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We present a program-generation approach to address a software-reuse challenge in the area of
scientific computing. More specifically, we describe the design of a program generator for the

specification of subroutines that can be generic in the dimensions of arrays, parameter lists, and

called subroutines. We describe the application of that approach to a real-world problem in
scientific computing, which requires the generic description of inverse ocean modeling tools. In

addition to a compiler that can transform generic specifications into efficient Fortran code for
models, we have also developed a type system that can identify possible errors already in the

specifications. This type system is important for the acceptance of the program generator among

scientists because it prevents a large class of errors in the generated code.
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1. INTRODUCTION

This paper describes the successful application of a program-generation approach
to enable the reuse of software in an area of scientific computing. The motivating
example for the reported research is a software project in ocean science, the Inverse
Ocean Modeling (IOM) system [Chua and Bennett 2001; IOM ], which requires the
adaptation of inversion programs to different ocean models. Inversion programs
are needed to obtain important feedback about the quality of, in particular, ocean
models, and more generally, models from other scientific disciplines. One inversion
program typically consists of several tools, which are implemented by subroutines
and which work together with code implementing the ocean model. Different in-
version programs can be obtained by selecting different sets of inversion tools.

A problem in this particular software project is that the same inversion algorithms
and tools have to be (re)implemented for different ocean models because different
models use different data structures to represent the ocean state and the inversion
tools have to work on these data structures and have to interact with a code that
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already exists for the ocean models. Scientific models to predict the behavior of
ecological systems are routinely transformed by scientists from a mathematical
description into simulation programs. Since these simulation programs have to
deal with huge data sets (up to terabytes of data), they are often implemented
in a way that exploits the given computing resources as efficiently as possible. In
addition to implementation strategies that try to make best use of parallel computer
architectures, the representation of the data in the simulation programs is highly
specialized for each model. Alas, this high degree of specialization causes significant
software engineering problems that impact the advance of scientists in evaluating
and comparing their models. One particular problem is that inversion programs
currently have to be rewritten for each individual forecasting model, although the
process of inversion is principally the same for all models (at least for one chosen
inversion algorithm).

In particular, the software project poses the following challenges.

(1) Tools should be implemented or specified only once.
(2) Tool specifications should be readily usable, that is, scientists should not be

required to modify the inversion tools.
(3) Existing model code should be reusable without needing any changes.
(4) The inversion programs should also work with future models.

Especially the third requirement rules out an approach to develop a software infras-
tructure that offers components with well-defined interfaces to implement compos-
able and reusable components. This approach is pursued by the Earth System Mod-
eling Framework (ESMF) collaboration [ESMF ]. One drawback of that approach
is that scientists have to implement their models against these newly defined inter-
faces, which is unfortunate because scientists are forced to reimplement (large parts
of) their models. Refactoring a collection of Fortran programs (in many cases con-
sisting of hundreds of files and ten thousands of lines of code) is a time-consuming
and error-prone task that many scientists are just not willing to perform. Instead,
they rather seem to prefer to reimplement inversion tools specifically targeted for
their model.

The approach we have taken is driven by the goal to leave existing model code
basically unchanged. To this end, we capture the specifics of each model by a collec-
tion of parameters that are sufficient to guide the adaptation of the inversion tools
to that particular model. We have developed a language called Forge (an acronym
for “Fortran generator”), which allows the specification of Fortran subroutines in
a generic way that fixes the general structure of the subroutine, but may leave open
some details, such as the dimensions of arrays, the number of nested levels of loops,
or parameters of the subroutine. By using model parameters in these specifications,
the dependency of the corresponding program parts on the ocean-model specifics
can be expressed. Given a concrete set of values for the parameters, a Fortran
program can be generated from the Forge specification.

We have employed this language for specifying inverse ocean modeling tools.
Moreover, we have developed a graphical user interface that allows scientists to
create complete inversions. Our approach can be understood as a program generator
that facilitates program reuse on different levels. First of all, existing model code
Transactions on Software Engineering and Methodology, Vol. V, No. N, Month 20YY.
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can be reused in different kinds of inversion programs. Second, inversion tools that
are defined in Forge can be reused for inversions of different ocean models, which
is achieved by compiling them into Fortran code depending on a set of parameters
that describe the particular ocean model. Finally, the graphical user interface
allows users to select different inversion outputs, which triggers the generation of
the required inversion tools and, in particular, the creation of a Fortran inversion
program that computes the requested inversion outputs.

Although the program generator was specifically designed to be used with inver-
sions for ocean modeling, the scope and applicability of the results reported in this
paper are much larger. Inversion includes medical imaging, seismic exploration, re-
trieval of atmospheric profiles from satellite soundings, assimilation of initial data
into operational weather forecast, and, in our example application, the testing of
hypotheses about the dynamics of ocean circulation. Inversion differs in objectives
from, but is mathematically identical to, the engineering activity of optimal control
of dynamical systems.

We believe that the emphasis that we have placed on software reuse in our ap-
proach was essential for its success. In fact, we have combined what has been called
generative reuse with compositional reuse [Mili et al. 2002] in the following way.
First of all, the code of each ocean model is completely reused. No adaptation is
needed. The ocean model code is composed with inversion tools to create inver-
sion programs, which is therefore an example of compositional reuse. Second, the
reuse of inversion tools is realized through the program generator, that is, the tools
are described only once and will be translated into Fortran programs according to
the parameters that are defined for the current ocean model, which is therefore an
example of generative reuse. Third, the inversion programs that are individually
generated for particular selected inversion output are also examples for generative
reuse.

In the remainder of this Introduction, we briefly describe the background of the
application area and the program-generator approach. In Section 2 we present how
to generate Fortran code for IOM tools through two examples. We will describe
how the type system will prevent type errors in the generated Fortran programs in
Section 3. In Section 4 we discuss related work, and conclusions given in Section 5
complete this paper. In the appendices we provide the complete syntax of Forge, the
formal rules of the type system, and a complete example of a generated subroutine.

1.1 Tools for Inverse Ocean Modeling

Ocean scientists are using ocean models to simulate and predict the state of oceans.
Ocean models are conventionally formulated as equations of motion. The equations
are solved by numerical approximation. Different ocean models use different nu-
merical approximations. Models usually use arrays over time and space to store the
state values of oceans, such as velocity or temperature. Some models also consider
data at fixed locations and use arrays only over time, or average over time and use
arrays only over space.

The Inverse Ocean Modeling (IOM) system [Chua and Bennett 2001; IOM ]
is a data assimilation system, which enables the developers of ocean models to
combine their models with real observations of the ocean. The output of the IOM
is a weighted least-squared best-fit to the equations of motion and to the data.
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The IOM consists of tools that are used for solving the equations of best fit. The
information obtained by inversion programs gives important information about the
quality of data produced by ocean and weather forecasting models. The accuracy of
forecasting models is important for the successful planning of flight or ship routes,
navy operations, and many other applications. In addition, inversion can also reveal
important information about the efficiency of the observation process.

Since every ocean model uses its own data structure to describe the ocean, it
is very difficult for the developers of the IOM to write a system that can work
for different ocean models, although the algorithms for inverse ocean modeling are
the same for all models. The problem is that the genericity that is inherent in
the problem cannot be expressed by Fortran. For example, we cannot declare an
array variable to have a varying number of dimensions. Moreover, we cannot add
a varying number of loops over a block of statements or express array indexing for
a variable number of dimensions. Similarly, we cannot define subroutines with a
variable number of parameters, or pass subroutines as parameters to other Fortran
subroutines. Although some of these language features are available in other pro-
gramming languages, for example, function pointers in C or higher-order functions
in Haskell [Peyton Jones 2003], or dimension-independent array functions in APL
[Iverson 1984] or J [Iverson 1995], no single language provides all the required fea-
tures. Moreover, since most of the existing ocean-model code is written in Fortran,
we have to work with Fortran as a language, at least on the model side, anyway.

1.2 A Program Generator for Inverse Ocean Modeling Tools

Our solution is the design and implementation of a specification language Forge
that can be used to generate the tools provided by the IOM. Tool descriptions are
parameterized by variables that capture aspects that are specific to individual ocean
models. Values for these parameters have to be provided by each model for which
a tool is to be created. A program generator creates Fortran code that implements
a tool for any specific ocean model. The program generator is basically a compiler
whose source language is Forge and whose target language is Fortran. Individual
tools are combined into larger inversion programs. This process is controlled by a
graphical user interface that presents ocean modelers with a variety of inversion op-
tions, such as the selection of inversion outputs and the choice of different inversion
algorithm options. The graphical user interface also controls system configurations,
such as Makefile and Fortran compiler options, the definition of model parameters,
and different execution options which are particularly important for efficient par-
allel execution on supercomputers. Currently, the GUI can support three different
execution options: The IOM module and the model module can be run in one sin-
gle executable with either of them being the main module and calling the other,
or the IOM module and the model module can be run as two separate executa-
bles that communicate via shared data files. We plan to support more fine-grained
parallelism in future versions.

The graphical user interface is implemented in Java and runs together with the
Forge and Fortran compilers on Windows, Mac OS, and Solaris. A snapshot of the
current system is shown in Figure 1.

The ability to provide model parameters, to select a particular combination of
inversion outputs, and to customize the inversion algorithm offers to ocean modelers
Transactions on Software Engineering and Methodology, Vol. V, No. N, Month 20YY.
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Fig. 1. Graphical User Interface.

a flexible customization of inversion programs along three dimensions. In this paper,
we do not discuss the combination of tools into inversion programs, but rather focus
on the issues concerning the specification of individual tools and the design and
implementation of the program generator. Figure 2 illustrates the architecture of
the system.
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Fig. 2. System architecture.

The developers of the IOM system (this is the group of people developing in-
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version tools) define tool specifications, which are written in Forge, to describe the
tools that the IOM provides. The tool specifications can use library functions,
which are mainly basic Fortran program transformers, for example, for generating
loops. Library functions can also be employed to specify array index types, see Sec-
tion 2.3. The library functions are written in Haskell [Peyton Jones 2003] and are
provided by computer scientists who develop these functions in close collaboration
with the ocean-modeling software developers who need them. A Fortran subroutine
is generated for each tool specification. The generation of Fortran code depends on
a model specification that contains the information that is specific to a particular
ocean model, such as the dimensions of the array that is used to store the state
values of the ocean. These model specifications are written by the users of the IOM
tools, the ocean model developers, who only have to understand the parameters
they define and do not otherwise have to be concerned about the implementation
of tools and the specification language Forge. Model specifications are essentially
(name,value) pairs. However, the “values” can be complex entities, such as Fortran
subroutines.

The Forge compiler takes a tool specification, a model specification, and library
function definitions as its inputs and produces a Fortran subroutine. These gen-
erated subroutines, which correspond to the inversion tools, will be part of the
inversion programs that are composed by the graphical user interface.

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Specification 

Library Functions 

p = … 

f = … 

Forge Compiler Fortran Program 
tool (p :: t) 
  … 
  f {p | … } 
  … 

Parameter Definition 

Fig. 3. Using model parameters in tools and library function calls

Figure 3 shows a schematic instance of Figure 2 to illustrate how the components
of the Forge system interact. In the shown example, the tool specification tool is
parameterized by a model parameter p, which is used, for example, in the body
to control the effect of a library function f, which is taken from an extensible
library of auxiliary program transformations. The value for p is taken from a
model specification for which the Fortran program is to be generated.

1.3 The Forge Compiler

For the implementation of the Forge front end we have used the Haskell scanner
generator Alex [Dornan 1997] and the parser generator Happy [Marlow and Gill
2000]. The main part of the Forge compiler is written in Haskell [Peyton Jones
Transactions on Software Engineering and Methodology, Vol. V, No. N, Month 20YY.
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2003]. There are several advantages of using a language like Haskell to implement
the compiler.

First, the abstract syntax of Fortran programs is represented by a collection of
Haskell data types that can represent only syntactically correct Fortran programs.
Therefore, the syntax correctness of the generated Fortran programs is automati-
cally guaranteed by the type system of Haskell. This property runs under the slogan
“type-correct meta programs ensure syntax-correct object programs”, which is dis-
cussed in more detail by Tim Sheard in [Sheard 2001]. This syntax-correctness
guarantee is not tied to the use of Haskell, but can be achieved by using a cor-
responding representation in any strongly typed language. For example, in Java
syntactic categories could be represented as abstract classes and different grammar
rules could be represented as concrete classes that extend the abstract classes and
that contain corresponding constructors.

Second, a Fortran program is obtained from an abstract syntax value of type
T through a function show that is defined for the data type T . This approach of
defining the abstract syntax of Fortran Haskell data types and then developing a
show function for them gives us the flexibility to easily generate programs written
in other high-level programming languages, such as C or C++. Since the abstract
syntax of those languages is similar to Fortran, we simply have to re-implement the
show function, so that the rest of the compiler can be reused. In fact, with regard
to the subset of Fortran used by the program generator, the abstract syntax can be
reused almost without change for C or C++.1 Multi-language support has not been
an explicit goal of this project, but the abstract syntax representation supports it
well in case this issue should become important in the future.

Third, the core part of the Forge compiler consists of functions that translate
equations into Fortran. Special attention has been paid to library functions that
are implemented in Haskell. The translation functions need access to these library
functions, which are referenced through the specification to be compiled.

2. GENERATING FORTRAN FROM TOOL DESCRIPTIONS

In this section we illustrate the elements of the specification language Forge and
their translation into Fortran through examples. We consider two convolution tools
that are part of the IOM system and that are used in practice. Convolution tools are
extremely important in the area of data simulation. Even though the mathematical
continuous definition for all convolutions can be captured by a single equation that
is parameterized by a weighting function, the discrete forms of the convolution
tools, which have to be used in practical systems, differ considerably. Since there
is no algorithm known that could automatically transform arbitrary convolutions
into efficiently implementable discrete forms, this process still has to be performed
by scientists. Therefore, the input to a program generator cannot be the single
continuous convolution equation, but has to be instead the mathematically derived
set of discrete equations. Since these sets of discrete equations differ very much for

1As anecdotal evidence, after presenting the current IOM system during the 2003 IOM Annual

Conference, one participant from the Navy Research Lab Stennis asked about the possibility to use
the whole system for their model NCOM, which is implemented in C++. After the presentation

we were able to customize the IOM to produce C++ code in about 30 minutes.
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different convolutions, a language like Forge is useful in describing each of them
in a generic form that can be translated into Fortran programs based on model
parameter values.

Even though convolution tools are very important, Forge is not limited to the
definition of convolution tools. There are dozens of different types of tools in the
IOM system, for example, tools to check the consistency of models or tools to
perform transformations from the data space to the IOM space. Each must be
rebuilt for compatibility with each user’s ocean model, according to the regular or
irregular numerical grid, and this task can be automated by specifying the tools
with Forge.

Furthermore, since Forge provides a general mechanism for representing model-
dependent implementations of discrete equations, any such set can be represented in
Forge, no matter what form the corresponding continuous equation has. Therefore,
Forge can be also used by scientists working in other disciplines. However, Forge
is not a general-purpose program generator. An essential ingredient of the covered
tool descriptions are discrete equations. Therefore, tools that cannot be represented
by discrete equations cannot be generated by Forge.

We provide some data on the use of Forge in Table I.

Application N ` Σ

Markovian convolution in time 10 13 360

Bell-shaped convolution in space 32 20 816

Combination functional 25 44 1440

Low-pass filter for image processing 20 16 320

Low-pass filter for data simulation 10 16 160

Array slicing 55 8 1154

Table I. Size of generated Forge code

The main benefit of using Forge is not so much to generate one big program from
one small specification, but rather to generate many different programs for different
models from the same specification. In the table we show in the column labeled
N the number of different parameter combinations, or models, for that particular
application. Note that N is not just the number of dimensions of involved arrays.
For example, in the first example application, the Markovian convolution in time,
we consider only up to four-dimensional arrays. The remaining number of models
result from the different possibilities to place the time dimension within the multi-
dimensional array. Column ` gives the number of lines of the specification, and the
last column shows the number of lines of code for all generated models. Markovian
convolution in time and Bell-shaped convolution in space will be explained in detail
in Sections 2.1 and 2.5, respectively. Combination functional is an IOM tool that
maps a vector into an array whose shape is derived from two model parameters.
Low-pass filters can be used in both image processing and data simulation for
smoothing data. Array slicing can project an (n − 1)-dimensional array out of an
n-dimensional array by selecting a dimension to project and a value within that
dimension.
Transactions on Software Engineering and Methodology, Vol. V, No. N, Month 20YY.
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2.1 An Example Tool: Markovian Convolution in Time

Convolution is essentially the process of averaging over weighted values. The basic
idea is the value of one point is computed by averaging over the weighted values
of its neighbors. The weights of the neighbors depend on the distances from the
point. The number of convolutions is unlimited since each new weighting functions
defines a new convolution. Every convolution has the following form.

b(x) =
∫ X

0

F (x, x′)a(x′)dx′

F (x, x′) is the weighting function, x and x′ can range over either time or space from
0 to X, which is an upper boundary of time or space, a is the weighted error, and
b is the deweighted error. A similar kind of convolutions is also used in computer
science. For example, in image processing, such convolutions are often used to
reduce noises in an image [Castleman 1996].

The above formula is a continuous equation. Computer simulations are based
on the corresponding discrete equations that can be derived from the continuous
one. The corresponding ocean science and mathematics background can be found
in [Chua and Bennett 2001]. We omit the derivation here since it is not important
for the translation of the discrete equations into Fortran.

The Markovian convolution in time is one particular convolution tool defined
by the following formula. The weighting function F (t, t′) is exp(−|t − t′|/τ), and
the variables t and t′ range over time between 0 and T , the upper time boundary.
The coefficient τ is the correlation time scale which is input by the modelers. The
smaller τ is, the more quickly the values of the old points will be forgotten.

b(t) =
∫ T

0

exp(−|t− t′|/τ)a(t′)dt′

The corresponding discrete equations of Markovian convolution are as follows. In
fact, the shown equations represent a slight generalization of the continuous formula
that offers flexibility in how arrays are indexed, for example, starting at 0 or 1.
Moreover, the equations also support the parallel execution of the subrroutine.
With L = 0 and U = T we obtain as a particular instance the equations that
correspond exactly to the continuous formula.

hL = 0
hn − hn−1

∆t + τ−1hn−1 = −2τ−1an

bU = −(τ/2)hU

bn+1 − bn

∆t − τ−1bn+1 = hn

In the above equations, h is a temporary array, and L (U) is the lower (upper)
boundary of the arrays. The arrays are over time and space where different models
may use different array dimensions for space. Moreover, different models represent
the time dimension in different positions in array dimensions for efficiency reasons.
Hence, in general, models differ in the dimensions of the manipulated arrays as
well as in the interpretation of the stored data. Therefore, the IOM has to be able
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to create different subroutines for all the possible data structures used in all the
models. Moreover, the IOM should also be able to provide tools for any new model
that uses data structures in a completely new way.

2.2 Expressing Discrete Equations in Forge

Each tool is defined by a Forge specification. Every specification has a name and
possibly some parameters. These parameters are called model parameters since
they refer to model-specific information that is used to guide the translation of the
specification. The model parameters are given in the form Type::PName through
the specification’s parameter list.

For example, the specification for the Markovian convolution timeConv has one
integer model parameter dim to represent the number of space dimensions of the
underlying ocean model. The corresponding representation in Forge is as follows.

timeConv(integer::dim)

The body of a specification consists of an interface, which is discussed in Section
2.3, and a definition of its function, given by a list of statements, which can be
assignments, subroutine calls, loops, or applications of library functions. For ex-
ample, in the definition of the tool timeConv we use a definition that is similar to
the following.

genLoops{dim | h[L] = 0.0}

Here genLoops is a library function that generates dim nested loops containing a
Fortran statement that is derived from the equation h[L] = 0.0 and whose purpose
is to assign 0 to a specific array location. Why can we not just use a Fortran
statement directly here? Because the Fortran statement depends on the value of
dim. For example, if dim is 0, the Fortran statement derived from h[L] = 0.0 will
be simply the following.

h(L) = 0.0

In this case, genLoops has no effect. In contrast, for dim=2, the derived Fortran
statement (without the surrounding for loops) will be:

h(L,dim1i,dim2i) = 0.0

where dim1i and dim2i are integer variables that are generated to be used as loop
variables. In this case, the application of genLoops creates the following Fortran
code.

do dim2i = X2, Y2, 1
do dim1i = X1, Y1, 1

h(L,dim1i,dim2i) = 0.0
end do

end do

The boundary variables of the for loops are parameters that are created for the sub-
routine timeConv from the dependent-index declaration index space = X:Y[1:dim],
which is explained in the next subsection.
Transactions on Software Engineering and Methodology, Vol. V, No. N, Month 20YY.
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For the definition of the Markovian convolution in Forge we have to translate
each discrete equation into a Forge assignment statement and apply to the sequence
of assignment statements the library function genLoops with the model parameter
dim as follows.

genLoops{dim |
h[L] = 0.0;
h[n] = h[n-1] - dt*(h[n-1]/tau + 2.0*a[n]/tau);
b[U] = -0.5*h[U]/tau;
b[n] = b[n+1] - dt*(h[n] + b[n+1]/tau)

}

For dim = 2, the Fortran program shown in Figure 4 will be generated.

do dim2i = X2, Y2, 1

do dim1i = X1, Y1, 1

h(L,dim1i,dim2i) = 0.0

do n = L+1, U, 1

h(n,dim1i,dim2i) = h(n-1,dim1i,dim2i) &

& -dt*(h(n-1,dim1i,dim2i)/tau+2.0*a(n,dim1i,dim2i)/tau)

end do

b(U,dim1i,dim2i) = -0.5*h(U,dim1i,dim2i)/tau

do n = U-1, L, -1

b(n,dim1i,dim2i) = &

& b(n+1,dim1i,dim2i)-dt*(h(n,dim1i,dim2i) &

& +b(n+1,dim1i,dim2i)/tau)

end do

end do

end do

Fig. 4. Fortran translation of discrete equations.

In the generated program, a Fortran assignment statement is generated for each
discrete equation, and a loop is generated for each dimension. The assignments
that correspond to the second and fourth discrete equations are enclosed by an
additional loop over the first dimension since n ranges over all values in the first
dimension, whereas L and U are boundary values for the first dimension and denote
single values in it. Therefore, the assignment statements for the first and third
discrete equations are not placed inside of these additional loops.

The parameter declaration of a tool definition provides the information that is
required to distinguish equations that are translated into simple assignments from
those that are translated into loops. For example, since L and U are declared as
parameters, their concrete values will be available when the subroutine is called,
unlike n which has to be bound explicitly through a loop. Moreover, since L and U
are used in the definition of the arrays, we know that they are constant with respect
to the size of the arrays. However, since n is not used to define the arrays, n is a
variable with respect to the size of every array.

Transactions on Software Engineering and Methodology, Vol. V, No. N, Month 20YY.
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2.3 Interfaces and Dependent Indices

The main purpose of an interface is to declare local variables and input variables
for the generated Fortran subroutine. Both kinds of variables will appear in the
generated Fortran subroutine. While input variables will be translated into the
parameters of the generated Fortran subroutine, local variables will be translated
into declarations of local variables. In our example, dt, tau, L, U, a, and b will be
input parameters of the generated Fortran subroutine, while the variables h and n
are only used locally.

Variable declarations also have to introduce the variables’ types. However, as we
have already seen, the types of array variables might depend on model parameters.
Therefore, we must be able to define such dependent types [Xi and Pfenning 1999]
in Forge, which is achieved through the concept of a dependent index. A dependent
index is the model-dependent part of an array type. The following statement defines
the dependent index representing the model-dependent space dimensions of the
arrays in the Markovian convolution.

index space = X:Y[1:dim];

A dependent-index expression introduces two variable names, X and Y in the ex-
ample, and attaches a range to them, here 1:dim. This range guides the Forge
compiler to create just as many pairs of Fortran variables, that is, X1, Y1, X2, Y2,
. . ., Xdim, Ydim. Each pair of variables corresponds to the lower and upper bound-
ary variables of a dependent dimension. These created boundary variables will be
input parameters of the generated subroutine. It is important that the upper and
lower bound of the range can be only a statically evaluable integer expression or a
model parameter. This constraint is necessary to ensure that array dimensions are
known at compile time for the specifications (and therefore also at Fortran compile
time). The validity of the values of the upper and lower bound of the range is
checked at compile time. For example, X and Y must be yet unused variables and
the two range values must be integer expressions. Note that the difference between
the first and second range value might be negative, for example, if dim is 0, in
which case no variable declarations will be generated.

Array types can make use of dependent indices either directly or by referring to a
dependent-index definition. In general, the index type of an array is composed of a
fixed, non-dependent part and a dependent part. Fixed index types can be merged
with dependent-index types by applying a library function that might also make
use of model parameters. If only one index part is needed (fixed or dependent) to
describe an index type of an array, a library function call is not required.

For example, in the interface part of the Markovian convolution the library func-
tion cons places the fixed index L:U at the beginning of a’s and b’s index types,
which are otherwise given by the dependent index space.

index space = X:Y[1:dim];
param real :: dt, tau;

integer :: L, U;
real, dimension (cons{L:U,space}) :: a, b;

local real, dimension (cons{L:U,space}) :: h;
integer :: n;
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In a more general version of the timeConv tool, we actually use the library function
insertAt to place the fixed index at a particular position, which is represented
by the variable timePos, in the list of variables represented by a dependent-index
expression.

real, dimension (insertAt{timePos | L:U,space}) :: a;

Suppose we generate a Fortran program for an ocean model in which the value of
model parameter dim is 2 and timePos is 2. The above code will then be translated
into the following Fortran code.

integer :: L
integer :: U
integer :: X1
integer :: Y1
integer :: X2
integer :: Y2
real, dimension (X1:Y1, L:U, X2:Y2) :: a

In the generated Fortran program, the array a has three dimensions, which means
one dimension of its fixed part plus two dimensions of its dependent part. The
value 2 for the model parameter timePos has caused that the fixed index part is
created as the second dimension index of a.

The main task of library functions is to control the code generation for those
parts of the generated Fortran program that depend on dependent indices. For
example, the library functions cons or insertAt allow a fixed index part to be
combined with dependent indices in array declarations. In Section 2.2 we have
seen the library function genLoops that generated nested loops and appropriate
array indexing. Library functions like genLoops therefore combine several tasks in
guiding the translation of discrete equations by model-dependent parameters.

The dependent part of an array index depends on model parameters of type
integer, which are used to calculate the number of the variable dimensions. By
using dependent types, we can use a generic form to represent array types used in
different models, which have different dimensions. The dependent part of an array is
never referenced in the discrete equations, but it is necessary for generating Fortran
programs.

2.4 Summary: The Complete Tool Specification for the Markovian Convolution

The Forge specification of timeConv is shown in Figure 5. The line numbers are
shown to simplify the discussion of type checking that will be presented in Section
3.

The specification refers to one model parameter dim. The dependent-index dec-
laration of space depends on dim, which causes the array types of a, b, and h to be
of dimension dim+1 since their index type is defined to depend on space, which is
of dimension dim, and adds to space exactly one dimension, L:U. The formulas of
the body correspond exactly to the discrete equations that we have seen in Section
2. The library function genLoops takes an integer as input parameter to generate
a corresponding number of nested loops over the Fortran code fragment translated
from the argument equations. In the example, genLoops generates exactly dim
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1 timeConv(integer::dim)

2 index space = X:Y[1:dim];

3 param real :: dt, tau;

4 integer :: L, U;

5 real, dimension (cons{L:U,space}) :: a, b;

6 local real, dimension (cons{L:U,space}) :: h;

7 integer :: n;

8 genLoops{dim |

9 h[L] = 0.0;

10 h[n] = h[n-1] - dt*(h[n-1]/tau + 2.0*a[n]/tau);

11 b[U] = -0.5*h[U]/tau;

12 b[n] = b[n+1] - dt*(h[n] + b[n+1]/tau)

13 }

Fig. 5. The Forge specification for Markovian convolution in time.

nested loops for the equations defining h[L] and b[U] (since the index is just a
boundary variable) and dim+1 nested loops for the other two equations. Since the
arrays are indexed by a variable that is not an array boundary, an additional loop
over the time dimension is created.

We have deliberately retained much of Fortran’s syntax, in particular, with regard
to type, range, and array notation, to accommodate the users of Forge, who know
Fortran very well. This design supports the idea of “gentle slope” [Myers et al. 2000]
and makes the specification language easier to learn and to apply. The complete
syntax of Forge is shown in Appendix A.

We can compile the above specification into a Fortran program by calling the
Forge compiler forge. In addition to the specification, we have to provide the name
of the model for which we want to generate code. For example, we can generate
the Fortran subroutine for the tool Markovian Convolution and the model PEZ by
the following command. The model name is used to locate the model specification,
which will be introduced in Section 2.6.

forge timeConv PEZ

The generated Fortran program is written to a file timeConvPEZ.f90 whose content
is shown for illustration in Appendix C. Users of the IOM system will not invoke
the compiler directly, because they interact with the program generator through
the graphical user interface shown in Section 1.2.

2.5 Bell-Shaped Convolution in Space

We consider another IOM tool to demonstrate a further important feature of Forge,
namely the possibility of parameterizing specifications by model-dependent proce-
dures. Similar to the Markovian convolution, the Bell-shaped convolution in space
is also a tool for computing deweighted errors. The convolution is formally defined
by the following formula.

b(x) =
∫ X

0

exp(−(x− x′)2/L2)a(x′)dx′.
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In the above continuous formula, a is again the weighted error, and b is the
deweighted error. The weighting function F (x, x′) is exp(−(x − x′)2/L2) where
x and x′ range over space. L is the correlation length scale and is input by the
modelers. The smaller L is, the more quickly the values of far neighbors will be
omitted. The Bell-shaped convolution can be discretized to the following equations.

θ0
i = ai

θn+1
i = θn

i + ∆s · RHSn
i for 0 ≤ n ≤ N − 1

bi = θN
i

θ is an intermediate array for solving the final result b. More specifically, θn
i rep-

resents the ith element of the array θ in the nth iteration. The final value of the
output array is calculated in the Nth iteration. ∆s is the pseudo-time step used
for computing the next θ from the current θ. N is the number of iterations for
computing the final result. N is given by (L2/4)/∆s. RHSn

i is the abbreviation for

θn
i+1 − 2θn

i + θn
i−1

(∆x)2

Since different ocean models use different representations for space, RHSn
i is com-

puted differently in different models. Therefore, Forge must be able to specify tools
that are generic in the way to compute RHSn

i . This dependency on a computation
provided by each model is expressed by a subroutine parameter in the specification
header.

It is not really important to understand why the the shown discrete equations
are a solution for the continuous one, and even less how they can be derived. The
two important aspects this example is intended to demonstrate are:

—Discrete equations can differ considerably from the continuous equations.
—We need a mechanism for including model-dependent code in inversion tools.

The specification for the tool bell-shaped convolution is shown in Figure 6.
In this example, computeRHS is a Fortran subroutine that has to be provided by

the ocean modelers as a model parameter. This subroutine is used for computing
the RHSn

i in the discrete equations of the bell-shaped convolution. This subroutine
has a parameter space, which is the dependent index because the boundaries of
space dimensions are needed by this subroutine. For example, if the value of model
parameter dim is 2, then the statement for calling the subroutine in the generated
Fortran program will be as follows.

call computeRHS(X1, Y1, X2, Y2, theta, rhs)

Note that the type system cannot guarantee type correctness for generated Fortran
programs that were created from tool descriptions involving subroutine parameters
since we have generally no access to the code of the called subroutine at the time the
tool description is processed. We can only check whether the called Fortran sub-
routine has been declared as a model parameter. In practice, this limitation means
that the generated Fortran programs might contain type errors. However, these
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1 spaceConv (integer::dim; subroutine::computeRHS;)

2 index space = X:Y[1:dim];

3 param real :: ds;

4 integer :: N;

5 integer :: L, U;

6 real, dimension (cons{L:U,space}) :: a, b;

7 local real, dimension (cons{L:U,space}) :: rhs, theta;

8 integer :: i, n;

9 genLoops{dim |

10 theta[i] = a[i]

11 };

12 do n = 1, N

13 call computeRHS(space,theta,rhs);

14 genLoops {dim |

15 theta[i] = theta[i] + ds * rhs[i]

16 }

17 end do

18 genLoops{dim |

19 b[i] = theta[i]

20 }

Fig. 6. The specification for the bell-shaped convolution in space.

errors will be contained in the subroutines provided by the user who is responsible
for delivering correct subroutines.

2.6 Model Specifications

A model specification is given by a model name followed by model-parameter defi-
nitions. Each definition has the form PName=Expr or TName.PName=Expr . The
former is for global model-parameter definitions, which means the model parameter
can be used by any specification. The latter is for tool-specific model-parameter
definitions. TName is a tool name in which the parameter is used, whereas PName
is the model-parameter name used by that tool, which can be either a variable or a
Fortran subroutine name. Tool-specific model parameters cannot be used by other
tools. Expr is either a constant or a Fortran file name, which contains the Fortran
subroutine whose name is the model parameter.

Below we give a simple example of a model specification for the so-called “PEZ”
model, the Primitive Equation Z-coordinate Model, which is a variant of Bryan-
Cox-Semtner class model [Pacanowski and Griffies 1999]. Two model parameters
are defined in the model specification. The first, dim, is a global model parameter
that has the value 3. The second, computeRHS, is a model parameter that can
be only used by the tool spaceConv, and refers to a Fortran subroutine provided
by the modelers who want to generate Fortran code for spaceConv. The code of
computeRHS is contained in the Fortran source file "laplace.f90".

model PEZ;
dim=3;
spaceConv.computeRHS = "laplace.f90"

Currently, model specifications allow only the definition of parameters through a
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collection of name/value pairs. Future work will extend the model specifications to
allow for specifications of model-specific optimizations for parallel computations.

3. THE FORGE TYPE SYSTEM

The generation of syntax- and type-correct Fortran programs is of great importance
in the context of scientific computing because the creation of programs that cause
compiler errors would disturb users, in particular for program parts they have not
written themselves. A principal problem with generated code is that users cannot,
in general, understand why the error occurred and, even worse, how to correct it.
Such a situation must be avoided at all cost because it could quickly lead to users
losing trust in the system and eventually not using it anymore. Therefore, we have
put a lot of effort in designing a type system that can prevent errors in generated
Fortran programs. The type system captures possible errors at Forge compile time
so that inversion tools to be provided by the IOM system can be checked in advance,
before they are released, and thus will always compile smoothly when the system
is in use. Of course, since the users themselves also provide Fortran code that
is combined with the generated code, we cannot rule out syntax or type errors
completely, but when the compiler complains about errors, this will happen in user-
supplied code, and it should be clear then to the users that it is their responsibility
to correct the mistake in their code.

The syntactical correctness of generated Fortran programs is automatically guar-
anteed by the type system of the host language, Haskell. Because Fortran programs
are represented by a Haskell data type that can represent only valid abstract Fortran
syntax, any syntax error produced by the Forge translator (or by a library func-
tion) would be caught by the Haskell type system. Thus, the program generator
will ensure that any syntactically correct discrete equations used in specifications
will always be translated to syntactically correct Fortran code. Furthermore, the
library functions can never introduce syntax errors since they are Haskell functions
on the Haskell data type representing only syntactically correct Fortran programs.

The goal of the Forge type system is to guarantee (as much as possible) the type
correctness of the generated Fortran programs, which means any type-correct spec-
ification will be translated into a syntax-correct and type-correct Fortran program.

All expressions and statements, including library function calls and Fortran sub-
routine calls, are checked by the type system. We will demonstrate how the type
system can prevent type errors in the generated Fortran programs through several
examples. The reader interested in further details can consult the formal typing
rules of the type system shown in Appendix B.

3.1 Declaration Typing

In the following, we refer to the specification for the Markovian convolution in
Figure 5. Declarations in a specification are used to construct two typing envi-
ronments, which are used in statements and expressions to check whether or not
variables are used in a type-consistent way. One typing environment ∆ contains the
type information for all model parameters, including external Fortran subroutines,
and another typing environment Γ contains the type information for variables and
library functions. A typing environment is a set of pairs (v, t) expressing that name
v has the type t. Each declaration statement adds one or more pairs into the typing
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environment. Model parameter declarations in the parameter list of a specification
add such pairs into the typing environment ∆. For example, the following model
parameter declaration (line 1) adds (dim, integer) into ∆.

integer :: dim

Local variable declarations and parameter declarations are used to declare For-
tran variables. For example, the following declaration (line 3) adds (dt, real) and
(tau, real) into the environment Γ.

real :: dt,tau

In the typing environment Γ an array type is represented as a quadruple which
consists of the name of the library function used to construct the array type,
the fixed index, the dependent index, and the base type of the array. For ex-
ample, the following declaration (line 5) adds (a, (cons, (L, U), space, real)) and
(b, (cons, (L, U), space, real)) into Γ.

real, dimension (cons{L:U,space}) :: a, b

A dependent-index declaration also adds a (name,type) pair into the typing en-
vironment Γ. In contrast to Fortran variables declared in a specification, all the
dependent-index names have the type depix. Consider, for example, the following
dependent-index declaration (line 2).

space = X:Y[1:dim];

The type checker adds (space, depix) into the typing environment. Dependent-
index names cannot be used in any expressions, they are only used to construct
array types, which is ensured by their type depix. We need the type information
for dependent-index names for checking the library function calls to construct ar-
ray types. The rules for constructing typing environments are defined in Figure
12. Array types can be constructed by calling library functions, where the valid-
ity of the library function calls is checked by the rule aty`. Consider again the
declaration in line 5. Since L and U have type integer, L:U is a valid fixed index.
Because the name space has the type depix, it is a valid dependent index. In
the typing environment Γ, we store the type of the library function cons, which
is range->depix->range, where range represents fixed index types. The type en-
vironment Γ is initialized with the types for all available library functions, which
are derived from the type signatures of the Haskell functions. In the above decla-
ration, the library function cons has two arguments which are a valid fixed index
and a valid dependent index, respectively. Therefore, the library function call in
the declaration statement is type correct.

3.2 Expression Typing

The expressions in timeConv include constants, such as 0.0 (line 9), simple vari-
ables, such as tau and U (line 11), array expressions, such as h[n-1] (line 10), and
expressions such as -0.5*h[U]/tau (line 11). Determining the type of constants
and variables is trivial because the type information for constants and variables
can be obtained from the typing environment directly. Array expressions are more
complex since arrays may have dependent indices. Forge does not allow referencing
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dependent indices in array expressions since it could cause type errors in the gener-
ated Fortran program. For example, suppose we have an expression a[i,1], where
1 refers to the first dimension of the dependent index. If the model parameter dim
in the user model is 0, in which case there is no dependent index at all in the array
a, then a[i,1] would cause a type error in the generated program because a is
only a one-dimensional array. The rule in Figure 14 for array expressions expresses
that an expression e can be indexed by index expressions e1, e2,. . ., and ek if the
type of e is an array type with fixed ranges r1, r2, . . ., and rn and n ≥ k (see rule
array`).

Applications of operations are type correct if all the subexpressions are type
correct and have types that are compatible with the operator. For example, real
and integer are compatible, so tau*2 is type correct. The type of real arrays
is compatible to real, so the expression -0.5*h[U]/tau in line 11 is also type
correct. The compatibility of types is defined by a relation ∼. Two array types are
compatible only when (1) they have the same fixed and dependent dimensions and
(2) the applied library functions for constructing the arrays are the same. We define
a rigid form of equality for the dimensions, which requires for two dimensions to be
equal that both, the number of dimensions and the boundaries of each dimension,
are the same. For example, since b and h are declared by the same statement in
line 5 and 6 in Figure 5, they have the same type. Therefore, the expression b[n+1]
- dt*(h[n] + b[n+1]/tau) in line 12 is type correct. In contrast, the expression
a + b[n] would cause a type error since a and b[n] do not have compatible types.

Since we use library functions to construct array types when declaring array
variables, we require that these library functions have the following two properties.

(1) Library functions do not change the relative order of fixed or dependent dimen-
sions.

(2) Library functions do not change fixed or dependent dimensions, including the
number of dimensions and the name or value of the boundaries of each dimen-
sion.

These conditions guarantee that after applying a library function the newly con-
structed array type still has the same fixed and dependent dimensions as before.
These two conditions restrict the effect of library functions essentially to merging
dependent and fixed indices in their given order. Unfortunately, these properties
of library functions cannot be checked by the compiler. Therefore, only carefully
checked, “hand-certified” library functions will be made available to guarantee the
soundness of the type checker. Since library functions are, like the type system
itself, implemented by the Forge developers and cannot be changed by the IOM
developers or ocean modelers, they have the same sensitive status as the imple-
mentation of the type checker itself, which could also principally contain errors.
A careful selection and implementation of library functions together with a careful
implementation of the type checker therefore can guarantee the soundness of results
reported by the type checker.

3.3 Statement Typing

The type system also checks the validity of all statements. For example, an assign-
ment statement is valid only if the type of the left-hand side is upward compatible
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with the type of the right-hand side. The upward compatibility is defined by a
relation ≺. If a type t1 is upward compatible with a type t2, then an expression
of type t2 can be assigned to a variable or an array expression of type t1. For
example, in line 9 of Figure 5, the left-hand side of the assignment has the type of
array of real numbers; the right-hand side has the type of real. Since a real array
is upward compatible with real, this assignment is valid. Similar reasoning shows
that all the assignments in Figure 5 are valid.

For a Fortran subroutine call we need to check if the types of the arguments
match the types of the subroutine’s parameters. Unlike all other typing constraints,
we cannot perform this test independently of a particular model, that is, without
knowing the values of the model parameters for that model, because we have to
know the subroutine’s parameter definitions to judge whether or not the call is
correct. Therefore, we have to defer this test to the time when a Fortran subroutine
is generated from the tool specification for a particular model.

For example, in line 13 of Figure 6, a Fortran subroutine computeRHS is called.
At this point all we know is that this user-provided subroutine must have 2*dim
integer parameters (for the array boundaries) and two more array parameters of the
type specified in the local declaration. However, the correctness of the generated
subroutine spaceConv cannot be decided at this point and depends critically on the
availability of a user-provided Fortran subroutine computeRHS of the correspond-
ing type. Thus, along with the generation of the subroutine spaceConv we check
whether this condition is fulfilled. The formal definition can be found in Figure 16
in Appendix B in the typing rule sub.

Finally, the library function calls for program transformation have to be type
checked. When checking a library function call statement, we first obtain the type
of the corresponding Haskell function from the type environment Γ. For exam-
ple, the type of the library function genLoops is integer->fortran->fortran,
where the type fortran represents Fortran programs. Looking at the application
of genLoops in line 8 of Figure 5, we can observe that the first parameter dim is
a model parameter of type integer, and the second parameter is a sequence of
statements which is translated to Fortran statements. Therefore, the library func-
tion application in line 8 is valid. The typing rule for checking library function call
statements is defined in Figure 16 in Appendix B in the rule lib`.

4. RELATED WORK

The Earth System Modeling Framework (ESMF) defines an architecture that al-
lows the composition of applications using a component-based approach [Dickenson
et al. 2002]. The focus of the ESMF is to define standardized programming inter-
faces and to collect and provide data structures and utilities for developing model
components.

Forge is a program generator, which is a special kind of metaprogramming tool
[Sheard 2001]. The approach for implementing Forge can be considered as single-
stage programming since Forge programs are compiled to Fortran programs directly,
and program generation only happens at compile time. Program generators also
exist as multi-stage programming languages, such as MetaML [Taha and Sheard
2000] or MetaOCaml [Calcagno et al. 2003], where code can be generated at run-
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time. Program generators implemented in multi-stage programming languages are
all embedded languages [Elliott et al. 2000], which means the new language is both
syntactically and semantically a subset of an existing language. Forge is imple-
mented in Haskell, but it is not a language embedded in Haskell since the syntax
and semantics of Forge are not a subset Haskell.

Scientific computing is a popular domain for the application of program gen-
eration/program synthesis. Several program synthesis systems are being used in
different scientific areas. SciNapse [Akers et al. 1997] is a system for solving partial
differential equations (PDEs). It generates Fortran or C programs from a PDE
specification. SciNapse is built on top of a general-purpose knowledge-based sys-
tem that contains transformation rules. The generated programs are constructed
by instantiating predefined selected algorithm templates. SciFinance [Akers et al.
2001] applies a similar approach to financial modeling—it generates C programs
from financial model specifications written in ASPEN (Algorithm SPEcification
Notation). CTADEL [van Engelen et al. 1997] is a software environment for gener-
ating multi-platform high-performance Fortran code for PDE-based problems from
abstract problem specifications. A CTADEL specification is first transformed to
intermediate code. Optimizations will be applied to this intermediate code, and the
refined intermediate code will be translated to Fortran. Planware [Blaine et al. 1998]
generates Lisp programs for high-performance scheduler software. Planware first
refines an abstract problem specification to a particular scheduling problem, then
generates Lisp code by applying a predefined code-generation tactic. The Amphion
system [Lowry and Baalen 1995] guides users in developing a formal specification of
a problem and then implements this specification as a Fortran program consisting
of calls to subroutines from a library. The program generation is based on intu-
itionistic propositional logic. AutoBayes [Fischer et al. 2000] is a program-synthesis
system implemented in SWI-Prolog for statistical data analysis. It generates opti-
mized C/C++ code from the description of a data analysis problem in the form of a
statistical model. The generated programs are documented; assumptions and proof
obligations that have not been discharged during the program generation process
are presented in the documentations or are converted into rum-time assertions. A
system for generating numerical programs for simulation of rigid mechanical sys-
tems in physics-based animation is introduced in [Ellman et al. 2003]. It generates
a numerical C++ simulation program that drives a real-time animation of a spec-
ified scenario. The program generation is implemented by instantiating a generic
parameterized program scheme.

All these systems have a similar goal to Forge, which is to generate programs
automatically for a specific scientific application from abstract specifications. How-
ever, there are three main differences between these applications and our system.
First, the described systems work on more abstract specifications, for example,
partial differential equations or scheduling problem descriptions, while Forge works
with discrete equations. Generating programs from a more abstract specification
may save users work, for example, deriving discrete equations from a continuous
equation. However, this approach also limits the applicability of the systems since
they often have more constraints on the problems they are solving. Since discrete
equations can be derived from almost all scientific formulas, Forge can be used
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more broadly. Second, most of the above systems focus on generating efficient code
for a specific problem instead of reusing existing user code. In contrast, we are
aiming at generating model-dependent programs, which requires the existing user
code to be reused as much as possible. Finally, in our system, guaranteeing the
type correctness of the generated program is a major goal. However, the described
systems do not guarantee the type correctness of the generated programs.

In metaprogramming systems like MetaML [Taha and Sheard 2000] or Template
Haskell [Sheard and Peyton Jones 2002] the metaprogramming language is an ex-
tension of the object language. In our system, metaprogramming happens in three
different languages: (1) the specifications are defined in Forge, (2) the library func-
tions are written in Haskell, and (3) the generated programs are Fortran. Existing
Fortran metaprogramming tools include Foresys [Simulog, SA 1996], whose focus is
on the refactoring of existing Fortran code, for example, transforming a Fortran77
program into Fortran90 program. Sage++ [Bodin et al. 1994] is a tool for build-
ing Fortran/C metaprogramming tools. However, to express applications as the
ones shown here a user has to write metaprograms in Sage++ for transforming
Fortran, which is quite difficult and error prone and probably beyond the capabil-
ities of scientists who otherwise just use Fortran. In contrast, Forge allows users
to work mostly in Fortran and express generic parts by parameters; most of the
metaprogramming issues are hidden inside the compiler and parameter definitions.
Macrofort [Gomez and Capolsini 1996] can generate Fortran code from Maple pro-
grams, but does not provide the mechanism to deal with generic, model-dependent
code.

Recently, we have investigated an alternative approach to Fortran program gen-
eration through a language called Parametric Fortran [Erwig and Fu 2004] that
allows the definition of Fortran extensions by parameter structures that can be re-
ferred to in Fortran programs to specify the dependency of program parts on these
parameters. By providing parameter values, a parameterized Fortran program can
be translated into a regular Fortran program. These parameters are very different
from the model parameters of Forge. The behavior of these parameters has to be
specified explicitly through Haskell definitions for each parameter type, whereas
this behavior is essentially predefined in Forge and can be adjusted through library
functions. With Parametric Fortran we can create complete Fortran programs,
whereas Forge is limited to the specification and generation of subroutines that will
be part of larger simulation programs. Since Parametric Fortran is a more general
approach than Forge, it lacks most of the safety guards provided by the Forge type
system.

To summarize, our approach can be considered as the combination of genera-
tive programming [Czarnecki and Eisenecker 2000] and template metaprogramming
[Veldhuizen 1995; Sheard and Peyton Jones 2002]. Forge is a generative program-
ming language because the Forge programs are used to generate Fortran programs.
Forge also supports template definitions, for example, the array types parameter-
ized by model parameters.
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5. CONCLUSIONS

Using generic descriptions for inverse ocean modeling tools enables the developers
of the IOM system to specify tools once and let a program generator create Fortran
implementations automatically for different ocean models. The mix of a declara-
tive language for a mathematical specification of tools by discrete equations and the
availability of library functions to incorporate model-specific aspects into the trans-
lation process makes the language Forge a high-level language that also provides
a well-defined, flexible path for extensions. A sophisticated type system facilitates
the consistency checking of specifications independently of particular models, that
is, tools can be checked before they are released and used by scientists. Preventing
the generation of erroneous Fortran programs increases the reliability and helps to
promote the acceptance of the approach.

The design of Forge supports the collaboration of ocean scientists, software de-
velopers, and computer scientists and provides at the same time a large degree of
independence that facilitates the further development of tools and the specification
language.

The IOM tools generated by Forge are currently intensively used with the ocean
model PEZ at Oregon State University and the National Center for Atmospheric
Research, and with the model KDV at Arizona State University. Other ocean mod-
eling groups are currently in the process of adapting the IOM system, so that the
graphical user interface and the Forge compiler will soon be also used for models,
such as ROMS (developed at Rutgers and University of Colorado), ADCIRC (de-
veloped at Arizona State University and University of North Carolina), and SEOM
(also developed at Rutgers).

One main goal for future versions of the Forge is to improve the support for
parallel computing. To cope with huge data sets, modelers typically prefer to run
the IOM tools in parallel. To support this goal, Forge needs to be able to generate
parallel code for different parallel infrastructures, for example, data decomposition
for distributed memory supercomputers, the class of shared-memory vector super-
computers, or NUMA scalar supercomputers, depending on what infrastructure the
modelers use. To express parallelism within tools requires the extension of Forge
to support parameterizing tool specifications with different parallel infrastructures
and generating parallel code.

Appendix A: The Syntax of Forge

A specification (Spec) has a name followed by a list of model parameter declarations
(MPList) and consists of an interface part (Interface) and a body, which is given
by a statement (Stmt), see Figure 7.

The binary operators * and / in Figure 7 can be used on two values or a value
and an array, but not on two arrays. The syntax of interfaces is summarized in
Figure 8, which builds on the syntax for dependent-index declarations, which are
shown in Figure 9.

Dependent index expressions are a special form of dependent types [Xi and Pfen-
ning 1999].

The syntax of types is shown in Figure 10. The type fortran is used in the types
of library functions that are used as program transformations. Function types are
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Spec ::= TName(MPList) Interface Stmt

MPList ::= Type::PName; . . . ;Type::PName

Stmt ::= FName{PNames|Stmt} | Assg | SubCall | DoStmt | Stmt;Stmt

PNames ::= PName, . . . ,PName

SubCall ::= call SubName(FParam, . . . ,FParam)

DoStmt ::= do VName=Expr,Expr Stmt

FParam ::= Expr | IName

Assg ::= VName=Expr | Array=Expr

Array ::= VName[Expr, . . . ,Expr]

Expr ::= PName | VName | Array | Const | UOp Expr | Expr BOp Expr

UOp ::= -

BOp ::= + | - | * | /

Fig. 7. Syntax of specifications.

Interface ::= DepIx;Param;Local;

DepIx ::= index IxDecl; . . . ;IxDecl

Param ::= param VarDecl; . . . ;VarDecl

Local ::= local VarDecl; . . . ;VarDecl

VarDecl ::= Type::VName, . . . ,VName

Fig. 8. Syntax of interfaces.

IxDecl ::= IName=DepExpr

DepExpr ::= VName:VName[Expr:Expr]

Fig. 9. Syntax of dependent-index declarations.

used to represent the types of library functions and external Fortran subroutines.

Type ::= Bty | Aty | subroutine | depix | range | fortran | Type->Type

Bty ::= integer | real
Aty ::= Bty, dimension (Ind)

Ind ::= FName{PNames|FixInd,DepInd} | DepInd | FixInd

DepInd ::= IName | DepExpr

FixInd ::= Range | Range,FixInd

Range ::= Expr:Expr

Fig. 10. Forge types.

Finally, the syntax of model specifications is defined in Figure 11.

Model ::= model Name;PDef ; . . . ;PDef

PDef ::= PName=Expr | TName.PName=Expr

Fig. 11. Syntax of parameter definitions.
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Appendix B: The Typing Rules of Forge

In the following rules, we use metavariables e, f , vd, p, r, s, and v to range over
Expr , FName, VarDecl , PName, Range, Stmt and VName, respectively. We use t
to range over the Forge types. For convenient use in the typing rules, we represent
array types by quadruples (f,FixInd , DepInd,Bty). The judgment Aty ⇓ t used
in the rule avs` expresses that t is the quadruple corresponding to the array type
Aty . The judgment Aty ⇓ t is defined in Figure 13 by inference rules.

This style of defining typing judgments by rules is explained in detail, for example,
in Benjamin Pierce’s book [Pierce 2002]. Simply said, a rule consists of zero or
more premises P1, . . . , Pn written above the bar and one conclusion C, and has the
meaning that the conclusion is true if all the premises are fulfilled. If n = 0, that
is, if no premises are given, the conclusion is always true, and the corresponding
rule just states a fact. All the rules in Figure 13 are facts, but the rules in Figure
12 contain premises. Premises and conclusions are expressed in form of judgments,
which are essentially relations between the participating objects. For example, the
judgment Aty ⇓ t expresses the relationship between an array type Aty and its
quadruple representation.

The rules in Figure 12 define how to construct two typing environments ∆ and
Γ from the interface part of a specification. A typing environment is a set of
pairs (v, t), expressing that variable v has the type t. The typing environment ∆
contains the type information for all model parameters, including external Fortran
subroutines to be called, whereas Γ contains the type information for constants,
variables and library functions. Γ0 is the initial typing environment, which contains
the type information of constants and library functions. The judgment ∆; Γ ` d �
∆′; Γ′ expresses that the declaration d changes the current typing environments
from ∆ and Γ to ∆′ and Γ′. The judgment ∆; Γ ` t expresses that t is a valid
array type under the typing environments. The judgment ∆; Γ ` e : t expresses
that the expression e has the type t under the typing environments. We maintain
two separate typing environments Γ and ∆, because model parameters can only be
used in expressions for dependent indices and the parameters of library functions
can only be model parameters.

The rule mp` and mps` show how ∆ is constructed from model parameter dec-
larations. If a model parameter declaration t :: p appears in the parameter list of
a specification, the pair (p, t) will be added into the typing environment ∆. dixe`
says that a dependent-index expression is valid only if the two expressions specify-
ing the number of dependent dimensions have integer types and only contain model
parameters and constants. Fortran variables must not appear in the expressions
because the number of dependent dimensions has to be known at compile time.
Therefore, we use ∆ and Γ0, which do not contain type information for Fortran
variables, to infer the type of the two expressions in the rule dixe`. The pres-
ence of Fortran subroutine names in ∆ causes no problem, since their result type
is subroutine, which means that they can never successfully contribute to a well
typed integer expression. The rule dix` shows that if a dependent-index expression
is valid and is bound to a name, then the name has the type depix in the typing
environment Γ. We do not have to distinguish different dependent-index types in
the type system, because the type depix is only used to check if a library func-
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mp`
p /∈ dom(∆)

∆; Γ ` t::p � ∆ ∪ {(p, t)}; Γ
mps`

∆i; Γ ` ti::pi � ∆i+1; Γ 1 ≤ i ≤ n

∆1; Γ ` t1::p1; . . . ;tn::pn � ∆n+1; Γ

dixe`
∆; Γ0 ` e1 : integer ∆; Γ0 ` e2 : integer li, hi /∈ Γ i ≥ 1

∆; Γ ` l:h[e1:e2] : depix

dix`
IName /∈ dom(Γ) ∆; Γ ` DepExpr : depix

∆; Γ ` IName=DepExpr � ∆; Γ ∪ {(IName, depix)}

dixs`
∆; Γi ` IxDecli � ∆; Γi+1 1 ≤ i ≤ n

∆; Γ1 ` index IxDecl1;IxDecl2; . . . ;IxDecln � ∆; Γn+1

bvs`
vi /∈ dom(Γ) 1 ≤ i ≤ n i 6= j ⇒ vi 6= vj

∆; Γ ` Bty::v1,v2, . . . ,vn � ∆; Γ ∪ {(v1,Bty), (v2,Bty), . . . , (vn,Bty)}

range`
∅; Γ ` e1 : integer ∅; Γ ` e2 : integer

∆; Γ ` e1:e2 : range

fix`
∅; Γ ` r : range ∅; Γ ` FixInd : range

∆; Γ ` r,FixInd : range

aty`

∆; Γ ` FixInd : range ∆; Γ ` DepInd : depix ∆; Γ0 ` pi : ti

∅; Γ0 ` f : t1-> . . . ->tk->range->depix->range

∆; Γ ` Bty, dimension(f{p1, . . . ,pk|FixInd,DepInd})

faty`
∆; Γ ` FixInd : range

∆; Γ ` Bty, dimension(FixInd)
daty`

∆; Γ ` DepInd : depix

∆; Γ ` Bty, dimension(DepInd)

avs`
vi /∈ dom(Γ) 1 ≤ i ≤ n ∆; Γ ` Aty Aty ⇓ t i 6= j ⇒ vi 6= vj

∆; Γ ` Aty::v1,v2, . . . ,vn � ∆; Γ ∪ {(v1, t), (v2, t), . . . , (vn, t)}

ps`
∆; Γi ` vdi � ∆; Γi+1 1 ≤ i ≤ n

∆; Γ1 ` param vd1;vd2; . . . ;vdn � ∆; Γn+1

ls`
∆; Γi ` vdi � ∆; Γi+1 1 ≤ i ≤ n

∆; Γ1 ` local vd1;vd2; . . . ;vdn � ∆; Γn+1

env`

∅; Γ0 ` MPList � ∆; Γ0 ∆; Γ0 ` DepIx � ∆; Γ

∆; Γ ` Param � ∆; Γ′ ∆; Γ′ ` Local � ∆; Γ′′

∅; ∅ ` TName(MPList)DepIx;Param;Local; � ∆; Γ′′

Fig. 12. Rules for environment judgments.

tion call for constructing a dependent array type is type correct by the rule aty`
and daty`. As long as a dependent index is type correct, library functions can
be applied to it—the exact type does not matter. Therefore, all dependent-index
expressions and names have the same type depix.

The rules bvs` and avs` check variable declarations. If a variable has a base
type, the rule bvs` adds the pair (v, t) into Γ. If a variable has an array type, the
rule avs` first checks if the array type is valid, in which case the name and the
quadruple representing the array type is added into Γ. The rule range` expresses
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that a range consists of two integer expressions. Since the two expressions of a range
can only contain Fortran variables, we use ∅ instead of ∆ in the premises of the rules
range` and fix`. The rules faty` and daty` check if an array type is valid when
there is no library function involved. faty` says that if an array type only contains
fixed indices, the fixed indices must have the type range. daty` says that if an
array type only contains dependent indices, the dependent indices must have the
type depix. When an array type is constructed by a library function, the rule aty`
needs to check if the library function call is type correct. Every library function is
a Haskell function whose type signature is contained in Γ0. A library function used
for merging array indices must have the type t1-> . . . ->tk->range->depix->range.
The type of every parameter of the library function has to match the type signature.

The rules ps` and ls` add the typing information of all the parameter variables
and local variables into the typing environment Γ. The rule env` shows how the
type environments are constructed from the interface part of a specification. We
start from the initial typing environments ∅ and Γ0. The result typing environment
∆ contains the type information for all model parameters. The type information
for all the dependent-index names, parameter variables, and local variables will be
subsequently added, and the result typing environment is Γ′′.

mix⇓
Bty,dimension(f{PNames|FixInd,DepInd}) ⇓ (f,FixInd ,DepInd ,Bty)

fix⇓
Bty, dimension(FixInd) ⇓ (∅,FixInd , ∅,Bty)

dep⇓
Bty, dimension(DepInd) ⇓ (∅, ∅,DepInd ,Bty)

Fig. 13. Array representations.

The rules in Figure 14 define the typing rules of Forge expressions. The judgment
∆; Γ ` e : t means the expression e has the type t under the typing assumptions ∆
and Γ.

con`
c is a constant of Bty

∆; Γ ` c : Bty
var`

(v, t) ∈ Γ

∆; Γ ` v : t
par`

(v, t) ∈ ∆

∆; Γ ` v : t

array`
∆; Γ ` e : (f, (r1, r2, . . . , rn),DepInd ,Bty) ∆; Γ ` ei : integer 1 ≤ i ≤ k ≤ n

∆; Γ ` e[e1,e2, . . . , ek] : (f, (rk+1, rk+2, . . . , rn),DepInd ,Bty)

uop`
∆; Γ ` e : t

∆; Γ ` UOp e : t
bop`

∆; Γ ` e1 : t1 ∆; Γ ` e2 : t2 t1 ∼ t2

∆; Γ ` e1 BOp e2 : max(t1, t2)

Fig. 14. Typing rules for expressions.

The rule array` shows that we only allow referencing fixed indices in Forge. This
restriction is necessary because the number of dimensions of dependent indices is
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different in different models, it might even be 0 in some models. The rule uop` is
trivial since we currently have negation as the only unary operator in our abstract
syntax; see Figure 7. The notation t1 ∼ t2 is used to express that t1 and t2 are
compatible in the sense that binary operations can well operate on arguments of
both types. The relation ∼ is defined as follows.

t1 ∼ t2 iff t1 ≺ t2 or t2 ≺ t1

In the definition, we use a partial order relation on types, ≺, which is defined in
Figure 15. The rule ba≺ essentially allows the initialization of an array with a
constant or to add a constant to every element of an array, cf. rule assgn` in
Figure 16. This rule overloads constants of base types with array types.

base≺
integer ≺ real

refl≺
t ≺ t

ba≺
Bty1 ≺ Bty2

Bty1 ≺ (f,FixInd ,DepInd ,Bty2)

array≺
FixInd1 = FixInd2 DepInd1 = DepInd2 Bty1 ≺ Bty2

(f,FixInd1,DepInd1,Bty1) ≺ (f,FixInd2,DepInd2,Bty2)

Fig. 15. Partial order on types.

The inclusion of the ordering ≺ may not seem necessary since we currently have
only two base types, integer and real; but this relation will be very useful when
we extend the type system to include more base types. The function max returns
the larger of two types with respect to ≺ if the two types are comparable, that is
max (t1, t2) returns t1 if t2 ≺ t1, otherwise it returns t2. Note that the application
of max in rule bop` is always well defined since max will be applied only if its
argument are compatible.

The typing rules in Figure 16 define the typing of Forge statements. The judg-
ment ∆; Γ ` s means that the statement s is valid under the typing environments
∆ and Γ. The rule assgn` says that the assignment statement is valid if the type
of the left-hand side is upward compatible with the type of the right-hand side.
For example, we can assign a real number to a real array, which has the effect that
all the elements in the array will be initialized to the same value. The use of ∅ in
the two premises ensures that v and all variables used in e are not confused with
model parameters and that have valid types defined in Γ. The rule sequ` expresses
that a sequence of two statements is valid only if both statements in the sequence
are valid. In the rule sub` we can only check whether the called Fortran subrou-
tine SubName has been declared as a model parameter. We cannot check the type
consistency of the arguments because we have not access to the code of the called
subroutine at this time. The rule lib` checks a library function call in a similar
way as the rule aty` in Figure 12. The typing rule spec` expresses that if the
body of a specification is type correct under the typing environments constructed
from its interface, the whole specification is type correct.
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assgn`
∅; Γ ` v : t1 ∅; Γ ` e : t2 t2 ≺ t1

∆; Γ ` v=e

sequ`
∆; Γ ` stmt1 ∆; Γ ` stmt2

∆; Γ ` stmt1;stmt2

do`
∅; Γ ` v : integer ∅; Γ ` e1 : integer ∅; Γ ` e2 : integer ∆; Γ ` s

∆; Γ ` do v=e1,e2 s

sub`
∅; Γ ` ei : ti 1 ≤ i ≤ k ∆; ∅ ` SubName : subroutine

∆; Γ ` call SubName(e1,e2, . . . ,ek)

lib`

∅; Γ0 ` f : t1-> . . . ->tk->fortran->fortran

∆; ∅ ` pi : ti 1 ≤ i ≤ k ∆; Γ ` s

∆; Γ ` f{p1, . . . ,pk|s}

tool`
∅; ∅ ` TName(MPList)Interface � ∆; Γ ∆; Γ ` s

∅; ∅ ` TName(MPList)Interface s

Fig. 16. Type rules for Forge statements.
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Appendix C: The Result of Compiling timeConv for PEZ

subroutine timeConv(X1, Y1, X2, Y2, X3, Y3, L, U, dt, tau, a, b)

integer :: dim3i

integer :: X3

integer :: Y3

integer :: dim2i

integer :: X2

integer :: Y2

integer :: dim1i

integer :: X1

integer :: Y1

real :: dt

real :: tau

integer :: L

integer :: U

real , dimension (L:U, X1:Y1, X2:Y2, X3:Y3) :: a

real , dimension (L:U, X1:Y1, X2:Y2, X3:Y3) :: b

real , dimension (L:U, X1:Y1, X2:Y2, X3:Y3) :: h

integer :: n

do dim3i = X3, Y3, 1

do dim2i = X2, Y2, 1

do dim1i = X1, Y1, 1

h(L,dim1i,dim2i,dim3i) = 0.0

do n = L+1, U, 1

h(n,dim1i,dim2i,dim3i) = h(n-1,dim1i,dim2i,dim3i) &

& -dt*(h(n-1,dim1i,dim2i,dim3i)/tau+2.0*a(n,dim1i,dim2i,dim3i)/tau)

end do

b(U,dim1i,dim2i,dim3i) = -0.5*h(U,dim1i,dim2i,dim3i)/tau

do n = U-1, L, -1

b(n,dim1i,dim2i,dim3i) = &

& b(n+1,dim1i,dim2i,dim3i)-dt*(h(n,dim1i,dim2i,dim3i) &

& +b(n+1,dim1i,dim2i,dim3i)/tau)

end do

end do

end do

end do

end subroutine timeConv
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