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Abstract

Spreadsheets are widely used end-user programming tools. Since many critical decisions are made
based on values computed by spreadsheets, the correctness of spreadsheets is crucial. The application
of tried and tested software engineering principles to spreadsheets seems to promise help with the
construction and maintenance of dependable spreadsheets. However, can we really make this practical
for end users?

In this article we demonstrate with two examples, type checking and debugging, that we can ex-
ploit the idiosyncratic structure of spreadsheets to successfully translate these concepts to an end-user
programming domain. We argue that the simplified computational model and the rich context infor-
mation provided by the spatial embedding of formulas allow, in particular, the simplification of these
concepts, which ultimately leads to effective tools for end users.

1 Introduction

Software engineering provides principles and tools that can help with the creation and maintenance of
sotfware, which is generally a difficult and error-prone undertaking. The adoption of software engineering
in the domain of end-user programming is complicated by the observation that end users, who often do
not have formal training in computer science or programming, do not not take an interest in software
development in itself, but rather resort to programming to to get their job done. Can we expect under
these circumstances end users to employ elements of software engineering in their work? Or isn’t software
engineering for end users rather a distraction that only takes away precious end-user time?

This critical viewpoint focuses only on the costs of software engineering and ignores the potential
benefits, such as, increased reliability and maintainability and overall improved quality of the developed
software, which can then be expected to deliver much better results. Moreover, the skepticism implicitly
assumes that employing software engineering principles must always be complicated and time consuming.

In this article, we want to illustrate that this does not have to be the case. In particular, we demonstrate
how we can integrate in the context of spreadsheets simple and easy-to-use, but effective tools to make
powerful software engineering methods accessible to end users.
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We will show that the spreadsheet domain does not only pose challenges for the integration of software
engineering ideas, but also presents unique opportunities due to its idiosyncratic programming model. As
an example, we will demonstrate how the often daunting tasks of type checking and debugging can be
turned into simple and effective tools that can support end users in their work with spreadsheets. We
have picked type checking since it is widely considered as a very technical and hard-to-understand process.
Anyone who has seen a Haskell type error message for the first time knows how frustrating type error
messages can be even to professional programmers. If we can get type checking to work for end users, this
would certainly be a case in point for the viability of end-user software engineering. Similarly, debugging is
usually long and tedious process that typically involves single-stepping through code, setting breakpoints,
and monitoring the evolution of values for a collection of variables. If we can turn debugging into a
simple activity that consists only of a few steps to reliably remove errors from spreadsheets, this would
also demonstrate the feasibility of end-user software engineering.

2 Label-Based Type Checking

The purpose of a type checker is to find incorrect applications of operations, such as the multiplication of
a number and a string. Applying operations to wrong arguments is a serious programming error. Most
insidious are cases that do actually not lead to runtime errors, but produce incorrect results that may
become the basis of wrong decisions.

This aspect of unnoticed type errors is of particular relevance in spreadsheet systems like Excel. These
systems often do distinguish between basic types, such as numbers and string, and also perform some
minimal form of type checking for these types. However, features to define and manage more refined
and more application-oriented notions of types are missing, and thus the support for end users in finding
or avoiding errors in formulas is rather primitive. In fact, many spreadsheets contain large amounts of
numbers, which the spreadsheet system allows to be combined in formulas in arbitrary, unrestricted ways,
even though the numbers represent quantities that shouldn’t be combined at all or only in specific ways.
An application-specific notion of types and a corresponding method of checking them could potentially
be very useful in finding errors.

2.1 Reasoning about Labeled Values

Consider the spreadsheet in Figure 1 that shows a simple table with harvesting data for different kinds of
fruits in different months.

The total in cell B5 is computed by the formula B3+B4, which seems correct in the context of this
spreadsheet since it is adding numbers that represent the harvested apples in two months. In contrast,
consider the two alternative formulas B3+C4 and B3+D4. From a traditional typing perspective there is
nothing wrong with these formulas since they are both adding numbers. However, we would not consider
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Figure 1: A spreadsheet containing harvest data

either one of them to be correct, because the formula for the total of apples should not include oranges
(C4) or a total of all fruits for a particular month (D4). The basis for this line of reasoning is provided by
the use of labels (“Apple”, “Orange”, etc.) in particular cells. These labels indicate a particular meaning of
the numbers in cells, such as B3 (“Apples harvested in May”) or C4 (“Oranges harvested in June”) and thus
constrain what is considered to be a reasonable formula for, say the total number of apples.

The labels in the spreadsheet define an application context into which the numbers are embedded,
and the spatial relationship between labels and numbers can be interpreted as an application-specific type
annotation for the values, which can then be exploited by rules that define valid and invalid combinations
of annotated values to find errors in formulas.

We have introduced such a typing concept based on labeled data in [1], and we have identified rules that
formalize the reasoning about the correctness of formulas that involve labeled values. Several observations
about label structures that typically occur in spreadsheets make the definition of a labeled-value reasoning
system a non-trivial endeavor.

• Values can have more than one label. For example, B3 is labeled by “Month” and “Apple”.

• The labeling relationship exhibits, in general, a hierarchical structure. For example, B3 is labeled
by “Apple”, and B2 and C2 are both labeled by “Fruit”, which leads to nested or hierarchical labels,
such as “Fruit.Apple” or “Fruit.Orange”.

• Some combinations of labels are considered to be invalid. For example, while it is reasonable for a
value to be labeled by both, “Month” and “Apple”, it does not make sense for a value to be labeled
by “Apple” and “Orange” at the same time.

The last observation provides the basis for a method of identifying errors in formulas, which works as
follows. Each operation has associated with it a well-defined behavior for transforming the labels of its
arguments. These label transformations produce a result label for each formula in the spreadsheet. The
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resulting label will then be simplified and brought into a normal form. This normalization step includes
validity checks, and if the normalization fails, the formula is not label correct, that is, an error has been
found.

For example, when two values are added, their labels are combined into a union label that says that the
resulting value is characterized to some degree by both of the argument labels. In the example spreadsheet
from Figure 1, the formula B3+B4 would be labeled as “May or June”, which says that the resulting
number (here: 25) is a quantity that represents apples harvested in either May or June. Similarly, the total
for cell D3 expressed by the formula B3+C3 would be labeled as “Apple or Orange”, which says that the
resulting number (here: 26) is a quantity that represents either apples or oranges harvested in May.

But doesn’t that contradict what we said earlier, namely we that it is not valid to label a value by
“Apple” and “Orange” at the same time? The key aspect here is how labels are combined. The formula
B3+C3 generalizes the labeling, that is, it computes a number of fruits, which is formally captured by a
rule that expresses relationships that exploit hierarchical labels, such as Fruit.Apple + Fruit.Orange =
Fruit. Since Apple and Orange are labels that characterize one specific aspect of the value labeled, it makes
sense to add values of different labels of that category and form a union of the labels, which amounts to
placing the values in one bag. In contrast, it would not make sense to add a value labeled May and a value
labeled Apple since the labels are not part of the same category.

In the example spreadsheet, values are labeled along two independent dimensions, Fruit and Month.
The month in which the harvesting took place represents a different, independent aspect of the value,
which has a number of implications. First, labels from that category (“May” and “June”) can be generalized
similarly to fruits (as was indicated above by the formula B3+B4). Second, labels from different categories
cannot be combined in a generalization step. This is why a label, such as “May or Apple” is considered
an error. Third, it follows that the labels attached to a value or formula are related to one another in two
principal different ways that affect their transformation: They can be part of the same category or they
can be orthogonal. Therefore, it would not make sense to label a value “Apple and Orange” since this
would correspond to attaching the Fruit dimension twice to the value and label it Apple in one instance
and Orange in the other, which would be a contradiction and is therefore considered to be an error.

Using these principles for reasoning about labeled values and formulas, we can identify errors in spread-
sheet formulas, in particular, wrong references and illegal or omitted components in aggregation formulas.

Before we show how errors can be identified, we would like to mention that other researchers have
adopted and extended the rules to account for reasoning about that distinguishes between different kinds
of relationships that can be expressed by labels (“is-a” vs. “has-a”) [2], or have integrated [3] reasoning
about the labels of values with reasoning about their units of measurements [4, 5].
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2.2 Finding and Reporting Errors

We have implemented a tool as an add-in to Excel that implements the described reasoning rules. Af-
ter inferring the labels for cells based on the spatial arrangement in the spreadsheet, the tool applies the
reasoning and label normalization rules and colors cells in the spreadsheet that might contain errors [6].

Primary error cells are colored in orange. These error cells are those that violate any of the labeling
rules and that do not reference other error cells. Such secondary, or dependent, error cells are colored in
yellow. The reason for making this distinction is that after fixing primary error cells, secondary errors
often disappear automatically because their errors can result from the troublesome label they refer to in
their formula. Two examples of error feedback are shown in Figure 2.

Figure 2: Summation and reference errors identified with the help of labels

The first error results when the summation formula in B5 includes not only B3 and B4, but also B2.
This can easily happen when during the construction of a formula the user extends the range of a SUM
operation a little to far. In this case the label of B2, which is simply “Fruit”, cannot be combined with the
labels of the other two arguments into a normal form. The total in D5 refers to cell B5 an thus inherits the
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unresolvable label. Since this error is dependent on the one in B5, it is shown with a yellow background.
The second error results because the user has placed a direct reference to C3 into cell B4, which leads

to a label error because by way of its position the number in cell B4 represents apples harvested in June,
whereas by way of the referenced value it also should represent oranges harvested in May. Since, as dis-
cussed before, a value cannot represent apples and oranges at the same time, the formula is considered to
be an error. The errors that result in the three dependent total cells are again shown with a yellow cell
background. As can also be seen in this example, additional information about potential sources of errors
are, when available, produced as comments for cells.

2.3 Usability

When contemplating about end-user programming it is important to realize that end users do not view
programming in an end in itself, but rather as a means to an end. Any tool for an end-user program-
ming environment has to acknowledge that the primary objective of end users is to get their jobs done.
Therefore, one cannot expect end users to invest much, or even any, additional effort on their programs
to obtain some feedback whose value they might not even be sure about.

In the context of the described label-based type checking approach this means that we cannot expect
end users to explicitly label cells in addition to the data they have filled in already in the spreadsheet.
If we want to exploit label information for reasoning about formulas, we rather have to infer the label
information automatically from the spreadsheet.

As we have shown in [7] this can actually be done quite effectively by exploiting the spatial relation-
ships among cells that carry numerical data and labels. Through a variety of heuristics that are based on
relative positions and distances of labels to one another and to the data intended to be labeled a quite accu-
rate data labeling can be derived. This spatial analysis can be integrated with the reasoning rules for labeled
formulas into a system that can automatically, with one mouse click, perform a label-based type checking
of spreadsheets [6].

Another question is whether end users can work successfully with a system that implements a label-
based type checker for spreadsheets, that is, can end users employ the feedback from the type checker to
improve their spreadsheets, in particular, can they effectively remove errors from formulas?

As we have shown in a user study, this is indeed the case [8]. In that study most users were guided
in their debugging efforts by the orange-colored cells. They fixed the erroneous cell(s) and reran the type
checker to potentially uncover additional faults in other formulas.

But not only could users of the type checker effectively remove errors, they also talked and reasoned
about faults in formulas in terms of labels in the spreadsheet, the same labels that the type checker uses
to identify errors. In the end, this fact is not too surprising since the labels used by the type checker
are the ones put in by users, the creators of the spreadsheet, in the first place. Nevertheless, this is still an
interesting observation, because it indicates a successful strategy to bringing software engineering methods
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to spreadsheets, namely through leveraging redundant information volunteered by users.

3 Semi-Automatic Debugging

The debugging of programs, the process of finding and removing faults, is a tedious and time-consuming
procedure. For example, one study found that it takes on average 17.4 hours to find and fix a software
bug [9]. One reason why debugging takes so much time is the nature of the debugging process. Typically,
programmers have to set break points, observe how values of variables evolve, and step on a fine-grained
level through a program to locate the source of a fault. In many cases, this process has to be repeated
many times when the break points have not been placed at the right positions or when not all the relevant
variables have been monitored. On top of that, once a fault has been located, it is not always obvious how
to fix it, and there is the danger of introducing new faults while trying to fix an existing one.

We can address both of these challenges and devise a fast and effective debugging approach by employ-
ing the following two ideas. First, invert the search direction for faults, that is, search backwards from
failures to faults, and second, propagate expected values alongside, and thus automatically derive sugges-
tions for program changes that will eliminate the failure.

From a spreadsheet user’s perspective this process looks as follows. A user observes an unexpected
value in a particular cell. A key aspect at this point is that in order to judge the value that is computed
in a cell to be incorrect, a user must know what the correct value should be. This is the value that he
or she expects to see in the cell. Now instead of just marking the cell as incorrect, the user can provide
the information about the expected value to the debugging system. The system then propagates the ex-
pected change from the old, incorrect value to the new, expected value backwards over the formula to its
arguments and referenced cells to derive formula changes.

How does this propagation and the derivation of changes work? Consider a cell that contains a con-
stant, say 5. If the expectation for that cell is 10, we can immediately derive the change of constant 5 to
constant 10 from this information, and the reasoning stops.

Now suppose the cell contains the formula A2+2, which still evaluates to 5, and the expected value
is again 10. There are several potential changes that can be derived in this situation. One possibility is
to replace the whole formula by the constant 10, but this change is considered to be unlikely the correct
change since it eliminates a computation. Another change would be to replace 2 by 7, which would lead
to the formula A2+7. In this example we can propagate the numerical difference (5) between the expected
and the actual value to one of the arguments because the employed operation in the formula is +. For
other operations, different propagations must be used. For example, if the formula were A2*2, the factor
2 would have to be replaced by 4 to yield 10.

Coming back to the original formula A2+2, we could also change the other argument of the + oper-
ation. In fact, there are at least three possibilities to do this. First, we could directly change the reference
to A2 by the constant 8. Again, that change would not be considered a likely candidate since it changes
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the model represented by the spreadsheet. Second, we could propagate the expected change for the value
computed in A2 (which is 3), to the formula in A2. The expected change for A2 is again derived from
the expected value and the fact that A2 is an argument of a + formula, that is, A2 needs to be 8 for the
formula A2+2 to yield 10. So if A2 contains a constant (which must be 3 then), the propagation would
result in changing 3 to 8, or if A2 contains another formula, we recursively perform the propagation and
change inference with the expected value 8. A third possibility is to change the reference to A2 into one
to another cell. Suppose, that cell A3 evaluates to 8. In this case, we can generate the suggestion to change
A2 to A3 in the formula.

As a concrete example consider again the spreadsheet in Figure 1. Suppose the formula in cell D4 was
incorrectly entered as B3+C4 (instead of the correct B3+C3), which would produce a total value of 30
(instead of 26). Using the spreadsheet debugger presented in [10] that implements the described approach,
the user would mark cell D4 as incorrect and supply 26 as the expected value for that cell. The system
would then contemplate potential changes to the formula that would cause it to evaluate to 26. Changes
can generally be suggested for different cells, because the fault does not necessarily have to be in the cell in
which the failure was observed. In this example, changes are reported in three cells: In C4 it is suggested to
change 13 to 9, and in B3 it is suggested to change 17 to 13. Both of these suggestions are, however, ranked
lower than the ones for cell D3 (and are therefore, shaded yellow). The cell with the most highly ranked
suggestions is shaded orange, and that is where users should start looking. In the bug report for D3 shown
in Figure 3 two changes are suggested, of which the second one is the correct one. The user can select the
change, which will then be automatically applied to the formula in the cell.

In formula: =B3+C4
change B3 to C4
change C4 to C3

Cell D3

More ...Ignore

Figure 3: Change suggestions generated from value expectation

In this very simple spreadsheet only 4 change suggestions are generated. However, in general, the num-
ber of possible changes that can change the outcome of a particular cell is enormous, even in spreadsheets
of moderate complexity. It is therefore very important to find ranking heuristics that will place the correct
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change suggestion as high up as possible. In [11] we have described several heuristics that can improve the
accuracy of the suggested changes. Using a systematic mutation-testing approach [12] we found that in
80% of the cases the correct change will be reported among the top five suggestions.

4 Conclusions

The two presented examples illustrate that it is indeed possible to successfully apply software engineering
principles and tools in an end-user domain. (We have also demonstrated how to apply methods of program
generation and software design in the area of spreadsheets [13, 14, 15], but for lack of space we cannot
elaborate on these ideas here.)

Two aspects of spreadsheets, in particular, have supported the successful adaptation, namely, (1) the
limited expressiveness of the formula language and (2) the spatial embedding of computation through
the placement of formulas in a two-dimensional grid. The lack of recursion limits the number of for-
mula changes to be considered in the change inference needed for goal-directed debugging. The spatial
embedding provides a basis for heuristics that can be exploited for the automatic derivation of labeling in-
formation and for dramatically improving the ranking accuracy of change suggestions in the goal-directed
debugging process.

What lessons can be learned from the spreadsheet examples that could help to apply software engi-
neering principles to other domains of end-user programming? First, a restricted model of computation
can simplify the reasoning mechanisms on which software engineering tools are based. The results of such
reasoning can often be presented and explained more easily to end users. Second, redundant information
and context information, that is, information that is not strictly needed for computations, can often be
exploited to derive constraints on computations. These constraints can the be employed to identify errors.

The growing number of end users performing more and more programming tasks in a diverse set of
areas poses the challenge for computer science to support them. Adapting proven software engineering
methods to end-user domains is one imortant way of providing such support.
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