be translated into an alternative of change-scope updates. For example,
the translation of the size update yields:

{Node:t ~» Int->t}
({Node} ({~~s}Node~~Node (succ s));
{Leaf }Node~Node 1);
Node~~Node 1

The outermost change-scope update expresses that the definition of the Node
constructor is extended by Int. The use update is an alternative whose second
part expresses to extend all Node expressions by 1 to accommodate the type
change of the constructor. The first alternative is itself an alternative of two

change-scope updates. (Since the ; operation is associative, the brackets are
strictly not needed.) The first one applies to definitions of Node which (by way
of translation) can only be found in lambda abstractions representing case al-
ternatives. The new-scope update will add another lambda-binding for s, and
the use update extends all Node expressions by the expression succ s. The other
alternative applies to lambda abstractions representing Leaf patterns.

This last example demonstrates that the presented update calculus is not
restricted to deal just with lambda abstractions or let bindings, but rather can
serve as a general model for expressing changes to binding constructs of all kinds.

Due to space limitations we omit here the formal definition of the semantics
that defines judgments of the form [u],(e) = €', see the extended version of this

paper [9].

6 A Type System for Updates

The goal of the type system for the update calculus is to find all possible type
changes that an update can cause to an arbitrary object program. We show that
if these type changes “cover” each other appropriately, then the generated object
program is guaranteed to be type correct.

6.1 Type Changes

Since updates denote changes of expressions that may involve a change of their
types, the types of updates are described by type changes. A type change (9)
is essentially given by a pair of types (t~~t), but it can also be an alterna-
tive of other type changes (J|0). For example, the type change of the up-
date 1~ True is Int~>Bool, while the type change of 1~-True; odd~~2 is
Int ~» True|Int->Bool ~~ Int.

Recursively applied updates might cause type changes in subexpressions that
affect the type of the whole expression. Possible dependencies of an expression’s
type on that of its subexpressions are expressed using the two concepts of type
hooks and context types. For example, the fact that the type of odd 1 depends
on the type of 1 is expressed by the hook Int—Bool, the dependency on odd
is Int->Bool—Bool. The dependency on the whole expression is by definition
empty (€), and a dependency on any expression that is not a subexpressions is
represented by a “constant hook” <——Bool.

The application of a type hook C to a type t yields a context type denoted
by C(t) that exposes t as a possible type in a type derivation. The meaning of
a context type is given by the following equations.

e(t)

;)tQ <t>

t
to

to if t =1t
error otherwise

tl ;)tQ <t>

10

0 n=T~T | 0|
=bla|T—=T1]|C(T)|T0C
Cu=c¢€|—=t]|tot

\]
I

Fig. 3. Type changes.

The rationale behind context types is to capture changes of types that possibly
happen only in subexpressions and do not show up as a top-level type change.
Context types are employed to describe the type changes for use updates in scope
updates. For example, the type change of the update v/ = 1~»>w is Int~ a.
However, when u’ is used as a use update of a scope update u = {~w}1~>w,
it is performed recursively, so that the type change is described using a context
type C(Int)~ C(a).

To describe the type change for u, the type for the newly introduced abstrac-
tion has to be taken into account. Here we observe that the type of w cannot be
a in general, because w might be, through the recursive application of the rule,
placed into an expression context that constrains w’s type. For example, if we
apply u to odd 1, we obtain Aw.odd w where w’s type has to be Int. In general,
the type of a variable is constrained to the type of the subexpression that it
replaces. We can use a type hook that describes a dependency on a type of a
subexpression e to express a constraint on a type variable that might replace e.
Such a constraint type is written as a|c. Its meaning is to restrict a type variable
a by the type of a subexpression (represented by the left part of a type hook):

Ay —t, = b1
tio =t

The type change for u is therefore given by C(Int) ~» ajc->C(a)c).

To see how type hooks, context types, and constrained types work, consider
the application of u to 1, which yields Aw.w. The corresponding type change
Int ~» a->a is obtained using the type hook e. However, applied to odd 1, u
yields Aw.odd w with the type change Bool ~» Int->Bool, which is obtained from
the type hook Int<—Bool. As another example consider the renaming update
u = {x~y}x~y. For the update we obtain a type change C(a;c)~ C(b|c)
(which is the same as C'(aj¢) ~ C(a¢)). The type hook C results for the same
reason as in the previous example. Applying u to the expression Ax.1 yields Ay.1
with a type change a->Int ~~ a->Int, which can be obtained by using the type
hook <——a->Int. Similarly, v changes Ax.odd x to Ay.odd y with a type change
Int->Bool~~ Int->Bool. This type change is u’s type change specialized for the
type hook Int—Int->Bool.

The syntax of contexts and type changes is summarized in Figure 3. Since
the inference rules generate, in general, context constraints for arbitrary type
changes, we have to explain how contexts are propagated through type changes
to types:

C{t~~1") = C{1) ~ C{T")
C{8]6") := C{(6)|C (")

11

Types and type changes can be applicative instances of one another. This rela-
tionship says that a type ¢ is an applicative instance of a function type t' — ¢,
written as t 2 ¢ — t. The rationale for this definition is that two updates u and u’
of different types t1 ~>to and t) ~» t}, respectively, can be considered well typed
in an alternative u ; u’ if one type change is an applicative instance of the other,
that is, if ¢1 ~» g <]~ t5 or t] ~»th <t ~ ta, because in that case one update
is just more specific than the other. For example, in the update

{f:succ~plus}f x~f x 1;f~f 1

the first rule of the alternative £ x~»f x 1 has the type change Int~-Int
whereas the second rule f~»f 1 has the type change Int->Int~»Int->Int.
Still both updates are compatible in the sense that the first rule applies to more
specific occurrences of £ than the second rule. This fact is reflected in the type
change Int ~~ Int being an applicative instance of Int->Int~» Int->Int. The
applicative instance relationship extends in a homomorphic way to all kinds of
type changes and contexts.

Finally, note that a type change t~t’ does not necessarily mean that an
update u : t~t' maps an expression e of type ¢ to an expression of type t’,
because u might not apply to e and thus we might get [u](e) = e of type t.
Thus, the information about an update causing some type change is always to
be interpreted as “optional” or “contingent on the applicability of the update”.

6.2 Type-Change Inference

The type changes that are caused by updates are described by judgments of the
form A wu :: 0 where A is a set of type-change assumptions, which can take one
of three forms:

(1) ax~sa’ i t~~t' expresses that x of type t is changed to 2’ of type t'. The
following constraint applies: if 2’ is a meta variable, then 2’ = z and ¢’ = ¢.

(2) v t expresses that v is a newly introduced (object) variable of type t.

(3) x: t expresses that x is a (object or meta) variable of type ¢ that is only
bound in the expression to be changed.

Type-change assumptions can be extended by assumptions using the “comma”
notation as in the type system.

The type-change system builds on the type system for the object language.
In the typing rule for rules we make use of projection operations that project
on the left and right part of a type-change assumption. These projections are
defined as follows:

Api=A{x:t|awa vttt e AfU{z:t |zt e A}
Ap =t/ |x~a’ bt e Ay U{ o8 |2/t € A}

The type-change rules are defined in Figure 4. The rules for creating or deleting
a binding have to insert a function argument type on either the right or the left

12

Agkp:t ArFp ot
w
g App~sp' ottt T UAbL bt

Apu =6 Avd =6 638" §=36" Apbu 6 Ay 8
Avu;u' o 87 Avusu' 6|8

Al z~sa’ s tjowtio] b ua @ topwito) Al axwa’ ntiowtio]bug i 6

.\ chg
{:he Ab {z~a' ugtuy 2 C{0)

{a} = FV(t) — FV(A,;) Alw:tyelbe: Vatje ALw:tic]lbu 9

8E Av {~w=e}u :: t}c=C()
Al w:r tig]pu 2 9 (9 Az ytic]pu =6 Arbe: e
I

Ap {~~whu ity C(0) Av {z~etu i tyo7C(0)

Fig. 4. Type change system.

part of a type change. This type insertion works across alternative type changes;
we use the notation 70 (7—0) to extend the argument (result) type of a type
change to a function type. The definition is as follows.

(00) := (Tp0)|(T?)
(00") := (T0)|(T¢)

The inference rule ~», connects the type system of the underlying object lan-
guage (lambda calculus) with the type-change system.

We have several rules for scope updates. To save space we combine two rules
for each case by using square brackets for optional rule parts. For example, in the
rule {:} if and only if the premise can be proved without using the assumption
for w, then there is no type hook C' on the type ¢ in the conclusion.

(i~ 1r) = (T = 1)~ T T
(i~~>7) =T~ (T — 1) T

T

7
T—
K

4 =l

6.3 Soundness of the Update Type System

In this section we define a class of well-structured updates that will preserve the
well-typing of transformed object-language expressions. An update that, when
applied to a well-typed expression, yields again a well-typed expression is called
safe. In other words, we will show that typeable well-structured updates are safe.
The structure condition captures the following two requirements:

(A) An update of the definition of a symbol that causes a change of its type or
its name is accompanied by an update for all the uses of that symbol (with
a matching type change).

(B) No use update can introduce a non-generalizing type change, that is, for
each use update that has a type change t~~t'|0 we require that ¢ is a generic
instance of ¢’ or that one type, t or ¢/, is an applicative instance of the other.

13

Condition (A) prevents ill-typed applications of changed symbols as well as un-
bound variables whereas (B) prevents type changes from breaking the well typing
of their contexts. An intuitive explanation of why these conditions imply safety
for well-typed updates can be obtained by looking at all the possible ways in
which an update can break the type correctness of an expression and how these
possibilities are prevented by the type system or the well-structuring constraints.
For a detailed discussion, see [9].

Let us now define the well-structuring constraint formally. We first iden-
tify some properties of change-scope updates. Let u = {x~z':uq}u, and let
@' it~ be the assumption that has been used in rule {:} to derive its
type change, say t1~~ts]d.

1) wis self-contained iff x 2’ Vit At = Ju,u',p:u, =u;x~p;u.
7 7p) p7

(2) wis smooth iff t' ¢ or t ¢’ or t' Xt

(3) wis (at most) generalizing iff t3 > t1

An update u is well structured iff it is well typed and all of its contained change-
scope updates are self-contained, smooth, and generalizing.

When we consider the application of a well-structured update u to a well-
typed expression e, the following two cases can occur: (1) u does not apply to
e. In this case e is not changed by u and remains well typed. (2) u applies to e
and changes it into ¢’. In this case we have to show that from the result type of
u we can infer the type of ¢/. We collect the results in the following two lemmas.

Lemma 1. u does not apply toe AI'Fe : t = I' [u](e) : t
Lemma 2 (Soundness). If u is well structured and applies to e, then
Avu i 7T 0ANA ke 7 = A F[u](e) : 7/

The lemma expresses that the derivation of a type change that includes an
alternative 7~~7" ensures for any expression e of type 7 that u transforms e into
an expression of type 7/. We have to use 7 in the lemma because the type change
for u is generally given by context types. For a concrete expression e, the type
inference will fix any type hooks, which allows 7 to be simplified to a type t.
Finally, we can combine both lemmas in the following theorem.

Theorem 1. If u is well structured, then
Avu = 7T |6ANA ke s 7 = A Ful(e) : tA(t=T7ViEi=T)

Let us consider the safety of some of the presented example updates. The function
generalization update from Section 5.2 is safe, which can be checked by applying
the definitions of “well structured” and the rules of the type-change system.
The first size update (Section 2) is also safe, although to prove it we need the
extension of lambda calculus by constructors and case expressions. In contrast,
the second size update is not safe since the case update will be applied only to
the definition of insert (and not to other functions).

14

7

Conclusions and Future Work

We have introduced an update calculus together with a type-change system that
can guarantee the safety of well-structured updates, that is, well-typed, safe
updates preserve the well typing of lambda-calculus expressions. The presented
calculus can serve as the basis for type-safe update languages. Currently, we are
working on the design and implementation of an update language for Haskell.

One area of future work is to relax the rather strict well-structuring con-

ditions and facilitate larger classes of update programs under the concept of
conditional safety, which means to infer constraints for object programs that are
required for their type preservation under the considered update.

References
1. ACM. Communications of the ACM, volume 44(10), October 2001.
2. R. S. Arnold and S. A. Bohner. Impact Analysis — Towards a Framework for

10.

11.

12.

13.

14.

15.

Comparison. In IEEE Int. Conf. on Software Maintenance, pages 292-301, 1993.

. N. Bjgrner. Type Checking Meta Programs. In Workshop on Logical Frameworks

and Meta-Languages, 1999.

S. A. Bohner and R. S. Arnold, editors. Software Change Impact Analysis. IEEE
Computer Society Press, Los Alamitos, CA, 1996.

B. Borovansky, C. Kirchner, H. Kirchner, P. E. Moreau, and M. Vittek. ELAN: A
Logical Framework Based on Computational Systems. In Workshop on Rewriting
Logic and Applications, 1996.

P. Borras, D. Clement, T. Despereaux, J. Incerpi, G. Kahn, B. Lang, and V. Pas-
cual. Centaur: The System. In 3rd ACM SIGSOFT Symp. on Software Develop-
ment Environments, pages 14-24, 1988.

M. Erwig. Programs are Abstract Data Types. In 16th IEEE Int. Conf. on Auto-
mated Software Engineering, pages 400-403, 2001.

M. Erwig and D. Ren. A Rule-Based Language for Programming Software Updates.
In 8rd ACM SIGPLAN Workshop on Rule-Based Programming, pages 6777, 2002.
M. Erwig and D. Ren. An Update Calculus for Type-Safe Program Changes.
Technical Report TR02-60-09, Department of Computer Science, Oregon State
University, 2002.

M. Fowler. Refactoring: Improving the Design of Ezisting Code. Addison-Wesley,
Reading, MA, 1999.

T. W. Reps and T. Teitelbaum. The Synthesizer Generator: A System for Con-
structing Language-Based Editors. Springer-Verlag, New York, 1989.

T. Sheard. Accomplishments and Research Challenges in Meta-Programming. In
2nd Int. Workshop on Semantics, Applications, and Implementation of Program
Generation, LNCS 2196, pages 2-44, 2001.

W. Taha and T. Sheard. MetaML and Multi-Stage Programming with Explicit
Annotations. Theoretical Computer Science, 248(1-2):211-242, 2000.

E. Visser. Stratego: A Language for Program Transformation Based on Rewriting
Strategies. In 12th Int. Conf. on Rewriting Techniques and Applications, 2001.

J. Whittle, A. Bundy, R. Boulton, and H. Lowe. An ML Editor Based on Proof-
as-Programs. In 9th PLILP, LNCS 1292, pages 389-405, 1997.

15

