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Abstract

We present a new method for GADT type inference that improves
the precision of previous approaches. In particular, our approach
accepts more type-correct programs than previous approaches
when they do not employ type annotations. A side benefit of our
approach is that it can detect a wide range of runtime errors that are
missed by previous approaches.

Our method is based on the idea to represent type refinements
in pattern-matching branches by choice types, which facilitate a
separation of the typing and reconciliation phases and thus support
case expressions. This idea is formalized in a type system, which is
both sound and a conservative extension of the classical Hindley-
Milner system. We present the results of an empirical evaluation
that compares our algorithm with previous approaches.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—Functional constructs, Type structure

General Terms Languages, Theory

Keywords Type Inference, GADT, Choice Type, Variational Uni-
fication, Type Reconciliation

1. Introduction

Generalized algebraic data types (GADTSs) extend algebraic data
types by allowing different data constructors to refine the result
type differently. In accordance, a pattern-matching branch is al-
lowed to bring in local assumptions that are effective only in that
branch. This type system extension enables programmers to en-
code interesting properties and invariants about programs or data
structures within types, which will then be checked and enforced
during compile time, precluding a large class of runtime errors [6,
22| 130, 136]. Since their inception, GADTs have been adopted for
many programming tasks, for example, generic programming [28],
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monad libraries [16], balanced trees [29,[35]], and tagless language
interpreters [36].

This seemingly simple extension brings up many tricky issues
in GADT type inference, which after a decade of active research
(L0, 17, 1181 211 22} 1251 127, 130, [32] 134] still remains an open prob-
lem [[17]. The fundamental challenge results from type refinements
in pattern-matching branches, which make some case expressions
whose branches have different types well—typed Reconciling dif-
ferent types in accordance with type refinements is particularly
hard. Worse, type refinements cause some programs to have dif-
ferent most general types, breaking the fundamental principle that
underlies type inference. Consider, for example, the following pro-
gram reproduced from [34]. (We have shortened the constructor
names from the original paper to RI, RB, and RC, respectively.)

data R a where
RI :: Int -> R Int
RB :: Bool -> R Bool
RC :: Char -> R Char

flopl (RI x) = x

Here the data type R a is refined to R Int, R Bool, and R Char,
respectively, with the corresponding data constructor. The func-
tion flopl can be assigned many types. One possible type is
Vo.R o — Int since we can always generalize the argument type
from R Int to R o as we usually do in ADT (algebraic data type)
systems. The type Vo.R @ — ¢ is also a candidate in the presence
of local assumptions. In this case pattern matching introduces the
local assumption that maps « to Int, allowing the body to have the
type o, which is Int under the local assumption. We observe that
neither of the two candidates is more general than the other. The
question is then: Which type should be inferred for £1op1?

An obvious solution is to ask programmers for annotations,
an approach taken in much of the previous work [21} 22| 250 |27,
30, [34]. However, this strategy has several shortcomings. First, as
already noted in [10} [17], we lack precise and simple rules about
where type annotations are needed. Thus, programmers may have
to annotate all case expressions. Second, programmers are told to
write annotations first [8,126]], even when the intention of a function
is still in flux. As a result, annotations can often be incorrect [3],
which has a negative impact on type inference.

The question is then: How shall we deal with the loss of the
principality in GADT type inference, or more specifically, what
should be the type of £lop1? Lin [17] and Vytiniotis et al. [34]
have argued that the best type for f1op1 iSR Int -> Int. Although
this type is not the most general type, it best describes the shape
of flop1 since it statically rejects expressions such as flopl (RB
True) or flopl (RC ’a’). These expressions are well typed if

! Another challenge is that GADT programs use polymorphic recursion
extensively, but type inference with polymorphic recursion has been shown
to be undecidable [[11}[14]. We will not discuss this problem here.



data G a b where

Couldn’t match expected type t with actual

Error:

This pattern matches values of type (bool, ’a) g

but a pattern was expected which matches values
of type (int, ’b) g

Type bool is not compatible with type int

(c) Output of Ambivalent

Type inference failed for paramlo

Gl :: a -> G Int a type t2
G2 :: a -> G Bool a t is untouchable
inside the constraints (t1 ~ Int)
paramlo e = bound by a pattern with constructor
case e of Gl :: forall a. a -> G Int a,
Gl i -> i+3 in a case alternative
G2 b -> case b of lines 7 through 24 omitted
True -> 4
False-> 7 Couldn’t match expected type t2 with actual

type Bool
t2 is untouchable

inside the constraints (t1 ~ Bool)
bound by a pattern with constructor
forall a. a -> G Bool a,

G2 ::
in a case alternative
lines 32 through 44 omitted

(a) GADT expression paramlo (b) Output of GHC

ERROR: Cannot unify different type constructors
(d) Output of &

The expression paramlo has the type
before reconciliation:
A(G Int Int -> Int, G Bool Bool -> B(Int,Int))
after reconciliation:
Gnn -> Int

(e) Output of Chore

Figure 1: A non-annotated GADT expression for which only the new approach “Chore” infers a correct type.

flopi receives the type Va.R @ — Int or V.R @ — o, but they
will always lead to runtime failures.

However, what should be the type of the following similar
function [34]?

flop2 e = case e of
RI x -> x
RB x -> x

Lin [17] assigns the type Vo.R o — o, which makes sense but
doesn’t preclude the application flop2 (RC ’a’) at compile time,
losing the benefit of detecting errors statically. Vytiniotis et al.
[34] concluded that this situation can’t be improved unless the type
syntax is extended.

To address this issue, we propose to extend the type syntax
with a choice construct, which has had several successful applica-
tions [2} 5L [13L15]]. With choice types, we can assign the following
type to flop2.

flop2: D(R Int,R Bool) — D(Int,Bool)

The choice type D(R Int,R Bool) expresses that the argument type
can be one of its alternatives, that is, the argument type can either
be R Int or R Bool. Moreover, the type says that the result type is
Int when the argument type is R Int and Bool when the argument
type is R Bool. This correlation is established through the use of
the same choice name D in the both argument and result type.
Here D gives a name to control the variation between two types.
All variations under the same name are synchronized in the sense
that the same decision should be made about choosing variants.
With this precise characterization, we can now reject applications
such as flop2 (RC ’a’) because the type of the argument, which
is R Char, matches neither R Int nor R Bool.

1.1 Principal Type Inference

In general, the use of choice types helps to restore principality in
GADT type inference. Type inference works as follows. We first
infer principal types for case branches. Then we put branch types
into choices to form principal types for case expressions. Choice
types and types for other parts of the program are put together
using a set of rules dealing with choices. Thus, there is no need
to address the hard question of finding the “best” type for each case
expression.

Since all previous approaches attempt to assign a single type to
each expression [10L [17} [18} 211 122} 25| 127, 130} (32} 134], they face
the challenge of assigning appropriate types to case expressions
that may have conflicting branch types. As a result, most previous
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approaches have to reject such expressions although they are well
typed. For example, although branches of flop2 have conflicting
types R Int — Int and R Bool — Bool, flop2 is well typed and
can be assigned the type R o — ¢¢. The only exception is Lin [17],
who first computes branch types and then reconciles them to get a
type. However, reconciliation is performed separately for each case
expression, which can cause the loss of type information that is
important for the type inference of other program parts. As a result,
many well-typed programs are rejected. A detailed comparison
with this approach follows in Sections [7]and[9]

The use of choice types offers two fundamental advantages.
First, choice types don’t force premature typing decisions in the
context of incomplete information. In contrast, they allow us to de-
lay typing decisions until sufficient typing information is available.
This aspect of choice types was exploited successfully already in an
approach for improved type error debugging [2]. In this paper, we
employ this idea to facilitate a more informed choice reconciliation.
Second, choice types delimit the boundaries of branch types, which
can thus be computed independently of one another. In general,
choice types support localized computations. A particular problem
of previous GADT type inference approaches is that they try to fit
potentially conflicting computations into one global context, which
requires computations to be consistent, a condition that GADT type
inference violates in general. Consider again flop2 as an example.
Without choice types, the global computational context requires the
scrutinee e to have both the types R Int and R Bool, which causes
a type conflict. With choice types, localized computation contexts
require e to have the type R Int and R Bool respectively, which can
be satisfied by assigned e the type D(R Int,R Bool).

To illustrate these advantages with a concrete example, consider
the expression paramio in Figure which was first introduced
in [17]. Its subtlety is that the type refinements brought in through
pattern matching are applied not to the bodies of the case branches,
but to the scrutinee e.

For this expression, GHC produces the message shown in Fig-
ure[Ib] Since Outsideln [34], the type inference algorithm of GHC,
applies type refinements only when type annotations are present, it
is not surprising that GHC rejects this expression. For brevity, we
have omitted much of the message, which is mainly about the rigid-
ity of type variables and the binding information. GHC will accept
this expression if we annotate it with a correct type, for example G
a a —-> Int.



The next algorithm we consider is Ambivalent [10], imple-
mented in OCaml 4.01.0E] The main aim of Ambivalent is to re-
duce the amount of type annotation for GADT expressions, but it
fails for this expression. (The type (bool,’a) gin the message cor-
responds to G Bool a in Haskell.)

Although the algorithm &7 [18] was designed specifically for
inferring types for GADT expressions without type annotations, it
fails for this expression with the output shown in Figure[Id} The
reason is that &2 applies refinements to the body of case expres-
sions, while this expression needs to apply them to the scrutinee.

For this expression, our approach successfully infers a type.
Before reconciliation, the type of paramio is as follows.

A(G Int Int -> Int,G Bool Bool -> B(Int,Int))

Here the choices A and B are created for the case expressions with
the scrutinees e and b, respectively. Thus, we derive that the first
case branch has the type G Int Int -> Int, and the second has
the type G Bool Bool -> B(Int,Int).

Since choice types can be arbitrarily nested, their use can com-
plicate the communication of types to programmers. We address
this issue by providing the option of removing choices in the re-
ported types and converting them into corresponding types in con-
ventional syntax. We refer to this process as choice reconciliation
and will talk about it in more detail in Section [3.4] After choice
reconciliation, the result type is as follows.

Gnn -> Int

(By adding a renaming step to our type pretty printer we could
produce the more nicely looking type G a a -> Int.) The inferred
choice type for £1op2 will be reconciled to the type.

REf ->1f1

1.2 Contributions and Structure of the Paper

In the remainder of this paper, we formalize this typing approach
that we call “Chore’ﬂ in appreciation of the difficulty of GADT
type inference. Overall, this paper makes the following contribu-
tions.

e We introduce choice types in Section [2]to precisely represent
the types of GADT expressions. We achieve type inference
precision without sacrificing the simplicity of the type language
since choice types can be removed to obtain simpler types for
communicating with programmers.

We present the type system for GADTs in Section [3| Our type
system separates the typing from the reconciliation process,
which improves the use of type information during reconcili-
ation. Our type system is conservative with respect to the tra-
ditional Hindley-Milner type system (Theorem [I), as well as
sound (Theorem [2)) and expressive (Theorem [3).

We present a variational unification algorithm in Sectiond] The
algorithm is amenable to a simple implementation. Based on the
unification algorithm, we present in Section [5]a type inference
algorithm that is sound (Theorem [ and principal before type
reconciliation (Theorem ).

In Section [6] we discuss the impact of using choice types on
rejecting ill-typed programs and error reporting. While it seems
that the use of choice types complicates error reporting, this is
actually not the case.

In Section [7] we describe the results of an evaluation of sev-
eral approaches, which shows that our approach accepts more
well-typed programs and rejects more programs that will yield
runtime errors.

2 https://ocaml.org/

3 An acronym for choice reconciliation.
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In Section [8] we discuss the tradeoff between principality and
precision of GADT type inference and present some empirical
results showing that precision is more favored in practice. After
discussing related work in Section [9] the paper concludes with
Section [Tl

2. Variational Types

The concept of choice types was introduced in [4} 5] to facilitate
the type inference for program families. A choice has a name
and contains two or more alternatives. For example, D(Int,Bool)
represents a choice between the two types Int and Bool. (The name
D stands for “dimension” and reminds of the fact that each (non-
nested) choice of a different name represents a variation point that
is independent of other choices.) Types that contain choices are
called variational types, and all other types are called plain types.
We can extract plain types from a variational type ¢ with the help of
a selection operation | ¢ | p ; that takes a selector of the form D.i and
replaces each occurrence of choice D in ¢ with its ith alternative.

The definition of selection synchronizes choices with the same
name; choices with different names are independent. Therefore,
while A(Int,Bool) — A(Bool,Int) encodes two types, the type
A(Int,Bool) — B(Bool,Int) encodes four types, where both the
argument and return type may be either Bool or Int.

Variational types give rise to a notion of type equivalence, that
is, different syntactic types may represent the same mapping of
selectors to plain types. In general, two different types ¢; and
¢ can be equivalent (written as ¢, = ¢,) for three reasons. First,
type constructors distribute over choices. For example, we have
A(Int — Bool,Bool — Int) = A(Int,Bool) — A(Bool,Int) be-
cause the arrow in the first type is lifted out of the choice A. Second,
¢, is obtained by the elimination of one choice from ¢;. This hap-
pens when a choice is idempotent, that is, when all its alternatives
are the same, or a choice is nested in another choice with the same
name. For example, A(A(Int,Bool), Int) = A(Int,Int) = Int. The
first relation holds because Bool in the first type is unreachable.
When we select with A.1, the first alternative in both A choices
is selected, which leads to Int, while selection with A.2 simply
returns the second alternative of the outer A choice. Third, ¢, is
obtained by swapping nested choices of different names in ¢;.
For example, A(B{Int,Bool),Int) = B(A(Int,Int),A(Bool,Int)).
The type equivalence relation, which is presented in [5], is the re-
flexive, symmetric, and transitive closure of the union of these three
relations.

3. Type System

This section presents the type system that assigns types to GADT
programs. We show how choice types help to cast a type system that
tracks type information flow precisely and thus turns many pattern
matching failures into type errors. After introducing the syntax in
Section we present and discuss typing rules in Sections [3.2
through [3.4] and report some properties of the type system in Sec-
tion

3.1 Syntax

Figure2]defines the syntax for types, expressions, and related envi-
ronments. For simplicity, we assume that data types are predefined
through data constructors, and we ignore nested patterns. We use
bar notation for lists of objects, for example, e stands for expres-
sions ey,...,e,, where [ is the set of subscripts {1,...,n} associ-
ated with all the objects.

The definitions of both expressions and types are conventional
except for variational types. Here a choice type may contain any
number of alternatives, while in [3] each choice contains only
two alternatives. However, all the choices with the same name



Term variables X, 2 Type variables o, B

Data Constructors K Type constructors T

Dimensions D

Expressions e, f 1= x|Axe|ee|K|caseeof {p->e}
letx=eine|letx::Va.T=¢ine

Patterns p = KX

Monotypes T o= alt=T|TT B

Variational types ¢ == T|D(¢) |9 —¢|T ¢

Type schemas c = ¢|Vo.¢

Type environments I’ = o|lx—o

Substitutions 6 = g|6,0—9¢

Figure 2: Syntax of expressions, types, and environments

must contain the same number of alternatives. For simplicity, we
don’t consider variational polymorphic types, because they can be
converted into corresponding polymorphic variational types. The
conversion process is detailed in [2] and will not be repeated here.
While we don’t include value and type constants in the syntax, we
will use types like Int and Bool and values like True and numeric
literals freely.

As usual, a type environment is a mapping from variables to
type schemas, and a substitution is a mapping from type variables
to variational types. We use the function FV(0) to collect the free
type variables in o. The definition is standard except for the choice
type D(¢), where it is defined as the union of FV(¢). The function
FV(-) extends naturally to type environments and substitutions. We
write 0(0) to replace all occurrences of free variables in ¢ with
their corresponding images in 6. Again, the definition is standard

except for choice types, where it is defined as 6(D{¢)) = D{(6(9)).

3.2 Typing Overview

While type systems for traditional ADTSs only allow scrutinee types
to be more specific than the pattern types, GADT type systems only
require pattern types and scrutinee types to be unifiable. Thus, scru-
tinee types may be more general than pattern types, which is also
the case when local assumptions are introduced for typing pattern-
match bodies. This accounts for the fundamental difficulty in typing
GADT programs, because it is hard to decide what the appropri-
ate local assumptions are and how to reconcile local assumptions
among different pattern-matching branches. The over-generality of
scrutinee types adds a loophole to type systems, causing them to
accept programs such as flop2 (RC ’a’) that will lead to runtime
errors.

The driving factor behind the generalization of scrutinee types
is the limitation that each expression can be assigned only one
type. With choice types, we can remove this restriction since each
choice type encodes a set of types, each of which may represent
the type for a pattern-matching branch. Therefore, there is no need
to generalize the scrutinee type for typing each branch. Unlike
other GADT type systems that mix the typing and generalizing
process, the type system in this paper separates them. During the
typing process, we type GADT pattern-match branches as in the
ADT case. However, we don’t require that all branches have the
same type and wrap different branch types into a choice type. We
generalize typing results only when communicating with users.
This separation brings the following benefits.

1. It simplifies the design of the type system since there is no need
to introduce local assumptions for typing case branches.
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2. Itimproves the reconciliation of demands from different branches
on the same type. Our type system can reconcile types among
different case branches.

. It facilitates capturing more type errors. Since there is no need
for local assumptions when typing branches, the branch types
are canonical, reducing the possibilities of accepting programs
that will result in runtime errors.

Figure [3] presents the typing rules that formalize this idea. The
type system involves three judgments. First, I'-e: ¢ states that
under the assumptions in I' the expression e has the variational
type ¢. Second, I'-, p -> e : T — ¢ expresses that the case branch
p —> e has the type T — ¢. Note that the pattern type is plain
while the body type may be variational. Third, I't,, e : T states
that the expression e has the plain type 7. This judgment is also
the main interface to programmers. Unlike the first two judgments,
it allows I" to map variables to plain types only, although this is not
formalized.

The rules VAR, CoN, and ABs for typing variable references,
data constructors, and abstractions are all standard. The rule LET
for typing let expressions accounts for polymorphic recursion that
is ubiquitous in GADT programs. In LET, we write & # FV(I') for
a list @ that is disjoint from the free type variables in I'. Since
type inference with polymorphic recursion is undecidable, we also
allow let expressions to be annotated with polymorphic plain types,
which is handled by the rule LETA. We don’t allow variational
types to appear in type annotations because we want to control the
generation and elimination of choice types. The idea of supporting
two forms of let expressions is also employed in [21] and [27].

3.3 The Typing of Applications

Since the detection of most type errors happens in applications,
the corresponding typing rule App is doing most of the work and
is consequently more involved. Note that we have to deal with
three cases here. (1) The type of the argument (¢») matches the
argument type (¢;) exactly. In this situation, ¢’ will be the result
type. (2) Some alternatives of (¢) match some alternatives of ¢@;.
In this situation, the result type is extracted from ¢’ by taking the
alternatives where ¢, and ¢; match. We require all alternatives
extracted from ¢’ to be the same. (3) No alternative of ¢ matches
any alternative of ¢;. In this case, the application is ill typed.

We handle these cases in a single App rule with the help of
the operations > and <. The operation > overlays two types and
returns a pattern 7 that describes which parts of ¢, and ¢ agree.
This pattern will then be used by < to extract the part of ¢’ that
will be returned as the result type of the application.

Here we reuse the machinery developed in [4] for manipulating
patterns, defined as follows.

=1 |T|D(T)

A pattern T says to keep the corresponding part, L drops the
corresponding part, and D(7) recursively denotes whether to keep
or drop each alternative in choice D.

The definition of the operation >x: ¢ X ¢ — 7 is given below.
Note that > is symmetric up to =; the definition assumes that all
idempotent choices have been eliminated by the rule D{¢,¢) = ¢.

oap=T
D(¢) > ¢ = D(¢ > |9, ]p.:)
t5aD(g) = DT 5 9)
D(@) = ¢1 >0 ¢ = D(9 — [91]p.i) > ¢,
Tt =1 where T#17

When two types are the same, the result is T. For example,
D(Int,Bool) 1 D(Int,Bool) = T. Otherwise, if the first type is a



’l"l—e:(p‘ ’l"l—pp—>e:‘c—>¢‘ IF'kpe:t

I'(x) =Va. ={a / K: V. ={a—¢’ Cx—¢ke:q
vag LW ¢ ¢o={a—¢"}(¢1) Con 1 ¢={a—9'}(n) ABSL‘Q‘P,
'kx:¢ 'EK:¢ I'FAxe: 90— ¢
L Cx—VYa.g,Fe: ¢ o #FV(T) Cx—Va.g ke :¢ L AF,xHW.TH—e:qh Cx—Vat ke :¢
ET ET
IFletx=eine : ¢ IFiletx::V&.Ty=eine : ¢

APPFI—eI:¢]H¢/ Cker: ¢ T=0¢, < ¢ p=nm <@
I'Hejex: ¢

Thyp->e:0,— ¢ dom(ly) =y jcydom(T;)  Disfresh  D(T)be :D(@a)  coherent(D{(¢,) — D{¢,),D(T))

CAsE D(T) F case e1 o {p > ¢} : D(9)

K:VaT —-TT% B=anFV(T) 6={B—1t} T,=6(%) a#FV(,%,,9) TU{T—t}te:¢
T

PA = —
I'pKx—>e:TT, — ¢

Fe:¢ (1,Ts) = reconcile(¢,T’)

MAIN
IshHpe:t

Figure 3: Rules for typing GADT programs

variational type, the operation is recursively applied to each alter- For h1, we obtain the following judgments (we omit I" for brevity).

native of the variational type. For example, D{Int,Bool) < Int =
D(Int X Int,Bool < Int) = D(T,L). Note that in the recursive
calls, we perform a corresponding selection in ¢,. This helps us
deal with the situation that D is nested inside ¢,. For example, in
the following case, D is replaced by its left and right alternative
when the E choice is distributed into D(Int,Bool).

flop2 : D(R Int,R Bool) — D(Int,Bool)

RI 1 : R Int
7 =D(R Int,R Bool) IR Int =D(T, 1)
¢ =D(T,1) < D(Int,Bool) = Int
hi : Int

For h2, we reason similarly as follows.
D(Int,Bool) i E(D(Int,Bool), Int)
flop2 : D(R Int,R Bool) — D(Int,Bool)
= D(Int 1 E(Int, Int),Bool i< E(Bool, Int)) BC ’a’ : R Char
=D(T,E(T,1)). T =D(R Int,R Bool) b R Char = D(L, )
¢ =D(L, 1) < D(Int,Bool) = undefined

A dual case is when the first type is plain and the second is varia- h2 : undefined
tional, and we handle it similarly. If the left type is an arrow over . .
variational types, we first push the arrow into choices and then dele- We observe that hi is assigned the type Int as expected. As for
gate the call to the corresponding case. Again, we need to make se- h2, the operation < fails because no rule applies. Thus, we can
lections to avoid building up choice nestings under the same choice successfully catch the type error. Previous type systems accept h2
name. Finally, if both types are plain but different, > returns L. even though its evaluation leads to a runtime error.
While we reuse the definitions of 7 and < from [4]], the defini- . .
tion of the operation < is very different. It has the type 7 x ¢ — ¢ 3.4 Reconciling Local Assumptions
and is defined as follows. To type a case expression with the rule CASE, we first type each of
its branches under potentially different environments provided that
T<p=9¢ they have the same domain. Note that branches may have different
DT < o= 0]|pi ifm;=TAmj=1forall j#i types. Each case expression is assigned a fresh choice in such a
D(E) < ¢ — ¢’ if ¢ = 7 < |¢]py forall m £ L way that different case expressions don’t interfere with each other.

The definition for the first case is self-explanatory. The second case
deals with the situation that there is only one T in the choice D,
which leads to the selection of D.i in ¢. For example, D(T, L) <
D(Int,Bool) = Int. Finally, if D contains more than one alternative
that is not _L, the rule requires that recursively applying < to non-_L

We then pack the environments for typing branches into a single
environment using a choice to type the case scrutinee. We require
the case scrutinee to have the same type as the type obtained by
packing pattern types with the fresh choice assigned for the case
expression. The application of a choice of environments yields the
choice of types from the individual environments.

patterns and the corresponding types | ¢ | p; yields the same result. D) (a) = D<W>
Again, all other cases denote a type error.
To see the App rule in action, consider typing the following two We will use this construction of a choice of functions again later
programs. in the unification algorithm. We require, as is made explicit in the
second premise of rule CAsE, that all type environments have the
hi = flop2 (RI 1) same domain. This can be satisfied through a process known as
h2 = flop2 (RC ’a’) weakening [24]).
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In addition, we need a coherence check to decide whether a
case expression is well typed. This condition ensures that different
branch body types can be reconciled by introducing appropriate lo-
cal assumptions. For example, the function f1op2 can be assigned
the type Vo.R ¢ — o because in both branches the body has the
same type & where the assumption maps ¢ to Int or Bool, respec-
tively. However, in some cases the branch bodies can’t be recon-
ciled through local assumptions and thus should be rejected by the
type system. For example, consider the function cross [[17] below,

cross (RI x)
cross (RB x

= even X
=1
Although both branches are well typed with return types Bool
and Int, respectively, cross is ill typed since we can’t assign a
meaningful type to it. We can’t generalize Bool to o with the local
assumption that & maps to Int for the first branch.

Our type system rejects cross because it will not pass the
coherence check, which is formally defined as follows.

coherent(¢,T) iff 3(7,T"): (1,I") = reconcile(¢,T)

The function reconcile(-) will be defined later when we discuss the
rule MAIN.

The rule PAT for typing case branches is the same as for typing
ADT case branches. As mentioned earlier, we don’t introduce local
assumptions when typing branches since that makes the scrutinee
type too general, losing the benefits of catching more type errors.
The only subtlety of the rule is to avoid the instantiation and escape
of existentially quantified type variables. This is why we compute
B in the rule.

We use the rule MAIN to communicate with users by using
only the traditional type syntax. To realize this goal, we need to
get rid of choices in the typing result. The overall idea is to sys-
tematically replace choices by type variables. However, such type
variables must at least appear inside of GADT type constructors,
which in turn must be used as function arguments. This is be-
cause only GADTs can introduce type refinements. For example,
D(R Int,RBool) — D(Int,Bool) can be reconciled to R & — o, but
notto & — B orR @ — f. The type oc — B doesn’t allow any type
refinement because neither of o and f appears inside any GADT
type constructor. The type R o« — [ only allows to refine & since 3
doesn’t appear inside GADT type constructor. We call the variables
that allow type refinements type index variables.

For a given type 7, the function FI(7) collects the free type
index variables in the argument types of 7. The auxiliary function
L strips off the return type of the last top-level arrow in the type.
For simplicity, we assume that all type constructors support GADT
type refinements.

FI(ty — t) = FI'(L(t) — 7)) Lt—a)=1
FI(t) =2 Lt—>T7) =71
FI'(a) = & Ly — 1) =1 —L(t)
FI'(t) — 1,) = FI'(t) UFI' (1)
FI'(T T) = FV(T 7)

With the help of FI, we have the following inference rule to decide
whether (¢,I") can be reconciled to (7,T).

RECONCILE
dom(0) CFI()UFI(T) ¢ =0(1)
(1,Ts) = reconcile(¢,T)

I'=06(Ty)

With the rules in Figure [3] we can derive the following typing
judgment for £1op2.

@ F £flop2: D(R Int,R Bool) — D(Int,Bool).
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By choosing 6 = {o — D(Int,Bool)} in rule RECONCILE, we
derive the following type to be communicated to the user.

Dby flop2:R O — .

Our type system rejects the function cross because the branch
types D(R Int,R Bool) — D(Bool,Int) can’t be reconciled to any
type. For example, both R ¢ — o and R o« — 3 are not options
since no 6 exists such that they can be unified with the branch types.
Note that dom(0) = {a} for both candidate types.

3.5 Properties

This section investigates the properties of the type system. First,
our type system is a conservative extension of the Hindley-Milner
type system. We express this fact in the following theorem, where
[ HAM ¢ - 7 states that the expression e has the type T under the
assumptions in I'. Of course, I" binds variables to plain types only.

THEOREM 1 (Conservative extension of HM). If e refers only to
standard data constructors of type V&B.T — T @, then THIM ¢ :
t=Thkpe:TandTkpe:1=TH M. 1,

PROOF The formal proof proceeds by an induction over the typing
rules. We present here only an informal argument. First, we observe
that the rule PaT for typing pattern-matching branches is exactly the
same as the rule in HM. Next, the rule CASE also collapses to the
rule in HM for typing case expressions since coherent(-) requires
all the branches to have the same type as there are no type index
variables due to the absence of GADT type constructors. The rule
Arpp for applications will also be simplified to the traditional rule as
the first case of >< and < will be chosen for applications to be well
typed. The proof for the other rules is obvious. O

Next, we show the soundness of our type system by relating it
to the type system & presented in [17]], which consists of standard
typing rules for GADT programs and has been proved to be sound.
We write T -2 ¢ : 1 if the expression e has the type T in 2.

THEOREM 2 (Type system soundness). If T\, e: 7, thenT" FZ e

PROOF As usual, we can establish the proof based on induction
over the typing rules. The proof is obvious except for the rule CASE
since all other rules are standard in both systems and since our App
rule is more restrictive than the one in &2. For the rule CASE we rely
on Lemma [T} whose conclusions can be directly used as premises
for the typing rule for case expressions in &. O
The following lemma states that there is a close relationship
between the typing for case expressions and that for case branches,
reflected in the choice introduced for typing that case expression.
In the following lemma we write |I'|p; and |0]p; for selecting
from the range of I" and 6, respectively, with the selector D.i.

LEMMA 1 (Case branch typing equivalence).

o IfTFcase e of {p—>e}:D() and e :D(9p), then
[Clp.it pi=>ei:¢ri = Opic

o [fTsFy case e of {p—>e}: T and Iy by e: T, with the rec-
onciling substitution 0, then Us -y, pi => e; : Ty — T, with the
reconciling substitution | 0| p ;.

The proof of this lemma is again an induction over the typing rules
and the choice structure.

Finally, we present a result about the expressiveness of the type
system, again by relating it to system 7. This property shows
that our type system detects more type errors without sacrificing
expressiveness.

THEOREM 3 (Type system expressiveness). If I F? e:1, then
Tk e:t, provided that T ey ey : ¢’ for each subexpression
e1 e; in e and the corresponding environment I”.



The side condition in the last theorem states that if the typing of
I, e : T requires the typing of the subexpression e e, under the
environment I, then there exists some ¢’ such that I - e e : ¢’
holds. Informally, this means that the typing of each applica-
tion doesn’t fail. If this condition holds, then T'+7" ¢: 7 implies
I't,, e: 1. When the side condition doesn’t hold, it means that
although & accepts the expression e, evaluating it will lead to a
runtime pattern matching failure. One such example is the expres-
sion h2.

Again, we can prove the theorem by an induction over the typing
rules with the help of Lemmal[T]

4. Unification

The most important component of type inference is the unification
algorithm. This is especially true for GADT type inference. In our
approach, unification is complicated by the fact that our algorithm
allows types to be partially matched for the programs to be well-
typed. This is in contrast to traditional type inference where types
are required to match exactly. Working with partial matches raises
an intriguing question: Shall we adopt an exact match whenever
possible, or might pursuing partial matching be beneficial? To
illustrate this issue, consider the following program.

h3 x y = (case x of {RI -> RI; RB _

-> RB}) y

The inference algorithm assigns the following type to the case
expression of h3.

D(Int,Bool) — D(R Int,R Bool)

To compute the type of the body it has to solve the following
unification problem.

D(Int — R Int,Bool — R Bool) =’ o — 8

Here we use =" to denote a unification problem modulo the equiva-
lence relationship on variational types. Moreover, ¢ represents the
type for the variable y, and 8 represents the result type of the ap-
plication.

For this unification problem, the following are all sensible uni-
fiers.

1. 6 = {a — Int, — R Int}. In this case, the result type is
R Int, the type of h3 is D(R Int,R Bool) — Int — R Int, and
the reconciled result type is R & — Int — R Int.

= {a > Bool, 3 > R Bool}. In this case, the result type is
R Bool, the type of h3 is D(R Int,R Bool) — Bool — R Bool, and
the reconciled result type is R & — Bool — R Bool.

= {o¢ — D(Int,Bool), — D(R Int,R Bool)}. In this
case, the result type is D(R Int,RBool), the type of h3 is
D(R Int,R Bool) — D{Int,Bool) — D(R Int,R Bool), and the
reconciled result type iSR &6 — &t — R .

Although all the reconciled types are acceptable, the last one is ar-
guably best since it subsumes the other two. This example demon-
strates that when unifying types, we should search for a solution
that makes the two types match exactly. The patterns that are pro-
duced during the unification process, D(T,L), D(L,T), and T,
substantiate this argument since the last pattern is better than the
other two because it doesn’t contain any mismatch.

This example suggests that the general strategy for solving uni-
fication problems should be to look for solutions that unify types
completely. If that is impossible, we should try to unify as many
parts as possible. At the same time, we should search for most
general unifiers. The unification algorithm % shown in Figure
achieves both of these goals. It computes the same results as the
unification algorithm presented by Chen et al. [4], but it is signifi-
cantly simpler. In particular, we do not need three separate phases
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U :oxp—>0xm

(@) % (D(#1),D(¢r)) = (D(8),D(T))
where (9775) = %(d’l:(ﬁr)
and dom(6;) =v; je; dom(8;)
(o) %*(D(9). ) = % (D().D(¢r]p.))

(©) %* (o, 01 — ¢2)

| @ FV(¢1 — ¢2) =({o— ¢1 — @2}, T)
| D € dims(¢; — ¢,) = % (D{@), ¢ — ¢r)
| otherwise =(o2,1)

() % (91— ¢2,03 = 94) = (62061, 1 O )

where (01, 71) = % (91, ¢3)
(62, m2) =% (61(¢2),61(04))
(e) % (7, 7y) | robinson(t;,7,) =0 =(0,T)
| otherwise =(2,1)

Figure 4: A unification algorithm

infer:I'xe— 0 x ¢ x2%
infer(L ey e3) =
(61,01,i1) ¢ infer(I',e;)
(62,92,i2) < infer(61(I), )
(0,7) < % (62(¢1),02(¢2) —» )  where a is fresh
return (006,00, < 6(ax),ij Uip)
infer(I',case e5 of {p —>e€}) =
(65, 9s,i5) < infer(T, ;)
(75,0 T,,7¢r7 i) < inferAlts(05(T),p => e)
0, = %' (¢5,D(Tp)) where D is fresh
0, < D(6 086,00y
x < FV(t,) NUdom(6)
for each D(¢) in atomzc(@,,( (7)), 6
if\;an x: 30" %' (D(6), 6u(e)) =
ai

return (6, 6,(D{¢;)),is UUiUY)

( < 1)), Ou(FV(L)))

Figure 5: A type inference algorithm

of qualification, qualified unification, and completion. This sim-
plification is possible because choices support localized compu-
tations. Essentially, the computation in one alternative doesn’t af-
fect that of the other. Thus, we should perform computations lo-
cally rather than globally whenever possible, beause it likely causes
fewer conflicts. Also, the implementation is now just 87 lines of
Haskell code, compared to 345 lines for the old one. For lack of
space, we will not explain the rules in detail and refer to [4] for a
discussion of unification with choice types.

5. Type Inference

The addition of choice types has provided two distinctive benefits
for our type system. First, the type system can capture more type
errors in applications. Second, by separating typing from reconcil-
iation, the latter can be improved. However, these two features also
pose some challenges for the inference algorithm. For example, to
infer types for applications, we need to find a function argument
type and a type of the argument that match as much as possible.
Moreover, the rule RECONCILE only checks whether we can recon-
cile a variational type to some given plain type 7, but 7 has to be
computed during type inference.

Our type inference algorithm employs Mycroft’s extension [19]
to algorithm % to deal with type inference for polymorphic recur-
sion. The overall idea is to type a recursive function in iterations



and stop when the result type between two consecutive iterations
stays the same or the number of iterations has passed a threshold.

We present part of the inference algorithm in Figure [5] Since
the algorithm involves lots of details, we only present its skeleton.
The inference algorithm takes two arguments, a type environment
and an expression, and returns the resulting substitution, the result
type, and the set of index variables that we can use to refine the
result types and substitutions. Since during type inference we can’t
rely on FI to compute the set of type index variables, we need to
build those sets along with the inference process.

We show the two cases for which our algorithm deviates the
most from traditional inference algorithms. The first case infers the
type of applications. Interestingly, the algorithm % requires only
a small adjustment. This is because the bulk of the work is per-
formed by the unification algorithm that handles the combinations
of variational types. We call 7 to unify the type of the function and
the type of the argument. The other component 7 returned by % is
used to extract corresponding parts from the return type.

The second case infers the type for case expressions. The algo-
rithm employs the helper function atomic(¢ ), which moves choices
into type constructors to make choices as small as possible. It re-
turns all those choices that are not equivalent to plain types. For
example, atomic(D(R Int — Bool — Int,R Bool — Int — Int))
returns {D(Int,Bool),D(Bool,Int)}. This case also employs the
following shorthand for calling the unification algorithm.

%/(¢Iv¢'r):9 lf%(¢l7¢r)

Note that %/’ fails if the condition is not fulfilled.

The algorithm first infers the type for the scrutinee ey. It then
calls inferAlts to compute the type information for case branches.
The following information is returned. (1) The scrutinee type
T, that best describes the common structures of the pattern types
Tp. We can also view T; as the template for 7,. (2) The list of
substitutions obtained by type inference for each branch. (3) The
pattern types T, and the branch body types ¢y (4) The list of index
type variable i. We omit the definition of inferAlts since it is not
very interesting.

Next, infer wraps the pattern types in a fresh choice, unifies it
with the scrutinee types ¢, and updates substitutions correspond-
ingly. After that, infer computes the index type variables of the case
expression as the intersection of free type variables of 7, and the
union of domains of branch substitutions, meaning that only vari-
ables in pattern templates that map to something more specific can
be used as indices.

Finally, infer checks if the variational types D(T,), D(¢,), and
those in 6, are coherent. It achieves this by checking if each atomic
choice is unifiable with some type index variable. If this fails for
any of the atomic choice types, type inference fails.

We omit the definition of the global reconciliation, which is es-
sentially the same process as used in infer for the case expressions.
The reconciliation replaces atomic choices with corresponding type
index variables and updates the result type when a substitution ex-
ists. (In contrast, in case expressions it is only determined whether
such a substitution exists.) The reconciliation also uses the follow-
ing criteria. First, if an atomic choice is equivalent to a plain type
or contains just one alternative, then the atomic choice is replaced
by that plain type or the single alternative in the result type. For
example, the inferred type for £1op1 is R A(Int) — A(Int) and the
reconciliation result is R Int — Int. Second, if more than one type
index variable can be used and their corresponding substitutions
are equal up to variable renaming, then these type index variables
collapse into one variable. We collapse two type index variables
oy and o into a new one B by just renaming oy and @, to f3.
This happens in paramlo where two type index variables can be
used to substitute A(Int,Bool) and they collapse to an index vari-

0,m)AT=T
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able, pretty-printed as n, which leads to the type G n n -> Int for
paramlo. Third, if more than one type index variable can be used to
substitute an atomic choice, and if their corresponding substitutions
are not equal, then reconciliation fails.

We write inferMain(T',e) = (0, 7) to express that reconciliation
of the inference result infer(T',e) yields (6, 7).

Our type inference algorithm enjoys the following useful prop-
erties.

THEOREM 4 (Inference soundness).
If infer(T,e) = (0,9,%), then (1) Fe: ¢. If inferMain(T',e) =
(0,7) and T contains plain types only, then 8(T') Fp e : 7.

THEOREM 5 (Inference principality).
If0,(D) Fe: ¢ and infer(T,e) = (61,9¢', %), then 8; = 63060, and
¢ = 04(¢") for some substitutions 03 and 6.

Theorem [ states that our inference algorithms are sound and only
compute correct results. Theorem [ says that if infer terminates
and computes a result, then it is principal. Principality comes at the
price of having choice types in the type language. If we want to
get rid of choice types, we lose principality during reconciliation
that converts variational types to plain types. Unsurprisingly, the
inference algorithms are incomplete mainly due to polymorphic
recursion. Section [/| provides many examples showing that our
inference algorithms fail to infer correct types.

6. Beyond Principal Type Inference

The introduction of choice types allows Chore to not only restore
principality of type inference but also reject more programs that
lead to runtime errors and deliver more informative error messages
for ill-typed GADT programs.

6.1 Rejecting More Programs Yielding Runtime Errors

An important goal for introducing GADTs is to encode invariants
over programs and data structures in types and have them enforced
statically. However, this goal is partially compromised when we
allow some errors to escape to runtime even though they may be
caught at compile time through a better use of type information.
We illustrate this aspect with the expression gadt7q presented in
Figure[6a] This expression is an extended version of the following
expression gadt7o that was first introduced by Lin [17].

data Z
data S n

data L a b where

Nil :: L Z a
Cons :: a->Lna->L (Sn)a
gadt7o e = (case e of {Nil -> True},

case e of {Cons x xs -> False})

The expression gadt7o should be considered ill typed, because
when run, it will always cause a runtime pattern matching error.
While Ambivalent and &, but not GHC, reject this expression,
only Chore is able to detect the error statically in gadt7q, which
should be rejected on the same grounds since, no matter what e is,
one component of the triple will always fail to match.

To make GHC work, we had to annotate gadt7q. Otherwise,
GHC would produce a similar message as in Figure[Tb|for paramio.
As shown in Figure[6b] GHC accepts gadt7q without complaint.

The output of Ambivalent is shown in Figure It first warns
about the non-exhaustiveness of pattern-matching in the first case
expression. (For brevity, we have omitted similar warnings for the
next two case expressions.) Although useful, the warnings are not



gadt7q :: R a -> (a,a,a) gadt7q :: R a -> (a, a, a) gadt7q :: forall a. R a —>
adt7q e = (
B e ot (b) Output of GHC ((a, @), 2)
RI i -> i; RB b -> b, (d) Output of &
case e of File "gadt7q.ml", line 9, characters 8-54: The expression gadt7q is ill typed
RBb ->b: RC ¢ -> ¢ Warning 8: this pattern-matching is not exhaustive. because the types of the
case e of ’ ’ Here is an example of a value that is not matched: expressions
. . RC case e of
RC c ->c; RI i -> i) - . .
.. lines 5 through 12 omitted RI i ->1i; RBb ->Db
lines 5 through 8 omitted
val qadt7q : ’a r -> ’a * ’a *x ’a = <fun> do not overlap

(a) GADT expression gadt7q (c) Output of Ambivalent

(e) Output of Chore

Figure 6: A GADT expression that will always cause a runtime error and that is only rejected by Chore.

directly related to the detection of the runtime failure. Ambivalent
finally assigns a type to gadt7q, while it shouldn’t.

The output from algorithm &7 is presented in Figure Since
& doesn’t support triples, we have to encode gadt7q with a nesting
of tuples, which accounts for a slightly different type inferred by
. The idea of & is to infer the types of branches and then
reconcile them with type refinements introduced through pattern
matching. However, this idea is limited to the level of each case
expression. This makes & infer the type R a -> a for each case
expression, losing the opportunity to detect the inconsistencies
between different tuple components.

Finally, Figure presents the output of Chore, which re-
jects gadt7q since the three case expressions will not match any
common expression. Chore achieves this by inferring that the
three case expressions require e to have types A(R Int,R Bool),
B(R Bool,R Char), and C(R Char,R Int), respectively. When they
are unified, Chore concludes that they have nothing in common
and that no type can be assigned to e, and gadt7q is therefore
deemed ill typed and rejected.

6.2 Generating More Informative Error Messages

The debugging of type errors in GADT programs is complicated by
type refinements. How do choice types affect type-error reporting
in GADT programs? To illustrate the contribution of choice types,
consider the expression cross introduced in Section It is ill
typed because the types of the case branches Bool and Int can’t be
reconciled with type refinements.

When the expression is not annotated, GHC produces a message
of 32 lines long. The content is similar to the one in Figure[Ib] This
message is hard to understand for programmers since it explains the
problem using compiler jargon. What is confusing is that the first
four lines in Figure @ involve three type variables, t, t1, and t2,
which are not directly related. Moreover, the message complains
about a small part of the source code and fails to reveal the problem
on a higher level.

When we annotate cross with the type R a -> a, GHC pro-
duces the following message.

Couldn’t match type Int with Bool
Expected type: a
Actual type: Bool
In the expression: even y
lines 5 through 14 omitted

Although this message is an improvement over the one in Fig-
ure[1b] it is still doesn’t explain the overall problem.

Ambivalent produces a message similar to the one in Figure[Tc]
This message is more concise, but also doesn’t reveal the problem.
The algorithm &7 displays the following message.

Type inference failed for cross
ERROR: Cannot reconcile branch body types
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Chore produces the following message.

The expression cross is ill typed
because the types of the bodies vary inconsistently
with the types of the patterns in the expression

case x of
RI y -> even y
RBy ->1
The types
R Int -> Bool
R Bool -> Int

of the case branches can’t be reconciled

We observe that both &7 and Chore reveal the fundamental problem
of cross and convey it at a higher level. Compared to &2, however,
Chore shows more detailed information. It presents the computed
types of relevant branches.

While for this simple example, &7 may be engineered to pro-
duce a message similar to Chore’s, our approach can keep highly
granular type information around as long as needed, which supports
the generation of better error messages in general. In particular, this
allows us to apply reconciliation only just before types are reported
to users, which means that types of case branches involved in type
errors are always available for displaying. This is not the case for
&, which reconciles types for each case expression and discards
information about case branches immediately. This makes it diffi-
cult for & to produce informative descriptions about type errors
that involve multiple case expressions.

In summary, while intuitively the use of choice types may seem
to complicate the communication of type errors, they are actually
quite useful for producing more informative error messages.

7. Evaluation

Implementing GADT type inference algorithms is a challenging
undertaking. Such an implementation has to account for undecid-
ability and the difficulty of reconciling competing demands among
case branches. Undecidability makes implementations incomplete,
and reconciliations causes them to lose principality. This makes it
difficult to compare the capabilities of different type inference algo-
rithms theoretically. For this reason, we have evaluated a prototype
implementing our type inference algorithm experimentally.

Figure [/| presents the evaluation results of four different ap-
proaches over a set of programs that were chosen to cover the
space of GADT typing possibilities and illustrate the strengths and
weaknesses of the different approaches. We compare our approach,
Chore, with the algorithm &7, the OutsideIn approach implemented
in GHC 7.8@ and the Ambivalent approach implemented in OCaml
4.01.0. The top 11 test programs are taken from [17]], the bottom
five are defined in this paper. The programs gadt7p and gadt7q are
variations of gadt7o, to be explained later. Programs whose names

4 https://www.haskell.org/platform/



Chore
+ann

Outsideln
+ann

Ambivalent
+ann

equl
refine
paramlo
head
evald
gadt7o
delmin_o
rotl
fcCompl
leg-o
runState_o
gadt7p
gadt7q
hil

hQZX

h3

ulzx

u2

0000000 0OOCGOOGOIOGONO"
0000000000OOCOOCGOOOOO
0000002000000 0
O0O0OO0O00OOJOOOOOOOOOOO0O
cCceeCceCeoo0o0000 00000
OXONCXONC)CXCI[OXCNCRONON NOX NONON.]
cCceeCceCeo0o0000000000

Type checker is: @=correct, O=incorrect, ©=partially correct

Figure 7: Evaluation results for different approaches for a set of
programs. The “+ann” columns show the results when GADT func-
tions are given correct explicit type annotations. Note that &2 does
not support type annotations. The circle fillings are chosen so that
the darker a column, the better the corresponding approach.

have a warning sign (A) attached are ill typed and will cause a run-
time error when evaluated. For GHC and OCaml, we also include
the results when annotations are added to function definitions. Cor-
rectness is evaluated as follows. A type checker is expected to infer
a type for a type-correct program and report a type error otherwise.
An approach receives a @ if it does that, otherwise it gets a O.
In some cases, a systems may infer a type that is considered only
partially accurate. In this case the approach gets a ©.

We first look at results for programs that are well typed. When
annotations are absent, we observe that Chore and & perform
significantly better than OutsideIn and Ambivalent, with Chore
being better than &2. One reason is that OutsideIn and Ambivalent
don’t reconcile different branches when they have different types.
We can see that whenever &7 successfully infers a type for a
program, then so does Chore. On the other hand, Chore infers types
for several programs on which & fails.

Two facts explain this behavior. First, since both approaches use
a similar idea to reconcile competing types from different branches,
they can do better than Outsideln and Ambivalent. Second, since
Chore uses a more precise choice type representation and recon-
ciles types after type inference is finished (and thus when more
information is available), it can reconcile types from different case
expressions, which &2 cannot. The choice representation also al-
lows us to pass more precise types when recursive definitions are
involved.

It is interesting to look at the programs for which Chore (par-
tially) fails. For equi1, Chore infers a type, but the result is not sat-
isfying. The program equ1 is defined as follows.

data Equ a b where {Refl :: Equ a a}

equl e x = case e of Refl -> x

The function definition is very simple, and it is exactly this simplic-
ity that causes Chore, and also &, to infer a less precise type. The
function doesn’t contain enough structure to allow Chore to cor-
rectly apply reconciliation. Without type annotations, the intended
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type of this function is also not clear. There are infinitely many
types that can be assigned to equi, for example,

Equ a b -> a -> b, or
Equ a b -> (Int -> a) -> (Int -> b)

Chore, &, and Ambivalent infer Equ a a -> b -> b, while Out-
sideln fails to infer a type. In fact, no approach can perform bet-
ter for this example unless annotations are given. (This is also the
reason we exclude the examples from [10]]: All their examples are
minor variations of equi.)

Next let’s turn our attention to the functions u1l and u2, which
are defined as follows.

ul x y = (case x of {RI _ -> RI; RB _ -> RB})
(case y of {RI z -> z})
u2 x y = (case x of {RI _ -> RI; RB _ -> RB})

(case y of {RI z -> z; RB z -> z})

While u1 is not well typed because the second alternative of the
first case expression is unreachable, only Chore and & reject this
expression for the correct reason. Outsideln and Ambivalent reject
it for wrong reasons. The very similar expression u2, however,
is well typed. While both Chore and & infer the correct type
R @ — R o0 — R «a for u2, OutsideIn and Ambivalent fail to infer
a type, even when the type annotation is added.

Let’s look at some more ill-typed programs. We begin with
the expression gadt7o defined in Section [6.1] This program is ill
typed because for any list either the first or second tuple component
will fail to match. We can see that Chore, &2, and Ambivalent
correctly detect this error. GHC fails to infer a type for it, but the
reason is that type inference has touched some untouchable type
variables [27]. When annotated with L n a -> (a,a), GHC type
inference succeeds, which it shouldn’t.

While & and Ambivalent can reject the programs in this simple
form, they are incapable of detecting errors in more complicated
cases. For example, both of them accept the program gadt7q, in-
troduced in Section[6.1] Ambivalent and & accept gadt7q because
they apply reconciliation only at each case expressions and thus
miss the global type constraint that exists across the three compo-
nents and that ensures a pattern-match error.

Another interesting example is h2. Previous approaches are
unable to detect that the type of the argument doesn’t match any
of the pattern types; they infer the type R a -> a.

To summarize, Chore can better detect two kinds of runtime
failures than previous approaches: inconsistent requirements from
different places of a program on the same variable and mismatches
between functions and their arguments.

Besides the programs presented in Figure [7} we evaluated our
approach on a large set of programs collected by Lin [17]], which
consists of 63 GADT programs covering a wide range of appli-
cations, including dimensional types, length-indexed lists, N-way
zip, tagless term interpreters, balance-indexed AVL trees, and many
others. &2 successfully infers types for 52 programs and fails on 11
others. Chore successfully infers types for 58 programs, including
the 52 programs that & is successful on. Chore fails on 5 programs.
Since OutsideIn and Ambivalent fail to infer types for almost all of
the programs, a detailed comparison is not very illuminating.

Finally, we also measured the running time of type inference
to determine the overhead of our approach. Compared to £, the
overhead of our algorithm for each program is always within 55%.
A comparison with GHC is of limited use since it requires type
annotations for all the programs, and type inference is more effi-
cient when annotations are present. Moreover, unlike GHC, & and
our approach are not optimized for performance. While 55% over-
head is not great, it is still surprisingly low considering the potential
complexity added by choice types and their unification. There are



several reasons for this. First, in many examples there are only few
type index variables, which makes coherence checking and recon-
ciliation quite fast. Second, most choices contain few alternatives,
and not too many choices are generated during type inference. Fi-
nally, the nesting of choices, which has a major influence on the
complexity of choice unification, is also quite limited.

Theoretically, as type inference with let-polymorphism is expo-
nential in the number of nesting levels of let expressions, our type
inference algorithm is additionally exponential in the number of
nesting levels of case subexpressions. This theoretical worst-case
complexity has never affected the practical applicability of our in-
ference algorithms. In practice, the nesting level seldom exceeds
five. In fact, no example program presented in Section [/] or any
program in our study of the Hackage libraries exceeds that num-
ber. This coincides with Henglein’s observation that theoretical in-
tractability of type inference problems usually doesn’t affect the
practical utility of type inference algorithms [11].

8. Discussion

First, we discuss the relation between precision and principality
of GADT type inference and present some empirical evaluation
results. Then, based on the evaluation results in Section [/]and the
discussion in Section we compare the different approaches to
GADT type inference in Section [§.2]along different criteria.

8.1 Precision or Principality: An Empirical Evaluation

Since GADTs lose the principal type property, an important design
decision for a type inference algorithm is to choose between prin-
cipality and precision. For example, both Outsideln [27, [34] and
Ambivalent [10] are principal, but &2 [17] trades principality for
precision. Principality is the fundamental principle that underlies
the algorithm % [7]], the foundation of most type inference algo-
rithms in use. The advantage of precise types is that they reflect
more closely the shapes of expressions.

Theorem [3] shows that before reconciliation our type inference
algorithm is principal. Thus, we don’t need to worry about this
design decision until we present a result type to a programmer.
Reconciliation favors precision over principality for the following
reasons. First, while many programs don’t have principal types,
they have most precise types. For example, the expression flopl
doesn’t have a principal type, but it has a most precise type, R Int —
Int, the one reported by Chore. Second, this decision allows us to
type more programs without type annotations. Third, it aligns better
with the fact the choice types make the GADT type system more
precise to catch more errors since precise types better characterize
the shapes of programs.

Notably, this decision aligns with the usage found in actual
Haskell programs. To see what Haskell programmers prefer in
practice, we looked at how GADT programs in Haskell libraries are
annotated. In particular, if a function can have multiple annotations,
we determined whether a more general or more specific annotation
was chosen to glean the preference for principality or precision,
respectively. We randomly chose 300 files that use GADTs from
libraries hosted on Hackage (as of Oct. 23rd, 2014) and inspected
each file. We observed that in each case there were many functions
that can be annotated with different types, and that for every one
of them, the most specific type was chosen as the annotation. This
lends strong support for our decision to favor more precise types
over principal types.

8.2 Comparison of Approaches to GADT Type Inference

Based on the evaluation in Section [7] and the discussion in Sec-
tion we can compare the different GADT type inference ap-
proaches on a high level and put our observations into perspective.
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First of all, every approach has as one of its goal reducing the
number of type annotations required of programmers. While Chore
and &2 approach this goal by designing advanced reconciliation
strategies, OutsideIn and Ambivalent resort to propagating user
annotations and type information across parts of the program. The
goal of saving programmers from annotations is best supported by
Chore. &2 comes in second, followed by Ambivalent and GHC.

Unfortunately, none of the approaches can provide a simple rule
about when and where type annotations are needed. While Chore
and & can infer types for most programs without type annotations,
they fail to do so for some programs for a variety of reasons
(discussed in Section [7). Also, while in most cases annotating
the top-level function definitions are sufficient for OutsideIn and
Ambivalent, this is not always the case. For example, GHC fails
to accept u2 even with annotations. In contrast, Chore successfully
accepts all well-typed programs and rejects ill-typed programs.

Second, regarding principality, GHC and Ambivalent have prin-
cipal types, while & hasn’t. Chore has principal types before rec-
onciliations. Moreover, it seems to be quite easy to turn our type
system into a principal one by changing the reconciliation rules.

Third, somewhat dual to principality is the goal of preciseness,
where we observe that Chore and &2 are more precise than GHC
and Ambivalent.

Finally, the goal of detecting runtime errors is best achieved by
Chore, followed by &7 and Ambivalent with GHC coming in last.

9. Related Work

This work is inspired conceptually by [17] and technically by [4].
Lin and Sheard [[18]] were the first to investigate full GADT type in-
ference without the need for type annotations. Their approach im-
mediately resolves potential inconsistencies between branch types.
Performing reconciliation for each case expression precludes the
possibility of using global type information, and it can also lose
some type information in recursive definitions. Both aspects reduce
the precision of inferred types.

To address the shortcomings of that approach, we have em-
ployed the concept of choice types from [4}|5]] to represent the types
for case expressions, which relieves the need for local reconcilia-
tions and enables reconciliation to exploit global type information.
The use of choice types also allows us to detect more runtime errors
statically, which distinguishes our approach from others.

We reuse parts of the pattern formalism from [4], but there are
significant differences in how we apply it. First, we use _L to denote
that corresponding parts of two types don’t match, whereas in [4]]
L is part of type syntax and is used to denote a type error. Second,
result types are extracted differently from the return types when
typing applications. All the Ls in patterns become part of the result
types of applications in [4]. Finally, choices are introduced and
removed differently. While in [4] choices are given by the input
expressions and may be carried over to the typing result, choices
in this work are created on the fly, and when communicating with
users, they are removed through the reconciliation process.

Due to the presence of polymorphic recursion and the need
for reconciling different local assumptions, type annotations are
needed to restore decidable and principal GADT type inference.
The idea of using type annotations to assist GADT type inference
was independently proposed by Simonet and Pottier [30] and by
Stuckey and Sulzmann [31], who demonstrated the difficulty of
full type inference. Simonet and Pottier showed that the problem
of type inference for HMG(X), an extension of HM(X) [20] with
GADTs, can be reduced to the problem of satisfiability checking of
formulas consisting of finite trees, conjunctions, implications, and
existential and universal quantifications. The latter problem was
shown to be intractable [33]].



The first GADT type inference approach using type annotations
was presented in [21} 22]]. The notions of rigid types and wobbly
types denote the type information derived from user annotations
and computed by the inference algorithm, respectively. Only rigid
types support type refinements in case branches. Wobbly types are
similar to choice types in that they distribute over type construc-
tors. However, other operations on choice types behave differently.
For example, substitutions are applied recursively to choice alter-
natives, while substitutions don’t affect wobbly types.

While wobbly types mix annotation propagation and the type in-
ference process, stratified types [25] handle GADT type inference
in a modular way by separating the two. The first phase transforms
annotated GADT programs into an intermediate language and gen-
erates annotations for case scrutinees and all local assumptions for
case branches. The second phase, which is decidable and complete,
infers types for the intermediate language. Since the first phase is
incomplete, the whole problem is still incomplete. Still, the separa-
tion facilitates the exploration of different propagation strategies.

Outsideln also separates propagation and inference [27} [34].
However, the first phase propagates not only user annotations but
also the inferred types of the program parts that don’t involve
GADTs. Type inference for GADT case branches is postponed until
the second phase, when the type information about the context is
available. Although Outsideln propagates more type information,
this doesn’t seem to lower the amount of required user annotations
(cf. Figure[J), a phenomenon also observed by Lin [17].

While enough type annotations will make GADT type inference
decidable and complete, it is unclear how many are needed and
where [10} [17]. Annotating functions is not always sufficient for
Outsideln and Ambivalent. On the other hand, based on the eval-
uation in Section [/| we observe that our approach Chore can suc-
cessfully infer types for most of the programs without annotations,
which indicates that Chore is complementary to annotation-based
approaches.

Regarding information propagation, stratified types don’t allow
inferred types to be propagated, Outsideln allows inferred types
of expressions to be propagated, except for GADT case branches,
and ambivalent types [10] even allow type information from GADT
case branches to be propagated as long as this doesn’t change the
set of convertible types%] Both &2 and Chore have no restrictions
on what kind of information can be propagated, as long as it can be
reconciled later, either locally, as in &2, or globally, as in Chore.

To some extent, choice types are similar to union types [23].
We have previosuly discussed the relation between union types
and choice types in depth [5]. For this paper, a natural question is
whether we can use union types instead of choice types for GADT
type inference. The answer is no. With union types, we can attempt
to solve the type inference problem with two potential different
type representations, both of which fall short. The first represen-
tation is to allow union types combined freely with other type con-
structors, much like choice types can interact with other types. This
representation is too imprecise for GADT type inference. Consider,
for example, the function cross introduced in Section [6.2} The
union type representation yields the type R (Int V Bool) — Bool V
Int for cross. Since union types are equivalent modulo commu-
tativity, we can reconcile the inferred type to R & — o, which is
incorrect. The second representation allows unions to only occur
at the top level. However, this representation is too restrictive. Con-
sider, for example, the function u2 defined in Section[7] The body of
u2 is an application of one case expression to another. With the sec-
ond representation, we would assign Int — R Int V Bool — R Bool

5 These are types that have the same meaning within a certain context. For
example, if £lop1 has the type R o¢ — «, then o and Int are convertible
inside of f1lop1.
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to the function and Int V Bool to the argument. Since the only op-
erations that can be applied to values of union types are those that
make sense for all types constituting the union type [23]], we can’t
assign a type to u2. However, u2 is well typed and successfully re-
ceives a type with choice types.

The improvement of GADT type inference in this paper is
realized through a better characterization of case-branch types with
choice types. Through a compact symbolic value representation
of a set of values, Karachalias et al. [[12] proposed an approach
that gives accurate warning for missing and overlapping patterns in
presence of GADTs. By extending the pattern checking algorithm
in OCaml, Garrigue and Le Normand [9] presented an approach
for reporting missing patterns with GADTs. Our work also checks
problems related with patterns. The difference is that our work
detects conflicting type requirements that originate from different
case expressions while others focus on a single case expression.
Another difference is that we can detect a mismatch between the
type of a case expression’s scrutinee and the type of the expression
it is applied to.

The work of first-class cases [1] also introduced a notion of type
refinements. GADTs and first-class cases are quite different. For
example, GADTs support type-level computations that are missing
in first-class cases. Also, only GADTs introduce local assumptions,
leading to the loss of the principality of type inference.

10. Conclusions

We have presented Chore, a new method for GADT type inference
that improves the precision of previous approaches by accepting
more well-typed programs and rejecting more programs that will
lead to runtime errors. Our approach is based on an extension of
the type language by choice types, which facilitate a more precise
characterization of the types of case alternatives and a separation
of typing and reconciliation.

Like previous approaches, Chore can benefit from type annota-
tions to expand the set of typeable program. In future work we will
study under which conditions exactly our algorithm needs type an-
notations to provide clear type-annotation guidelines for program-
mers. We will also investigate how to exploit choice types to pro-
vide better GADT type error messages. Finally, we will apply our
approach to detect more pattern-matching failures for traditional
ADT programs.
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