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Abstract. We show how to define recursion operators for random access
data types, that is, ADTs that offer random access to their elements, and
how algorithms on arrays and on graphs can be expressed by these op-
erators. The approach is essentially based on a representation of ADTs
as bialgebras that allows catamorphisms between ADTs to be defined
by composing one ADT’s algebra with the other ADT’s coalgebra. The
extension to indexed data types enables the development of specific re-
cursion schemes, which are, in particular, suited to express a large class
of graph algorithms.
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1 Introduction

In [6] we have proposed to model abstract data types as bialgebras, that is, as
(algebra, coalgebra)-pairs with a common carrier. In this approach a program
on an ADT D can be defined by a mapping to another ADT D', and such a
mapping, called metamorphism, is essentially given by composing the algebra of
D' with the coalgebra of D. This offers much freedom in specifying ADTs and
mappings between them. It also provides a new programming style encouraging
the compositional use of ADTs. The proposed approach essentially uses existing
concepts, such as algebra and coalgebra, on a higher level of abstraction, and
this is the reason that all the laws developed for algebraic data types can still be
used for program transformation and optimization in this extended framework.
But in addition to this, the “programming by ADT composition” style offers
some new optimization opportunities: for example, since intermediate ADTs are
intrinsically used in a single-threaded way, a compiler can automatically insert
efficient update-in-place implementations for them [7].

ADTs (as well as algebraic data types) are restricted in the sense that the
decomposition (order) cannot be controlled from the outside. In other words,
the decomposition of ADT values is completely determined by themselves in ad-
vance. This makes the treatment of some data types, such as arrays or graphs,
difficult. In these data types the decomposition is often controlled by explicitly
given indices (respectively, nodes) telling which parts of the ADT value are to
be processed next. We call data types that offer such an index access random
access data types or simply indered data types. Index access behavior can, in



principle, be realized in the ADT approach by appropriately defining new, com-
pound ADTs that contain the ADT values (array, graph) to be indexed as well
as the index values. However, this results in rather complex definitions that are
difficult to comprehend.

A different solution is proposed in this paper: first, we generalize the defini-
tion of ADT to IDT (indexed data type). Essentially, this means to extend the
argument type of the destructor so that it has explicit access to index values.
This leads to a definition of an IDT as a trialgebra. Second, the definition of
metamorphism is generalized to take into account the use and dynamic gener-
ation of index values. This generalization comes in two flavors: first, for data
types like arrays having to deal with only one index value at a time, a simple
construction, called exomorphism, suffices. However, in the more general case,
for example, when dealing with graphs, collections of index values must be han-
dled, and this requires a much more involved definition in which two data types,
the primary one and an auxiliary one for storing index values, are processed
simultaneously. This general mapping is called synchromorphism.

The paper is structured as follows: after describing related work in the next
section, we briefly review the general categorical approach to data types in Sec-
tion 3 followed by an introduction to our bialgebra approach to abstract data
types in Section 4. The generalization to indexed data types is then described in
Section 5. A simple way to map between IDTs with is shown in Section 6, and
the development of a more powerful kind of morphisms is presented in Section
7. Conclusions in Section 8 complete the paper.

2 Related Work

The so-called Bird/Meertens formalism [1,16] is concerned with the derivation
of programs from specifications. Essential in that approach is the use of a few
powerful operators, like catamorphisms (also called fold or reduce), instead of
general recursion. Their work is originally based on lists only, but it has been
extended to arbitrary inductively defined data types [15,17-19,9]: a data type
is given by a morphism which is a fixed point of a functor defining the signature
of the data type. Since fixed points are initial objects, homomorphisms to other
data types are uniquely defined, and this makes it possible to specify a program
on a data type by simply selecting an appropriate target data type.

Work on program optimization has profited a lot from the categorical ap-
proach: when programs are expressed as catamorphisms (or even better as hy-
lomorphisms), powerful fusion laws can be used to eliminate intermediate data
structures [13, 19, 20].

The categorical framework has been almost always applied to algebraic data
types, that is, data types that are just given by free term structures. The only
general approach for expressing catamorphisms over non-free data types we know
of is the work of Fokkinga [11,10]. The idea is to represent terms by combinators
called transformers and to represent an equation by a pair of transformers. Sev-
eral properties of transformers are investigated, and it is shown how transform-



ers can be combined to yield new transformers thus resulting in a variable-free
language for expressing equations. The use of transformers is demonstrated in
showing the equivalence of two different stack implementations. Although this
works for sub-algebras that satisfy certain laws, one cannot map into algebras
with less structure [10,11,14]. This innocent looking restriction means a rather
severe limitation of expressiveness: for instance, a program for counting the el-
ements of a set cannot be expressed as a catamorphism. This restriction was
lifted by the proposal we made in [6].

Some work has been done for specific abstract data types. Interestingly, these
are always indexed data types in our sense: Chuang presents in [3] three different
views of arrays and defines for each view corresponding fold operations. The
first exploits the indexing facilities of arrays, whereas the second views arrays
as sequences. In the third view arrays are treated as mappings. We can recover
the first two of these views by an IDT based on appropriate coalgebras, and
programs on arrays can be conveniently expressed by exomorphisms.

Gibbons [12] defines a data type for directed acyclic multi-graphs. With a
careful choice of operations, which obey certain algebraic laws, the definition of
graph catamorphisms becomes feasible, and some functions on graphs, such as
reversing the edges of a graph, can be expressed as graph catamorphisms. How-
ever, the whole approach is very limited since it applies only to acyclic graphs
having no edge labels. We have presented a more general view of graphs in [5]. In
that paper an important aspect was the definition of a couple of fold operations
that can be used to express operations, such as graph reversal, depth first search,
evaluation of expression DAGs, or computing all simple paths in a graphs. Two
theorems for program fusion were presented that allow the removal of intermedi-
ate search trees as well as intermediate graph structures. We can express graph
algorithms by synchromorphisms, including depth-first and breadth-first search
and even Dijkstra’s shortest path algorithm. The view on graph algorithms that
is provided by synchromorphisms is similar in spirit to the fixed set of graph
exploration operators that were identified in [4].

3 Categorical Data Types

In this section we give a very brief review of the categorical framework for mod-
eling data types. More detailed introductions can be found, for example, in [2,
10,17, 20]. Examples follow in later sections.

Our default category C is CPO, whose objects are complete partially or-
dered sets with a least element | and whose morphisms are continuous functions.
Working in CPO guarantees the existence of least fixed points for recursive equa-
tions, such as for hylomorphisms and those of Sections 6 and 7.1. We consider
polynomial endofunctors on C which are built by the four basic functors identity
(IA=Aand I f=f), constant (A B= A and A f =id4), product (A x B =
{(z,y) | = € A,y € B}), and separated sum (A+ B = {1} x AU{2} x BU{l}).
The definition of x and + on functions is given below with several additional



operations:

(f+9) (Lz) = (I,fz) (fxg9) (zy) = (fz,9y)
(f+9) 2,9) = (2,9y) (f.9)z = (f z,9 x)
(f+g9) L =1 m (z,y) =
[f.9] L,2) = fa m (z,y) =y
[f,9] (2,y) = gy nz = (1,z)
[fig] L = L ey = (2,y)

For an object  we denote its constant function by z, that is, z y = z. (Note also
that function application binds strongest, and x binds stronger than 4, which
in turn binds stronger than composition “0”.)

Separated sum and product are bifunctors that map from the product cate-
gory C x C to C. Fixing one parameter of a bifunctor yields a monofunctor: the
(left) section of a bifunctor F' and an object A is defined as F4(B) = F(A, B).
Thus, for example, X 4 is a monofunctor which takes an object B and maps it
to the product 4 x B.

We will later need the following functors:

O4 = 1+4+A4A Ly = 14+AxI
Py = Ax1I Q = 1+Ix1I

We usually denote (1,z) and (2,z) by v and =2, and we use abbreviations,
such as trz for L (r2).

Let F: C — C. Then an F-algebra is a morphism « : F(A) — A. Object A is
called the carrier of the algebra. We can extract the carrier of an algebra with
the forgetful functor U, that is, U(a) = A. Dually, an F-coalgebra is a morphism
¢ : A= F(A). An F-homomorphism from algebra a : F(A) — A to algebra
B : F(B) = Bis a morphism h: A — B in C that satisfies hoa = o F(h).

The category of F-algebras Alg(F') has as objects F-algebras and as arrows
F-homomorphisms. If F' is a polynomial functor on CPO, Alg(F') has an initial
object, which is denoted by inp. This means that inp : F(T) — T is an F-
algebra with carrier T = U(inr). For example, the algebraic data type of cons-
lists with constructors [Nil, Cons] : Lyst 4 — list A is nothing but the initial
algebra iny, ,. Dually, CoAlg(F) has a terminal object, denoted by outr, and
outp : T — F(T) is an F-coalgebra with the same carrier T as inp; inp and
outp are each other’s inverses, and they define an isomorphism 7' = F(T') in
CPO.

Initial and terminal objects are unique up to isomorphism, and they are
characterized by having exactly one morphism to, respectively, from, all other
objects. This means that for each F-algebra a in Alg(F) there is exactly one
F-homomorphism h : ingp — «. Since h is uniquely determined by a, it is con-
veniently denoted by (a))r; h is called a catamorphism [17]. Dually, for each
F-coalgebra ¢ in CoAlg(F) there is exactly one homomorphism h : ¢ — outp,
which is denoted by [¢]r and which is called an anamorphism. A hylomor-
phism is essentially the composition of a catamorphism with an anamorphism.



Formally, a hylomorphism [a, ¢]F is defined as the least morphism h satisfying:
h = aoF(h)oyp (HyloDef)

Several laws for {cata, ana, hylo}-morphisms can be found in [17,20]. The most
important result is the fusion rule for hylomorphisms:

[o, o]F o [B,¢]F = [a,¥]Fr & poB=id (HyloFusion)

4 Abstract Data Types and Metamorphisms

We define an ADT to be a pair (a,@) where « is an F-algebra, @ is an H-
coalgebra, and U(a) = U(a@). Such an algebra/coalgebra-pair with a common
carrier is called an F, H-bialgebra [11] (where an F, G-bialgebra is a special case
of an F, G-dialgebra, that is, BiAlg(F,G) = DiAlg([F, I],[I,G]) [10]. Working
with bialgebras is sufficient for our purposes and makes the separation of con-
structors and destructors more explicit.) Given an ADT D = (o, @), we call
the constructor of D and @ the destructor of D.

Let us consider two examples. First of all, algebraic data types can be re-
garded as ADTs by taking the initial algebra as constructor and its inverse as
destructor. For example, ADT List = (inp,,, outr,,) is an L4, L4-bialgebra.

As an example for a non-algebraic type consider an ADT for sets. To define
sets based on the “cons”-view given by L4 we take iny, as the constructor, and
the destructor must be defined so that a value is retrieved from a set at most
once. This can be realized by splitting off an arbitrary element (for example,
the first one) and removing all occurrences of this element in the returned set.
With a function filter that takes a predicate p and selects a sublist of elements
for which p yields true we can first define a further function remouve:

remove(x,l) = filter (#z) 1

Here, the partial application (# z) denotes the function A\y.y # =z, that is, the
predicate that yields true for all values that are not equal to x.
Thus, we can define the set destructor and the set ADT by:

deset = I+ (w1, remove) o outr, ,
Set = (ing,, deset)

Note that the definition works only for types A for which equality is defined.
Let D = (a, @) be an F, H-bialgebra, let C = (3, 3) be a K, J-bialgebra, and
let D' = (p,®) be an M, N-bialgebra.
Given a natural transformation f : H = M, the f-metamorphism from D
to D' is defined as the least solution of the equation

h = pofoH(h)oa (MetaDef)



and is denoted by D<%D' (we write DD’ if f = id). We call D/D' the
source/target and f the map of the metamorphism. This definition says that
a metamorphism from D to D’ is essentially a hylomorphism:

pLp = [eof,a]u (MetaHylo)

As an important special case, metamorphisms from algebraic data types reduce
to catamorphisms, that is,

DwD" = (¢)ue < D= (ing,outy) (MetaAlg)

Let us consider a few examples. Metamorphisms for algebraic data types trans-
late directly from the corresponding catamorphisms. For instance, if we represent
the natural numbers by Nat = [Zero, Succ] = in141, the length of a list can be
computed by the metamorphism

length = List 7 Nat

Since metamorphisms are based on explicitly defined destructors, we can also
count, the number of elements in a set:

card = Set 13 Nat

The composition of two metamorphisms C~D' and D~C filters the values of
D “through” C before putting them into D'. We thus define the C-filter from
D to D' as:
phcdp = ¢c4D oD (Filter)
Here D and D' are called the source and target of the filter, and C is called the
filter data type. Again, we omit f and g if they are just identities.
ADT filters provide a convenient way for expressing certain algorithms, for
example,
List~ Set~> List Remove duplicates
List~~ Heap~~ List Heapsort
As for algebraic data types there are several laws for ADTs, see [6,7]. One

important result is a generalization of the fusion law for algebraic data types
(recall that C = (8, 8)):

Theorem 1 (ADT Fusion). 3o =id = D~C~D'= D~D' O

Another very general relationship can be obtained by deriving the “free theorem”

[21] for the type of metamorphisms.

Theorem 2 (FreeMeta). If | is strict, then for any two F, H-bialgebras D =

(a,@) and D' = (o, %) and two M, N-bialgebras C = (9, 9) and C' = (§,9):
lop=00H(l) N For=H(r)oa = lo(D~C)=(D'~C")or O

This general law can be instantiated to many different useful program transfor-
mation rules (see [7]).



5 Indexed Data Types

When an ADT is processed by a metamorphism, the decomposition is com-
pletely controlled by the ADT itself, that is, the definition of the coalgebra
completely determines the decomposition order. (The same is, of course, true for
algebraic data types where catamorphisms just follow the term construction.)
For some applications, however, it is very useful to have external control over
the decomposition of the involved ADT. Consider the simple task of deleting
a specific number z from an integer set s. Of course, we can express this by a
set-catamorphism that selects from s all elements that are not equal to z, but
an even simpler solution is, instead of blindly decomposing all numbers from s,
to directly ask for the specific decomposition (z,s’). Then the result is simply
given by s'.

This example raises several issues: first, the destructor of such an ADT is
not any more simply of type A — H(A), but rather of type G(A) — H(A)
to account for additional arguments (“indices”) for the decomposition. We will
therefore extend the definition of ADT into an “IDT”. Second, the requested
decomposition might not be possible at all, for example, in the above example
z might not be contained in s. This affects the definition of mappings from such
IDTs, which has to handle such cases. Finally, we need a way to specify how
index values are generated during (or fed into) the decomposition process. In
the simplest case the next index can be computed by a function parameter; we
will consider this case in Section 6. The more general case is treated in Section
7.

We start by generalizing the definition of ADT. An indezed data type (IDT)
is a pair D = (a, @) where « is an F-algebra, a is a G, H-dialgebra, and U(a) =
U(a). We call D an F,G, H-trialgebra. Again, a is the constructor and @ is the
destructor of D. As an example consider the above set ADT with random access
to its elements: we have a@ = iny, and @ = eztract with

split(z,s) = (filter (= x), filter (# x)) s

[0 if w1 o split(zx, s) = Nil
extract(z,s) = {R (hd x T o split) (z,5)) otherwise

In this example we have F' = H = L4 and G = P4. The example also illustrates
that we use the term “index” in a rather broad sense: an index can be any value
that controls the decomposition of an IDT. Hence, “index” is just a name for a
particular role of a type.

Arrays are probably the most prominent representatives of IDTs; they are
typically used whenever indexed access is needed. A simple array constructor is
given by inr ., where X and A denote the index type and the type of stored
elements. The treatment of duplicate index entries can happen within the array
destructor. A simple approach is to define a function dearr that takes an index ¢
and an array a (which is represented by a list of pairs) and returns the first pair
(i,z) and the array without all those pairs (4, z') for which j = 4. (This realizes
the behavior that newer entries in the array “overwrite” older ones.) If the index



is not contained in the array, the unit value () : 1 is returned. Thus, dearr is a
Px, L(x x 4)-dialgebra, and the IDT defined by Array = (inry, ., dearr) is an
L(XxA): Px, L(XXA)—trialgebra.

Graphs are another example for IDTs. In the inductive view of directed
graphs we have proposed in [5] graphs can be constructed by two constructors:
empty, which denotes the empty graph without any nodes, and embed, which
extends a graph by a mode context, that is, a labeled node together with its
incoming and outgoing edges. To stay with polynomial functors we need a functor
_(®) for denoting lists of length not greater than k: X(® = 1 and X*+1) =
1+ XM x X.

Now the type of node contexts for node type X and label type Y is given by
the following bifunctor:

Ctz(X,Y) = X®) x X x Y x X®)

that is, a four-tuple consisting of a list of nodes (predecessors), a node, a label,
and another list of nodes (successors). The type of graphs of bounded in- and
out-degree of k is then defined by the following ternary functor:

Gr(X,Y,G) = 1+ (Ctz(X,Y) x Q)

Then the graph constructor is given by a Grx,y-algebra [empty, embed]. (For a
precise semantics of empty and embed, see [5].)

The graph destructor degraph essentially retrieves and removes a specific
node context from the graph. This means, given a node z and a graph g,
degraph(z, g) returns a pair (c,g') where ¢ = (p,z,l,s) is the context of x and
where ¢’ is g without z and its incident edges. If x is not contained in g, degraph
yields (). Thus, degraph : X x G — Grx,y(G), and we obtain a graph IDT by
the GTX,y, Px, GrX,y—trialgebra

Graph = ([empty, embed), degraph)

6 Exomorphisms

The recursion in a metamorphism h is realized by applying H (h) to the result
of @ which works fine because @ has type A — H(A). Since the destructor of an
IDT is a G, H-dialgebra, that is, @ : G(A) — H(A), we cannot simply express
the recursion by H (h)o@ since @, and thus h, too, applies to G(A)-values and not
simply A-values. Therefore, we have to prepare the recursion by first applying
a function g : H(A) — H(G(A)) which, in fact, supplies index values for all the
recursive occurrences of A-values.

Let D = (a,@) be an F,G, H-trialgebra with A = U(a) = U(@), and let
D' = (p, %) be an M, N-bialgebra. Given two functions

f: HC)— M(C) g : H(A) - H(G(A4))



we define the exomorphism from D to D’ as the least morphism satisfying:

h = pofoH(h)ogoa

We denote h by D{»D’ . Since g is a parameter of the exomorphism, it provides

control over the IDT decomposition from the “outside”.

As a simple example, consider a store of linked lists implemented with arrays:
each array cell consists of a pair (z,p) representing a cell where p is an integer
pointing to the next cell. With the function g = I + (my, (w2 0 m1,m2)) that pairs
the pointer of the decomposed array cell (72 o 7r1) with the remaining array (m2)
and pairs this with the found list entry (7;), we can retrieve the list stored in A
beginning at position ¢ by

(Array~> List) (i, A)

7 Synchromorphisms

We have already seen that the next index value depends, in general, on preceding
decompositions. This means that index generation happens dynamically; it must
be performed “on the fly” during the decomposition of the IDT, hence, the
sequence of indices is generally not known in advance.

The limitations of exomorphisms are mainly due to their inability to handle
more than one index at a time, that is, we are missing an option to intermediately
store collections of indices. Now ADTs themselves are suited very well for this
index buffering, and when we are going to define a recursion scheme for IDTs
in Section 7.1, this will in fact turn out to be a scheme for processing the IDT
with the buffer ADT hand in hand. In Section 7.2 we present some examples.

7.1 Buffered Decomposition of IDTs

A synchromorphism takes three arguments: a source IDT, a target ADT, and
a buffer ADT for storing and delivering index values. A synchromorphism in-
formally works as follows: the IDT is decomposed, and (i) from the result some
fresh index values are computed that are inserted into the buffer ADT, and (ii)
a part of the result is inserted into the target ADT. Immediately after that the
buffer is requested to yield a new index which is then used in the next iteration
to decompose the remaining IDT-value.

Let D = (a,@) be an F,G, H-trialgebra with A = U(a) = U(a), let D" =
(8,8) be a K, J-bialgebra with B = U(8) = U(f), and let D' = (¢,%) be
an M, N-bialgebra with C = U(yp) = U(p). X is the type of index values.
It is shared between the types of D and D", and we assume that all functors
F,G,H,K and J are left sections of bifunctors having X fixed as their first
argument.



Recall the roles of the functors: F' and G define the argument type of the
source ADT constructor and destructor, respectively, and H defines the result
type of the source ADT destructor. K defines the argument type of the buffer
ADT constructor, and J defines the result type of the buffer ADT destructor.
This means that D and D" carry index values, whereas the target ADT D' does,
in general, not.

In the following we use variable names that indicate their type: for exam-
ple, z¢ is an element of G(A), and g an element of H(G(A)). We develop
the definition of synchromorphisms step by step, collecting requirements and
incrementally fixing design decisions. The construction is summarized in Figure
1.

M(C) —— H(A+ C) —— H(A+ G(A) x B) —— H(A) x J(B) J(B)
f H(I +h) 92

Fig. 1. Categorical Definition of Synchromorphisms.

First, a synchromorphism (h) takes an IDT-argument and a buffer and pro-
duces a value of the target ADT. Therefore, h has the following type:

h:G(A) x B - C

Since the IDT-destructor yields an element zg, we have to apply a function
g to xg to enable the recursive application of the synchromorphism. After the
recursive application by H we apply a function f extracting relevant information
to be aggregated by the constructor ¢ of the target ADT D'.

Next we explain how to obtain a suitable definition for g. The synchromor-
phism has to perform the following steps:

1. Initially, decompose the IDT with the supplied index, that is, zg = @(zg)-

2. Extract fresh index values j from xg to be inserted into the buffer. How
this should be done is application-specific, and it is specified by a parameter
function g¢; .

3. Insert the fresh index values into the buffer, and retrieve the next index
value(s) ¢ from the buffer for further decomposition of the IDT . We thus obtain
something like

i=...0B80B0g1(zH)



The dots “...” indicate that 3 actually yields a value 7 of which 4 is, in general,
only a part.

Note that g; not only has to extract fresh index values, but also has to
arrange them properly around the buffer so that 8 can be applied. Thus, the
result must be of type K(B), and we get:

g1 : H(A) x B— K(B)
We can now compose all three steps. With:

axI : G(A)xB— H(A) xB
BoBog : H(A) x B— J(B)

we obtain ¢’ = (my, 8080 g1)oa@ x I of type
g : G(A) x B— H(A) x J(B)

Now two things remain to be done:

4. Combine the remaining IDT(s) d (as part of z) and the next index values
i into a value zpg that allows d to be decomposed indexed by 4 (in a recursion
structure specified by H). Again this is application-specific and should therefore
be specified by a parameter function, say, g5 : H(A) x J(B) - H(G(A)).

5. Select the resulting buffer b (from z ;) for distribution into zm¢, the struc-
ture containing the remaining IDT /next index combinations. The selection is
directed by the application and requires a further function, say, g5 : J(B) — B
(distribution into g could be achieved by H).

Now a problem occurs if 2y does not contain a buffer value at all. This usually
will occur if the buffer is exhausted (then z; will be, for example, ()). Now in
order to not complicate the typings further it seems best to combine g} and g4
into one function: g, : H(A) x J(B) — H(G(A) x B) that is supplied by the
programmer and that handles all the above cases internally.

But as zs is not guaranteed to contain buffer values, it might as well fail
to produce next index values (again, for example, in the case the buffer is ex-
hausted). In that case we cannot distribute a buffer, and we cannot even build
a value zgg. Then we simply pass zg so that the value can be used by f and
. Thus we have g» : H(A) x J(B) — H(A) + H(G(A) x B) which can be also
written by moving the sum into H:

g2 : H(A) x J(B) - H(A + G(A) x B)

We have not yet discussed the case when @ fails to produce a new IDT value.
This could well happen if the required index decomposition is not possible. In
that case the old, undecomposed IDT value (from z) should be taken and com-
bined with the buffer (if available, otherwise the recursion stops). But since z¢g
is not available any more, the easiest solution is to rely on appropriately adapted
definitions of H and @, that is, instead of simply returning (), @ could well be de-
fined to return its argument unchanged whenever decomposition is not possible.



Then (the type of) g» need not be changed, and the necessary transformation
has to specified in the definition of g». To summarize, there are four cases to be
considered by g, depending on the success of @ and 3 in producing new IDT,
respectively, index/buffer values:

@ [ | description of case

fail fail | immediately stop recursion

fail ok | preserve (old) z¢ and continue recursion
ok fail | just pass zy and stop decomposition

ok ok |normal recursion

Whenever 3 is successful, the result type of g is H(G(A) x B), otherwise it is
H(A).
Now we can formally define a synchromorphism. Given the functions

f: HA+C) > M(C)
g1 : H(A) x B — K(B)
g2 © H(A) x J(B) » H(A + G(A) x B)

the D, D"-synchromorphism to D' is defined the least solution of the following
equation

h = pofoH(I+h)oyg
where
g = g2o(m,Bofogi)oax]

9
We denote the synchromorphism h by D’ <7D <g:’ D".
2

7.2 Examples

Let us begin with expressing depth-first search (dfs) as a synchromorphism.
Roughly spoken, dfs decomposes a graph by extracting a particular node context
¢, pushing the successors from ¢ onto a stack, and extracting the top of the stack
to continue graph decomposition. In addition, part of ¢ is aggregated in a target
ADT, for example, the visited nodes are put into a list.

Thus, we need a stack buffer with a constructor that can insert lists of nodes.
We can use the following ADT defined as a @, Lx-bialgebra (+ is the function
for concatenating two lists):

Stack = ([Nil, +], outr )

We can use the ADT List for collecting visited nodes, but we have to account for
the case that a visited node is not available for insertion into the result list when-
ever the graph decomposition fails. Therefore, we use the “option” or “maybe”



type Oa to wrap nodes. Finally, we cannot directly use the Grxy, Px, Grx,y-
trialgebra Graph from Section 5 as IDT since we require the destructor to pass
the argument graph if destruction is not possible. We therefore redefine

degraph’(z,9) = (g + 1) (degraph(z, g))
Graph = ([empty, embed], degraph')

To summarize we have the functors G = Px, H =1+ Ctexy x I, K = Q,J =
Lx,and M = L1.x (=14 (1 + X) x I). This gives the following types (4, B,
and C are the carriers of graphs, stacks, and lists, and X and Y are the types
of nodes and node labels):

K(B) = 1+BxB J(B) = 1+ X xB
M(@C) = 1+1+X)xC

Next we define the functions g¢1,9> and f: g; pairs the successors (m4) of the
extracted context (m1) or an empty list with the buffer and therefore always
returns the second alternative (12) of K(B).

g1 = tzo ([Nil,myom])xI

g2 combines the remaining graph and the next index and distributes fresh indices
into the remaining stack. It also has to preserve decomposed values for insertion
into D'; go actually controls the different cases of the recursion:

(i) If graph decomposition has failed and the stack is exhausted, the recursion is
stopped; the graph, which is passed only for typing reasons, will be ignored
by f.

(ii) If graph decomposition failed and a new index ¢ is available, proceed with
decomposing the old graph (delivered by the modified degraph') at i.

(iii) If graph decomposition yields context ¢ and remaining graph g but the stack
is exhausted, terminate recursion, and pass ¢ so that the last visited node
can be put into the target list.

(iv) If graph decomposition yields context ¢ and remaining graph g and a new
index 7 is available — this is the “normal” recursion case —, pass ¢ to let f
extract the visited node, and continue recursion with decomposing g at i.

For readability we provide a pointwise definition of g».

92 (tg,u()) = g 92 (vg,n(i,8)) = wr((i,9),5)
g2 (R (079)7L()) = R(C7Lg) g2 (R (C7g)7R(i7s)) R(C7R((i7g)73))

Finally, the definition for f follows the structure of results yielded by ga: (i)
on termination, a unit value is returned which is mapped by the target ADT
into Nil. (ii) If no context is available, build a pair of v () and the recursively
computed list of nodes. The “none” value () will be inserted into this list and



can be eventually removed by applying a post-processing function keeping only
the nodes. (iii,iv) Extract the visited node from the context and pair it with the
empty list (on termination (iii)) or the recursively computed list (in case (iv)).

feg) =10 frl) = =((),0)
[ (r(crg)) = r(n(m(c)), Nil) f(r(erl)) =

Now we can define dfs as follows:

b
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dfs = List(? Graph ;}:’1 Stack
2

It is also obvious how to express breadth-first search: we can just substitute a
queue buffer for the stack buffer, and we obtain:

g1
bfs = List(7 Graph g:’ Queue
2

We can also express more complex algorithms, for example, Dijkstra’s algorithm
for finding shortest paths. This is shown in the long version of this paper [8].

We have only shown graph algorithms as examples for synchromorphisms
(further examples are: Prim’s minimum spanning tree algorithm and Kruskal’s
minimum spanning tree algorithm), and in fact, expressing graph algorithms
as instances of a fixed recursion scheme was the main motivation for develop-
ing synchromorphisms. However, we believe that there are different application
areas. For example, the plane-sweep paradigm for algorithms of computational
geometry seems to fit the presented scheme: the buffer ADT can be used to
implement the sweep-line status structure, and the IDT is a collection of geo-
metric objects (which, however, is scanned in fixed order most of the time so
that indexed access is not always needed).

8 Conclusions

We have demonstrated how to extend categorical abstract data types to indexed
data types, and we have shown definitions of recursion operators operating on
these data types. With these combinators we can now express algorithms that
use data types in a random access manner.

The next step is to investigate the transformation of such algorithms into effi-
cient programs. This can go along the same line as in [7] by introducing libraries
of efficient ADT implementations and defining simple optimizing transforma-
tions that automatically select these implementations.
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