
Optimizing the Product Derivation Process

Sheng Chen
School of EECS

Oregon State University
chensh@eecs.oregonstate.edu

Martin Erwig
School of EECS

Oregon State University
erwig@eecs.oregonstate.edu

Abstract—Feature modeling is widely used in software
product-line engineering to capture the commonalities and
variabilities within an application domain. As feature models
evolve, they can become very complex with respect to the
number of features and the dependencies among them, which
can cause the product derivation based on feature selection to
become quite time consuming and error prone.

We address this problem by presenting techniques to find
good feature selection sequences that are based on the number
of products that contain a particular feature and the impact of
a selected feature on the selection of other features. Specifically,
we identify a feature selection strategy, which brings up highly
selective features early for selection. By prioritizing feature
selection based on the selectivity of features our technique
makes the feature selection process more efficient. Moreover,
our approach helps with the problem of unexpected side effects
of feature selection in later stages of the selection process,
which is commonly considered a difficult problem. We have run
our algorithm on the e-Shop and Berkeley DB feature models
and also on some automatically generated feature models. The
evaluation results demonstrate that our techniques can shorten
the product derivation processes significantly.

Keywords-Feature Model, Feature Selection, Decision Se-
quence

I. INTRODUCTION

Software product lines (SPLs) are increasingly employed
in the software development process since they support
systematic reuse and, in particular, facilitate customization
for particular needs [1], [2]. Basically, SPL engineering con-
sists of two processes: domain engineering and application
engineering. The first process is responsible for defining
software products in terms of commonalities and variabilities
and the constraints among them. An effective and commonly
used way of doing this is feature modeling [2]. Figure 1
shows the feature model for a simple mobile phone product
line. The second process involves the derivation of products
from feature models.

Full exploitation of the benefits of the SPL paradigm
highly depends on how efficient the second process is,
because whenever we want to derive a new product, we need
to go through this process. However, making decisions in a
feature model to obtain a product is not always straightfor-
ward because (a) the feature model can be very complex
(it may contain thousands of features [3]) and (b) the
dependencies among features constrain the selection process

MobilePhone

Calls GPS Screen

Basic Color HighResolution

Media

Camera MP3

Camera ⇒ HighResolution

Basic ⇒ ¬GPS

Figure 1. The feature model of mobile phone

since the selection of a particular feature may introduce
some undesired features or exclude some expected features.

For these reasons, users always face the problem of where
to start when deriving a product from a feature model.
Some work has been done to address this issue, which is
discussed in depth in Section V. However, no work seems
to systematically exploit the fact that the selection of a
feature that participates in constraints effectively triggers
the automatic selection or deselection of other features. E.g.
in Figure 1, feature Camera is more selective than feature
High resolution in sense that if Camera is chosen, then High
resolution is also selected. However, if a user makes decision
between Screen first and chooses High resolution, then he
still needs to decide whether he will take Camera.

We can generalize this idea by associating with each
feature a value called selectivity, which indicates the impact
of selecting that feature on the selection and removal of
other features. The selectivity of a feature is determined by
two factors: (1) the number of products that can be derived
containing the feature (a.k.a. commonality [4]) and (2) the
number of features that will be automatically selected or
removed by selecting that feature due to constraint propa-
gations. While previous work used the number of products
(a.k.a. variation degree [5]) as an indicator for the flexibility
and complexity of a feature model and commonality as an
indicator for the importance of features, we employ the
combination of these two measures to guide users in where
to make decisions, which can accelerate the decision making
process.

It should be clear that the most selective feature in a
feature model is not necessarily the most important feature
in a product. Selecting the most important feature first
is a straightforward way of deriving a product, but it is
usually not the most efficient way. Our technique only makes
suggestions to accelerate product derivation; users can still
select the most important feature first.

To calculate selectivity for each feature efficiently, we
first transform a feature model into an algebraic expression,
called choice description, which is a reduced represen-
tation of a feature model carrying sufficient information
for computing selectivity. However, instead of manipulating
the choice description transformed from a feature model
as a whole, we employ a divide-and-conquer strategy that
partitions a choice description into a set of smaller choice
descriptions such that deriving a product from the original
choice description can be achieved by deriving a smaller
product from each of the smaller choice descriptions and
combining them. This strategy is crucial for the efficiency
of our approach in the face of huge variation degrees
and commonalities. A side benefit of this strategy is that
it supports parallel decision making. As SPLs are widely
adopted and feature models get larger, staged configuration
and parallel decision making will become more important
[6], [7].

The main contribution of this paper is a selectivity-
driven strategy to support the feature selection process
that can shorten decision sequences considerably. Since in
application engineering product derivation is repeated many
times, whenever a new product is to be built, even a minor
efficiency improvement for deriving each product leads to
significant benefits over time. We report the results of an em-
pirical study that shows noticeable efficiency improvement
for deriving products. For example, we found that decision
sequences can be shortened on average at least by 6% and
up to 15% for the e-Shop [8] software product line. For the
Berkeley DB feature model [9] the improvements were at
least 12% and as large as 35%. The maximum improvements
were even higher.

The remainder of the paper is organized as follows:
In Section II, we present formal definitions and notations
needed to describe our algorithm, which is then developed
in Section III. We report results of an empirical study in
Section IV. Section V compares our approach with related
work, followed by Section VI, which concludes the paper
and describes future work.

II. DEFINITIONS AND NOTATIONS

This section introduces the concept of choice description
and introduces the notation used in the paper. A feature
model concisely defines all valid configurations in a software
product line. A feature model mainly consists of a feature
tree and cross-tree constraints, which are usually expressed

with propositional formulas. A feature tree represents fea-
tures hierarchically to express the child-parent relationship
among features. The relationship among children can be
AND, OR, and XOR. When AND is used, the child can be
either Optional or Mandatory. A comprehensive and precise
definition of feature models is provided in [10].

We will represent feature models as algebraic expressions,
which facilitates a decomposition of expressions to make the
computation of feature selectivity feasible. In the following
we will first define the concepts of this algebraic structure
and then define operations that will be needed in the rest of
the paper.

A choice algebra (A, ·,+) is given by a set A containing
a unit element 1 plus two operations · and + such that:

(i) (A, ·) is a semigroup,
(ii) + is associative, commutative and idempotent (that is,

(A,+) is a commutative, idempotent semiring),
(iii) · distributes over +, and
(iv) 0+ e = e+0 = e and 1 · e = e ·1 = e.

Expressions over A are called choice expressions. Expres-
sions formed using + are called choices. An expression that
does not contain any choice is called plain. Choice algebra is
similar to feature algebra introduced in [11], although there
are some important differences, which we will discuss in
Section V.

Each choice-algebra expression describes a set of plain
expressions that can be derived from it by selecting elements
from choices. When we use choice algebra to represent
feature models, the set A represents a set of features, and the
set of plain expressions that can be derived from a choice
expression is essentially the set of products that can be
derived from a feature model.

The products or plain expressions derivable from a choice
expression are computed by the following function π.

π(e) =


π(e1)× . . .×π(en) e = e1 · . . . · en

∪n
i=1π(ei) e = e1 + . . .+ en

{e} e ∈ A

We say that choice expression e is linear if each symbol
appears at most once in e. For example, the expression a+b
is linear, while expression a(a+b) is not. Later we will see
that all choice expressions transformed from feature trees
are linear.

A choice description is a pair D = (e,c) where e is a
choice expression and c is a propositional formula over ϕ(e),
called constraint. We say that a constraint c is satisfiable on
a choice expression e if there is a plain expressions derivable
from e that satisfies c. Similarly, c is a tautology on e if all
plain expressions derivable from e satisfy c. For example,
a→ c and b→ c are satisfiable and a tautology on (a+
b)c(d + e). For constraints in feature models, satisfiability
can be determined efficiently.

We use ϕ(e) to denote the set of features contained in
choice expression e. Similarly, ϕ(c) denotes the features
contained in constraint c. For example, ϕ(1 + a) = {a}
and ϕ(a→ c) = {a,c}. The optional symbols in a choice
expression e are all features that are operands of the +
operator, while necessary symbols are the symbols that
will appear in each plain expression derivable from e. For
example, in e= a(b+cd), optional symbols are {b,c,d} and
the only necessary symbol is a.

The functions e↑ f and e↓ f to select or drop a feature
from an expression are inductively defined as follows.

e↑ f =


e1 · . . . · (ei↑ f) · . . . · en f ∈ ϕ(ei)∧ e = e1 · . . . · en

ei↑ f f ∈ ϕ(ei)∧ e = e1 + . . .+ en

f f = e
1 f /∈ ϕ(e)

e↓ f =


e1 · . . . · (ei↓ f) · . . . · en f ∈ ϕ(ei)∧ e = e1 · . . . · en

e1 + . . .+ ei↓ f + . . .+ en f ∈ ϕ(ei)∧ e = e1 + . . .+ en

1 f = e
e otherwise

When e contains each symbol only once, the operations are
uniquely defined. Otherwise, we pick or drop the leftmost-
outermost occurrence of f only.

A rejected feature, written as f̄ , is a feature that was not
selected. A literal ` is a selected or rejected feature.

We can restrict a choice expression e by a literal ` using
the operation e|`, which is defined as follows.

e|`=

{
e↓ f `= f
e↑` otherwise

Restricting a choice expression by a literal results in either a
new choice expression or the unit expression 1 if the selected
feature does not exist in the expression.

Restriction extends in a natural way to lists of literals.
For example, restricting (a+b)(c+d+e) by the literals ae
works as follows.

(a+b)(c+d + e)|ae

= ((a+b)(c+d + e)|a)|e
= a(c+d + e)|e
= a(c+d)

The sets inclusion f (D) and inclusion f (D) contain those
features that are automatically selected after a feature f has
been selected or dropped, respectively. Note that features
can be implied either due to expression structure or due
to constraints. Consider, for example, the following choice
expression.

((a+b(c+d))(e+ f)(g+h),{b→ f ,d→ h})

Selecting d will imply the selection of h (because of the con-
straint d→ h) and b (due to the structure of the expression),
which in turn implies f (again due to a constraint).

We write #D for the number of products that can be
derived from D and γ f (D) for the commonality of feature
f in the choice description D. We use σ f (D) to denote the
selectivity of feature f in D, which is defined as follows.

σ f (D) = γ f (D)/#D

A sequence of selected and rejected features that will yield
a product from a choice description is called a decision
sequence.

A product derivation (or derivation for short) is a se-
quence of picked, dropped, and automatically selected fea-
tures that yield a product from a choice description. We
write f̌ for an automatically selected feature. Note that we
can derive a decision sequence from a product derivation
by simply removing all automatically selected features. A
selectivity-driven product derivation (SDPD) is a product
derivation in which the features appear in order of their
selectivity (with respect to the given choice description).

As an example, consider the task of deriving the product
bd f h from the following choice description

((a+b(c+d))(e+ f)(g+h),{b→ f ,d→ h})

It turns out that even for this small example, there are 66
possible decision sequences to derive the product. Here are
some sample sequences db̌ f̌ ȟ, b f̌ dȟ, f hbd, ab̌ f̌ cďȟ, cďb̌ f̌ ȟa,
b f̌ cďȟ.

We can observe that the derivation db̌ f̌ ȟ includes a
decision sequence of length 1 (namely, d). In contrast,
the derivation f hbd entails the longest possible decision
sequence of length 4. This shows that SDPD achieves a
maximum improvement of 75% in this case. The average
length of all 66 sequences is about 3.45, and hence the
average efficiency improvement of SDPD for this example
is (3.45−1)/3.45, that is, roughly 71%.

Note that while the length of the product derivation for
bd f h is not larger than the number of features in the
product, this is not always the case. For instance, the product
derivation cdǎ f h for deriving product a f h is longer than 3.

Finally, note that automatically excluded features are not
relevant in this context and don’t have to be considered
since they don’t appear in the final product and since they
require no decision. The reason why we need to consider
automatically included features is that they appear in the
final product.

III. COMPUTING DECISION SEQUENCES

This section elaborates the process of supporting decisions
on feature models to derive products. Given a feature model,
we first show in Section III-A how to transform it into a
choice description, which is the basis for our method. In
Section III-B we describe the method of selectivity-driven

Feature Tree Choice Description
a

b c

a requires both b
and c (abc,∅)

a

b c

a requires either
b or c, but not
both

(a(b+ c),∅)

a

b c

a requires b or c
or both (a(1+b)(1+ c),{b∨ c})

a

b

b is an optional
feature of a (a(1+b),∅)

Figure 2. Translating feature models to choice descriptions

product derivation on a high level. In the following sections,
we then provide details on how to make this method feasible:
In Section III-C we describe the computation of selectivity,
and in Sections III-D and III-E we explain the concept of
choice partitions and decompositions and how to compute
them. Finally, in Section III-F we comment on the seemingly
high overhead that our method incurs, which will also point
to other potential uses of choice partitions.

A. Mapping Feature Models to Choice Descriptions

Feature models are frequently transformed into other
representations to support reasoning about them. In our case,
we map feature models to choice descriptions to support the
efficient computation of feature selectivity.

The rules for mapping feature trees to choice expres-
sions are summarized in Figure 2. Most of the rules are
straightforward, except maybe for the OR relation in feature
models. If a = b OR c, then b or c or both of them must be
selected. Hence we transform the tree into (1+b)(1+c) plus
a constraint b∨c. The reason we don’t simply transform the
tree into the expression (b+c+bc) is that this expression is
not linear; it contains both features b and c twice. Linearity
of choice descriptions makes the selection and removal
operations more efficient. Moreover, our approach scales
better than the seemingly shorter alternative. For example,
if a has one more child d, the expression will contain 7
alternatives. Instead, our approach handles this with ease,
we transform it into a = (1+b)(1+c)(1+d) together with
the constraint b∨ c∨d.

The transformation of a feature tree to a choice expression
then begins with the root of the feature diagram, and tra-
verses the tree replacing all occurrences of abstract features
by the choice expressions that represent their definition
multiplied with the abstract feature. As a result, we obtain
a single choice expression for the feature tree. Finally,
we obtain the choice description for the feature model by

combining the choice expression and the constraints for the
feature model.

Applying the transformation rules to the feature model
from Figure 1, we obtain the following choice description.1

(l(1+g)s(b+ c+h)(1+d(1+a)(1+m)),
{a→ h,b→¬g,a∨m})

Note that we have to keep abstract features in the trans-
lation to choice descriptions, because they can appear in
constraints.

B. Selectivity-Driven Product Derivation

Next we present the algorithm for deriving products by
incremental decision making for the currently most selective
feature. To simplify the algorithm presentation by omitting
the user interaction, it assumes an “intended” product p,
which is the product that a user has in mind, but which has
not been derived yet. This product p serves as a guideline to
decide the selection or rejection of features that are presented
by the algorithm. Since the algorithm accepts any p, this
assumption is not restrictive in any way.

INPUT: Choice description (e,c) and intended product p
OUTPUT: A product derivation s
METHOD:
(1) s := []
(2) Find most selective feature f of e
(3) if f /∈ p then f := f̄
(4) s := s · f · inclusion f (e,c)
(5) e := e| f
(6) if ϕ(p) 6⊆ ϕ(s) then goto (2)
(7) return s

The algorithm requires the repeated computation of selec-
tivity and adds the feature with the highest selectivity to
the product derivation s. If f is not chosen (because it is
not in the envisioned product p), f will be included as
a rejected feature. (Note that · denotes list concatenation.)
Then the choice expression will be restricted, and the process
is repeated until all features for the product have been
selected.

C. Calculating Feature Selectivity

The choice description representation of feature models
facilitates an inductive definition for the computation of
selectivity. The computation of the number of products and
the commonality of a feature in a choice expression are both
easy to compute, but this is nontrivial in the presence of
constraints.

Therefore, we next describe the computation of selectivity
for choice expressions and show in the next two sections how
to transform a choice description into a choice expression
through the systematic removal of constraints.

1Feature names are abbreviated by their first letter, except for Calls,
Camera, and Media.

The computation of selectivity makes use of the number
of products derivable from a choice expressions whose
definition is straightforward.

#(e) =


∏

n
i=1 #(ei) e = e1 · . . . · en

∑
n
i=1 #(ei) e = e1 + . . .+ en

1 e is a feature

The commonality for a feature then can be recursively
computed as follows.

γ f (e) =


γ f (e j)∏i6= j #(ei) f ∈ ϕ(e j)∧ e = e1 · . . . · en

γ f (e j) f ∈ ϕ(e j)∧ e = e1 + . . .+ en

1 f = e
0 e is a feature and f 6= e

If e is a product and f is a feature of subexpression e j,
then the commonality of f is the product of number of
products of all other subexpressions and the commonality
of f in expression e j because e j itself can be a compound
expression. On the other hand, if e is a sum and f is a feature
of subexpression e j, then the commonality of f in e is the
same as that in e j because the relationship between e j and
other subexpressions of e is alternative, which means if we
make a choice in e j, we can’t make other choices in e.

As an example, consider e= a+b(c+d) where e′= b(c+
d) and e′′ = (c+d). We get γb(e) = γb(e′) = γb(b)×#(e′′) =
2.

While it is quite simple to deal with choice descriptions
without constraints, choice descriptions with constraints are
harder to analyze. The constraint complicates the situation
by ruling out some products from a choice expression. For
example, in ((a+b)(c+d),a→ d) the constraint filters out
the expression ac, which would be valid if there were no
constraint. An obvious approach is to generate all products
then ruling out those that conflict with constraints. In the
example, we have four products, and ac is invalid. Although
this approach works fine with small choice descriptions, it
does not scale very well, because the need for (repeated!)
generation of all products is prohibitive in large feature
models.

Therefore, we decompose a choice description into a set of
choice descriptions that are without constraints and compute
selectivity for those choice expressions.

D. Choice Description Partitions and Decomposition

A set of choice descriptions {(e1,c1), . . . ,(en,cn)} is
called a partition of a choice description (e,c) if e = e1 · . . . ·
en, c = ∪1≤i≤nci, and ∀i, j : i 6= j =⇒ ϕ(ei)∩ϕ(c j) =∅.

Choice description partitions allow us to derive a product
in a divide-and-conquer manner by first deriving products
from all sub-expressions and then merging the results.

Therefore, before processing a choice description derived
from a feature model, we split it into smaller components

that are easier to manipulate. Consider, for example, the
following choice description D.

D = ((a+b)(c+d)(e+ f)(g+h),{a→ h,d→ e})

We can partition D into two smaller choice descriptions:

D1 = ((a+b)(g+h),{a→ h})
D2 = ((c+d)(e+ f),{d→ e})

Making decisions in D is equivalent to making decision in
both D1 and D2 because a plain expression e can be derived
from D iff there exist e1 and e2 such that they can be derived
from D1 and D2, respectively, and e is the same as the
product of e1 and e2. This fact is an instance of the following
lemma.

Lemma 1: If {cd1, · · · ,cdn} is a partition of D and
each si is a decision sequence for Di, ϕ(D|(s1 · · ·sn)) =
∪n

i=1ϕ(Di|si).

Here is how we can compute choice partitions. Assume
D = (e,c) where e = e1 · . . . ·en and c = {c1, . . . ,cn}. Then a
choice partition for D can be computed as follows. For each
choice expression ei, construct a choice description Di =
(cei,∅). Next, for each Di and each constraint c j if ϕ(Di)∩
ϕ(c j) 6= ∅, add c j to Di. Finally, for each Di and D j if
ϕ(cdi)∩ϕ(cd j) 6= ∅, remove these two choice descriptions
from the choice partition set and add their union to the set.
We continue this iteration until no further simplification is
possible. The resulting set is the choice partition set. Here
we use ϕ(Di) for ϕ(ei)∪ϕ(ci) if Di = (ei,ci). The union of
two choice descriptions D1 = (e1,c1) and D2 = (e2,c2) is
(e1 · e2,c1∪ c2).

A partition {cd1, · · · ,cdn} of choice description D = (e,c)
is called a choice decomposition if it satisfies the following
conditions.

1) ∀i : Di = (ei,∅) where ei satisfies constraint c.
2) π(D) = ∪n

i=1π(Di).
3) ∀i, j : i 6= j =⇒ π(cdi)∩π(cd j) =∅.

The first condition ensures that the constraint c is faithfully
represented by the collection of choice expressions ei. The
last two conditions ensure that we don’t lose any valid
products and that we don’t count any valid products more
than once.

E. Computing Choice Description Decompositions

Working with choice decompositions guarantees that our
approach preserves the semantics of a choice description.

The basis of our approach to computing choice decompo-
sitions is the observation that the set of products represented
by a choice description can be partitioned into sets of
products with respect to the constraint. Consider the choice
description(e,{a→ b}). The constraint a→ b partitions the
products into three sets: the products containing a and b, the
products containing a but not b, and the products without a.

The second set is ruled out by the constraint. The first set is
obtained by selecting both a and b from the original choice
expression, while the third set is obtained by removing a
from the original choice expression. Based on this idea, we
can derive sets of literals from a constraint and restrict the
expression with these sets to obtain its partitions.

Next we show how to derive sets of literals from a
constraint, which are to be used by the restriction operation
defined in Section II to compute simplified choice expres-
sions.

We need to define two functions tru and fls to extract sets
of literals from a constraint that make the constraint true or
false, respectively. (Note that Son S′= {s∪s′|s∈ S∧s′ ∈ S′}.)

tru(c) =



{{ f}} c = f
{{ f}} c = ¬ f
tru(c1)on tru(c2) c = c1∧ c2

tru(c1)∪fls(c1)on tru(c2) c = c1∨ c2

tru(c1)on tru(c2)∪fls(c1) c = c1→ c2

fls(c) =



{{ f}} c = f
{{ f}} c = ¬ f
fls(c1)∪ tru(c1)on fls(c2) c = c1∧ c2

fls(c1)on fls(c2) c = c1∨ c2

tru(c1)on fls(c2) c = c1→ c2

Each set of literal in tru(c) describes an alternative way of
making c true. Restricting a choice expression with each
such set yields all the different choice expressions that are
valid instances satisfying the constraint.

A true assignment for an ∨ expression is an assignment
that makes any sub-formula evaluate to true. However,
to simply take the union of all the true assignments for
sub-formulas would violate the third property of a choice
decomposition. For example, tru(a∨b) can’t be {{a},{b}},
because otherwise expressions obtained by restricting {a}
and {b} will both contain plain expressions including both
a and b, and the semantics will no longer be disjoint. Instead,
the result should be {{a},{a,b}}, and the plain expression
containing both a and b will appear in only one expression.
Consider, for example, the following choice description.

((a+b)(c+d),{a∨ c})

Restricting (a+b)(c+d) with a and b will produce a(c+d)
and (a + b)c, respectively. As we can see the product
ac can be derived from both expressions. On the other
hand, restricting with a and ac will give a(c+ d) and bc,
respectively, whose products are disjoint.

Although a→ b can be represented by ¬a∨b, we include
the rule for dealing with implication since it is the most
common form of constraint in feature models. All true
assignments for an implication are the combination of all
false assignments to its premise and true assignments to

both its premise and conclusion, which is captured in the
last case.

With these cases in hand, we can deal with all kinds of
constraints in feature models. For instance:

tru(a→ c∨d∨ f) = {{a},{a,b},{a,b,c},{a,b,c,d}}

Obviously, the result is complementary in the sense that
restricting with each set will produce expressions whose
products are disjoint. For instance, the expressions obtained
by restricting with the first and third set differ in whether
they contain a.

This property about restriction and the tru function is
captured in the following theorem.

Theorem 1: For a given choice description D = (e,c),
the choice partition {(e| f ,∅) | f ∈ tru(c)} is a choice
decomposition. �

With these auxiliary functions, we can now define a
function elim to iteratively eliminate the constraints of a
choice description.

elim(e,{}) = {e}
elim(e,{c}∪ c′) = elim(

⋃
ei∈e

(∪ f∈tru(c)(ei| f)),c′)

Except for trivial constraints such as f and ¬ f , eliminating
each constraint in this way will results in at least two
expressions if the constraint is satisfiable by the expres-
sion. Thus we potentially suffer from exponential blowup.
Fortunately, in some cases, we don’t need to decompose a
choice expression into two, in particular, if the constraint is a
tautology. For example, the approach described in this paper,
when applied to ((a+b)c,{a → c}), produces {ac,bc}.
However, in our prototype implementation, we detect that
a→ c is a tautology on (a+ b)c and simply remove the
constraint. In fact, this approach dramatically reduces the
size of expressions to a manageable size.

Let us take another look at the definition for tru. We find
that there are three places where the on operator occurs,
which are potential causes for the exponential size of choice
expressions with respect to structure of a constraint and
number of constraints. Luckily, the most common forms of
constraints in feature models are a→ b and a→¬b, which
result in only two expressions.

F. Reducing Computational Overhead

It seems that our approach is computationally very costly.
First, to find a feature with maximum selectivity, we need
to compute the selectivity of all features in the feature
model. Then, depending on whether that feature is picked
or dropped, we obtain one of two new feature models in
which several features have been removed. To select the
next feature, we need to recompute the selectivities of all
remaining features since they generally will have changed
due to the changes in the feature model.

Thus, if a choice description has n features, we generally
seem to be required to compute O(kn) = O(n2) selectivities
with our approach to select a product of k features.

However, after a decision on a feature, say f , has been
made, the choice partition can be often partitioned into
several choice descriptions because one or more constraints
may be removed due to the selection. This will, in fact, be
very likely, because highly selective features are typically
involved in constraints that cause the co-occurrence of that
feature with others.

Suppose, for simplicity, that the removal of f splits a
choice description D into two new choice descriptions D1
and D2 with n1 and n2 features, respectively. After we have
recomputed all selectivities, we will find the next feature,
say f ′, in either D1 or D2 (since choice descriptions are
linear). Say, f ′ is contained in D1, then we have to recompute
selectivity only for the features in D1 since the commonality
of features in D2 does not change.

We can continue this line of reasoning inductively, which
shows that the need to recompute the selectivity of features
is needed only for a fraction of the features. Under the
assumption that the next selective feature is always in the
largest block of the D partition and partitions are always split
in half, we get as the number of recomputed selectivities the
following.

n+

(n−1)/2+(n−2)/2+
(n−3)/4+(n−4)/4+(n−5)/4+(n−6)/4+ . . .+

(n− logn)/(logn)+ . . .+(n− logn)/(logn)︸ ︷︷ ︸
logn times

≤ n+(n−1)+ . . .+(n− logn)

= O(n logn)

This shows that we can expect the effort for recomputing
selectivities to be less than O(n2) and that it decreases along
with the selection process. This could be exploited by pre-
computing and storing selectivities and for the first few most
selective features and the feature models that result from
their selection/rejection.

IV. EXPERIMENT AND EVALUATIONS

Next we report the results of empirical evaluations of our
method on Berkeley DB [9] and the e-Shop example [8].
The major research question investigated was whether our
approach could speed up product derivation. In particular,
in how many cases would our approach be applicable and
what improvements would it yield? We were also interested
in how long the response time is to compute the next feature
since the approach is intended to be used in an interactive
environment.

Instead of running costly and time consuming user studies,
we select a subset of the all products, which was done

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

product%

e
f
f
i
c
i
e
n
c
y

i
m
p
r
o
v
e
m
e
n
t

maximum

average

Figure 3. Derivation speed-up for BDB feature model

by randomly selecting or dropping particular features to
simulate a hypothetical user. This works as follows. Given a
feature model, all the features are ordered in ascending order
according to their selectivity. Then a random binary value
is generated to simulate the user’s decision of whether or
not to select the current feature. In either case a new feature
model will be produced. We continue this process until we
obtain a product.

Along with the obtained product, we also have the in-
formation about how many features we looked at and tried.
This should be the minimal number of features we have to
examine in order to get the product under our technique.
Note that we also count the number of features that are
looked at but rejected, because the user has spent effort on
such features.

In order to calculate the longest decision sequence, we
select features in increasing order of selectivity since this
will eliminate fewest features along the way.

Having the longest and shortest decision sequences of
lengths l and s, respectively, we can compute the maximum
speed-up by (l − s)/l. However, this number is not very
informative since the longest decision sequence reflects the
worst case of product derivation and is not a very likely sce-
nario. To obtain numbers for an average-case improvement,
we randomly select features until we get the product we
want. The number of all features looked at is then taken as
the length of the decision sequence. To make this approach
reliable, we repeat this process 500 times for each product
and then average all these numbers, to yield a, the average
number of features a user has to look at when deriving the
product. The average efficiency improvement is then defined
as (a− s)/a.

Figure 3 shows the maximum and average speed-up
for deriving products from Berkeley DB [9] by using our
technique. In the figure, the x axis denotes the percent

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

product%

e
f
f
i
c
i
e
n
c
y

i
m
p
r
o
v
e
m
e
n
t

maximum

average

Figure 4. Derivation speed-up for e-Shop feature model

of products and the y axis denotes percent of efficiency
improvement. A point (x,y) on the curve means that x
percent of all products enjoy a speed-up of at least y percent.
For example, the point (41,24) on the curve indicates that at
least 41% percent of all products in the Berkeley DB feature
model have an average speed-up of at least 24%. We can
observe that the speed-up is significant, which is important
taking into account the fact that products have to be derived
many times. Specifically, the average speed-up is between
the one and one third of the maximum speed-up. Moreover,
there is no product for which we obtain a slow-down.

A similar trend can be observed for the decision sequences
in the e-Shop example [8], see Figure 4.

Figure 5 presents the relationship between derivation
speed-up, ECR (the ratio of number of features involved
in extra constraints over number of all features) [12] and
the occurrences of each feature involved in constraints. We
empirically studied our approach by automatically generat-
ing many feature models with different sizes and different
ECRs and ran our approach on them. The way we generated
our feature models is the same as that described in [13]. We
used the same parameters, such as the ratio of AND, OR
and XOR features, the number of sub-features of a feature,
the ratio of constraints and the size of feature models. In
Figure 5, the curve 1avg (2avg) shows the average speed-up
for different ECRs where each feature occurs once (twice) if
it is involved in constraints, respectively. The curves 1max
and 2max represent maximum speed-ups. A point on a curve
denotes the speed-up for all products that can be derived
from a feature model under corresponding parameters. For
example, we have (0.33,11) on 1max, which means that
when the ECR is 0.33, the maximum speed-up for deriving
any product is about 11%.

Finally, we found that computing the next feature for
selection took at most a few seconds, which is tolerable. In

any case, this can probably be improved considerably. First
of all, our prototype was implemented in Haskell without
any special consideration for efficiency. Reimplementing the
tool in, say C, might lead to an improvement in the running
time. Moreover, as we have indicated in Section III-F, there
are techniques for pre-computation that can help further
reduce the time to compute selectivities, in particular, at the
beginning of the process where it is most needed because
the choice expressions are still large and we need most
selectivities.

V. RELATED WORK

Variability management has been identified as one of the
most important parts of successful SPL practices. Number
of products (a.k.a. variation degree) [5] and commonality
[4], together with some other notions form important mea-
surements for evaluating feature models [14]. Due to their
significance, much work has been done on variation degree
and commonality [12], [15]–[18]. However, to the best of
our knowledge, we are the first to exploit the difference of
selectivity among features to guide decision making process
to improve the efficiency of application engineering.

The problem of computing the commonality for a feature
can be reduced to computing the number of products by
first selecting that particular feature, which leads to a new
feature model, and then calculating the number of products
of that new feature model. Czarnecki et al. [15] transform
feature models to propositional formulas and employ a
SAT solver to compute the number of products. However,
SAT solvers are inefficient in counting satisfying instances,
even though Mendonca et al. [13] empirically showed that
satisfiability testing for feature models is easy. In [17],
[19], Benavides and colleagues transform feature models to
constraint programming models and use a constraint solver

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ECR

e
f
f
i
c
i
e
n
c
y

i
m
p
r
o
v
e
m
e
n
t

1max

1avg

2max

2avg

Figure 5. Relationship between derivation speed-up and ECR

to compute variation degree. Constraint solvers suffer from
similar efficiency problem as SAT solvers.

Because of these efficiency concerns, we can’t build our
approach on these models. In [18], Von der Massen and
Lichter use a mathematical method to calculate a rough
approximation of variation degrees of feature models. How-
ever, their approach is relatively coarse and many features
have the same selectivity under their method. Using BDDs
[20] is the most efficient way for computing the number
of products and commonality when compared to other ap-
proaches. The time complexity to compute variation degree
is O(|G|), where G is the BDD for a feature model and |G| is
the number of nodes in the BDD. To compute commonality,
we first need to apply feature restriction to the BDD, then
again use the method for computing the number of products
to compute commonality. Thus, in a feature model with n
features whose BDD is G, the complexity for computing
commonality is O(n|G|).

A disadvantage of the BDD approach is that the ordering
of features has a critical impact on the size of the BDD,
and computing the optimal ordering is NP-hard. In [12]
Mendonca and colleagues propose two promising heuristics
for computing the ordering for building BDD for feature
models. By using these heuristics, the size of the BDD for
feature models can be significantly reduced when compared
to other heuristics. When the ECR is low, our choice algebra
approach outperforms the BDD approach, and when the
ECR is high, the two approaches have competitive perfor-
mance. Moreover, when a feature model can be partitioned
into clusters, our approach scales better.

It is generally recognized that product derivation is a
challenging task due to the dependencies among features
and increasingly complicated feature models. To address
this issue, many tools and approaches have been proposed.
Batory shows that feature models can be represented in
propositional formulas [21]. He proposes a SAT-solver-based
logic truth maintenance system to ensure that the derived
product is free of inconsistencies. Mannion et al. [5] encode
feature models in propositional formulas, which are then
used to check the correctness of configurations. Benavides
et al. [22] and Hadzic et al. [23] develop tools to support
feature selection by auto-completion in the sense that when
a feature is chosen, the selection of this feature is propagated
to choose further features based on extra constraints, but they
don’t provide suggestions about the order in which features
are to be decided.

Moreover, auto-completion does not help with the prob-
lem of inconsistencies, which can still occur, for example,
in staged configurations [7]. The work done by White
and colleagues tackles this problem [24]. Their approach
is to transform feature models into constraint satisfaction
problems and use a constraint solver to derive the minimal
set of feature selection changes to fix errors in an invalid
configuration. Incidentally, our approach helps avoiding in-

consistencies into a product by forcing early decisions for
these features. Moreover, with the help of our approach,
users are less likely to run into a situation in which they are
unable to choose a specific feature because the features it
requires are eliminated in earlier decisions.

With respect to decision making for product derivation,
Mendonca et al. [25] focus on the coordination of decision
making. Schmid and colleagues [26] compared different
approaches of decision modeling for product derivation. Our
work is complementary to those works in the sense that they
pay attention to the information recorded during decision
making while our work tries to accelerate the decision
making process. Decision making for produces derivation
based on other models can be found in [27].

VI. CONCLUSIONS AND FUTURE WORK

Application engineering is an important component of
the SPL paradigm; it is repeated whenever a new product
is derived and built. Thus, improving the efficiency of
application engineering is critical to realize all advantages
of the SPL paradigm. In this paper, we have introduced a
selectivity-directed approach to improve the efficiency of
decision making when deriving products. To calculate the
selectivity for all features efficiently, we have developed
choice algebra, a partitioning technique, and a decomposing
technique that removes constraints in choice descriptions.

The evaluation results show that our approach can sig-
nificantly speed-up the product derivation process without
noticeable interactive response delay. The effectiveness of
our technique increases with the ECR. Also, our technique
helps avoiding feature-selection conflicts.

In future work, we will be developing an approximation
methods for computing number of products, commonality,
and selectivity. Since a short response time is critical for
an interactive system that supports users in the decision-
making process, we might not able to afford the computation
of exact numbers when feature models are large or are not
amenable to decomposition. In fact, for guiding the decision
making, knowledge about the relative ordering of feature
selectivity is sufficient. Another possibility for improving
efficiency is to identify those features that cut across multiple
subsystem in the feature model and ask for decisions about
them first. After this, the monolithic feature models can
be partitioned down. We have already started to investigate
using the impact of features as an approximation for their
selectivities, and while this works in many cases, it doesn’t
always provide the most selective features and thus does
not always lead to as much efficiency improvements as our
current approach. A detailed analysis of the trade-off will
remain to be investigated in the future.

Our approach forces users to make high-impact decisions
early on, which might lead to mistakes. Moreover, users
might prefer to make easy decisions first and postpone hard,
high-impact decisions. We plan to study how much of a

problem that is and whether we can employ strategies to
entice users to make hard decisions first.

ACKNOWLEDGMENTS

This work is supported by the Air Force Office of Scien-
tific Research under the grant FA9550-09-1-0229 and by the
National Science Foundation under the grant CCF-0917092.

REFERENCES

[1] P. Clements and L. Northrop, Software Product Lines: Prac-
tices and Patterns, 3rd ed. Addison-Wesley Professional,
2001.

[2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Nak, and A. S.
Peterson, “Feature-oriented domain analysis(foda) feasibil-
ity study,” CMU/SEI, Technical Report CMU/SEI-90-TR-21,
1990.

[3] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz,
and S. Ferber, “Introducing pla at bosch gasoline systems:
Experiences and practices,” in Software Product Lines, Third
International Conference, SPLC 2004, 2004, pp. 34–50.

[4] P. Trinidad, D. Benavides, and A. Ruiz-corts, “Improving
decision making in software product lines product plan man-
agement,” in CEUR Workshop Procceedings, 2004.

[5] M. Mannion, “Using first-order logic for product line model
validation,” in Software Product Lines, Second International
Conference, SPLC 2, 2002, pp. 176–187.

[6] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged configu-
ration through specialization and multi-level configuration of
feature models,” Software Process Improvement and Practice,
vol. 10, no. 2, pp. 143–169, 2005.

[7] ——, “Staged configuration using feature models,” in Soft-
ware Product Lines: Third International Conference, SPLC
2004, 2004, pp. 266–283.

[8] S. Q. Lau, “Domain analysis of e-commerce systems using
feature-based model templates,” Master’s thesis, Dept. of
ECE, University of Waterloo, Canda, 2006.

[9] C. Kästner, “Aspect-oriented refactoring of berkeley db,”
2007.

[10] M. Riebisch, “Towards a more precise definition of feature
models,” in Modelling Variability for Object-Oriented Prod-
uct Lines, 2003, pp. 64–76.

[11] P. Höfner, R. Khedri, and B. Möller, “Feature algebra,” in
LNCS, FM 2006: Formal Methods, 2006, pp. 300–315.

[12] M. Mendonca, A. Wasowski, K. Czarnecki, and D. Cowan,
“Efficient compilation techniques for large scale feature mod-
els,” in GPCE ’08: Proceedings of the 7th international
conference on Generative programming and component en-
gineering, 2008, pp. 13–22.

[13] M. Mendonca, A. Wasowski, and K. Czarnecki, “Sat-based
analysis of feature models is easy,” in SPLC ’09: Proceedings
of the 13th International Software Product Line Conference,
2009, pp. 231–240.

[14] D. Benavides, S. Segura, and A. Ruiz-Cortes, “Automated
analysis of feature models 20 years later: a literature review,”
Information Systems, 2010.

[15] K. Czarnecki and C. H. P. Kim, “Cardinality-based feature
modeling and constraints: A progress report,” in International
Workshop on Software Factories, 2005.

[16] M. Mannion and J. Camara, “Theorem proving for product
line model verification,” in Software Product-Family Engi-
neering, ser. Lecture Notes in Computer Science, vol. 3014,
2004, pp. 211–224.

[17] D. Benavides, P. Trinidad, and A. R. Cortés, “Using constraint
programming to reason on feature models,” in Proceedings of
the 17th International Conference on Software Engineering
and Knowledge Engineering (SEKE’2005), 2005, pp. 677–
682.

[18] T. von der Massen and H. Lichter, “Determining the variation
degree of feature models,” in LNCS,Software Product Lines,
2005, pp. 82–88.

[19] D. Benavides, P. T. Martı́n-Arroyo, and A. R. Cortés, “Auto-
mated reasoning on feature models,” in Advanced Information
Systems Engineering, 17th International Conference, CAiSE
2005, 2005, pp. 491–503.

[20] R. E. Bryant, “Graph-based algorithms for boolean function
manipulation,” IEEE Transactions on Computers, vol. 35, pp.
677–691, 1986.

[21] D. S. Batory, “Feature models, grammars, and propositional
formulas,” in Software Product Lines, 9th International Con-
ference, SPLC 2005, 2005, pp. 7–20.

[22] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-corts,
“Fama: Tooling a framework for the automated analysis of
feature models,” in In Proceeding of the First International
Workshop on Variability Modelling of Softwareintensive Sys-
tems (VAMOS, 2007, pp. 129–134.

[23] T. Hadzic, S. Subbarayan, R. M. Jensen, H. R. Andersen,
J. Moller, and H. Hulgaard, “Fast backtrack-free product con-
figuration using a precompiled solution space representation,”
in PETO Conference, DTU-TRYK, 2004, pp. 131–138.

[24] J. White, D. Schmidt, D. B. P. Trinidad, and A. Ruiz-Cortes,
“Automated diagnosis of product-line configuration errors in
feature models,” in Proceedings of the Sofware Product Line
Conference, 2008.

[25] M. Mendonça, T. T. Bartolomei, and D. Cowan, “Decision-
making coordination in collaborative product configuration,”
in Proceedings of the 2008 ACM symposium on Applied
computing, ser. SAC ’08, 2008, pp. 108–113.

[26] K. Schmid, R. Rabiser, and P. Grünbacher, “A comparison of
decision modeling approaches in product lines,” in Proceed-
ings of the 5th Workshop on Variability Modeling of Software-
Intensive Systems, ser. VaMoS ’11, 2011, pp. 119–126.

[27] R. Rabiser, P. Grübacher, and D. Dhungana, “Requirements
for product derivation support: Results from a systematic
literature review and an expert survey,” Information and
Software Technology, vol. 52, no. 3, pp. 324 – 346, 2010.

