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Abstract. Functional programs, by nature, operate on functional, or persistent,
data structures. Therefore, persistent graphs are a prerequisite to express func-
tional graph algorithms. In this paper we describe two implementations of persis-
tent graphs and compare their running times on different graph problems. Both
data structures essentially represent graphs as adjacency lists. The first uses the
version tree implementation of functional arrays to make adjacency lists persis-
tent. An array cache of the newest graph version together with a time stamping
technique for speeding up deletions makes it asymptotically optimal for a class of
graph algorithms that use graphs in a single-threaded way. The second approach
uses balanced search trees to store adjacency lists. For both structures we also
consider several variations, for example, ignoring edge labels or predecessor in-
formation.

1 Intr oduction

A data structure is calledpersistent if it is possible to access old versions after updates.
It is calledpartially persistent if old versions can only be read, and it is calledfully
persistent if old versions can also be changed [4]. There is a growing interest in persis-
tent data structures, for a recent overview, see [9]. However, persistent graphs have
almost been ignored. In [6] we have sketched an implementation of unlabeled, fixed-
size persistent graphs by functional arrays. The purpose of that paper was, however, to
demonstrate an inductive view of graphs and a corresponding functional style of writ-
ing graph algorithms, mainly based on graph fold operations, and to show how this
style facilitates reasoning about and optimization of graph algorithms.

In this paper we explain the implementation by functional arrays in more detail, and
we extend it in several ways. First, we are now able to work with labeled graphs. Sec-
ond, the implementation can also be used in semi-dynamic situations, that is, new nodes
can be efficiently allocated, and graphs can grow to a limited degree. This has become
possible through an extension of the graph representation by node partitions which are
realized in a way similar to the implementation of sparse sets described in [3]. Third,
we consider several specialized implementations: one for unlabeled graphs, one keep-
ing only successor information, and one for a combination of both. Moreover, the un-
derlying functional array implementation has been improved.

 Besides the explanation of the persistent graph implementation based on functional
arrays, the main goal of this paper is to find a good “standard representation” suitable
for most application scenarios. We have therefore implemented persistent graphs also
on the basis of balanced binary search trees. We present some example programs and
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report running times of the different graph implementations. We also pay attention to
the question of whether specialized implementations (unlabeled, keeping only succes-
sors) are worthwhile. The results of this paper have helped us in the design of afunc-
tional graph library, which has been implemented in Standard ML and which can be
downloaded from

http://www.fernuni-hagen.de/inf/pi4/erwig/fgl

All examples of this paper are contained in the distribution. The main contributions of
this work are:

(1) The world’s first functional graph library
(2) Several implementations of persistent graphs
(3) Empirical results about the performance of different persistent graph structures

Section 2 introduces a compact graph data type whose operations are briefly demon-
strated with examples taken from graph reduction. These examples are used in Section
3 to explain the different implementations of persistent graphs. In Section 4 we
describe a set of test programs and report running times of the different graph imple-
mentations. Conclusions follow in Section 5.

2 A Data Type for Graphs

In the following we consider directed node- and edge-labeled multi-graphs. This is a
sufficiently general model of graphs, and many other graph types can be obtained as
special cases: for instance, undirected graphs can be represented by symmetric
directed graphs where “symmetric” means that presence of edge (v, w) implies the
existence of edge (w, v). Unlabeled graphs have node and/or edge label typeunit , and
graphs embedded in the Euclidean plane can be modeled by having real * real  node
type.

Typical operations on graphs are the creation of an empty graph, adding, retrieving,
and deleting nodes and edges, and retrieving and changing node and edge labels. We can
cover all these functions by a simple interface consisting of just three operations. We
have a type for nodes, which we assume for simplicity to beint , and a type for graphs
whose type parameters'a  and'b  denote the type of node and edge labels, respectively.

type node = int
type ('a,'b) graph

Additionally, we use the following type abbreviations that make the typings of some
operations more concise.

type     'b  adj     = ('b * node) list
type ('a,'b) context = 'b adj * node * 'a * 'b adj

Concerning operations, we have a constant1 empty  representing the empty graph, an
operationembed that extends a graph by a new node together with incoming and out-
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going edges, and an operationmatch  that retrieves and at the same time removes a
node with all its incident edges from the graph.

val empty : ('a,'b) graph
val embed : ('a,'b) context * ('a,'b) graph -> ('a,'b) graph
val match : node * ('a,'b) graph -> ('a,'b) context * ('a,'b) graph

Since graphs are not freely constructed byempty  andembed, that is, since there are dif-
ferent term representations denoting the same graph, matching is, in general, not
uniquely defined. The additionalnode  parameter allows us to specify which represen-
tation is to be selected (namely that one with the given node inserted last) and thus
makesmatch  a function again; match  is actually an example of anactive pattern as
described in [5]. If the node to be matched is not in the graph, aMatch  exception is
raised.2

Consider, for example, the graphg in Figure 1 that represents the combinator ex-
pression (sqr 3) + (sqr 3). The node numbers are given for later reference.

The type ofg is (combinator,direction) graph  with

datatype value = INT of int | BOOL of bool
datatype direction = L | R
datatype combinator =
   APP
 | COND
 | VAL of value
 | OP of (value * value -> value)
 | COMB of string

We have omitted the edge labels from the picture since the values are implied by the
spatial embedding of the edges. The following expression constructsg in a bottom-up
manner.

1. Note that in the array implementationempty  takes an integer argument specifying the
maximum graph size.

2. The reader might wonder why the argument node ofmatch  is also returned as a result (as part
of the typecontext ). It is for consistency with the operationmatchAny  (see Section 4.2) that
does not take a node argument and therefore reports the node actually matched.

@
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Fig. 1. Example Graphg
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val g = foldr embed empty
        [([],1,APP,[(L,2),(R,4)]), ([],2,APP,[(L,3),(R,4)]),
         ([],3,OP plus,[]),        ([],4,APP,[(L,5),(R,6)]),
         ([],5,OP sqr,[]),         ([],6,VAL (INT 3),[])   ]

As already indicated this is indeed not the only way to build the graphg. Actually, we
can insert the nodes in any order. For a precise definition of the semantics of graph
constructors, see [6].

Suppose now we are to reduceg. We first have to reduce the subgraph rooted at node
4, and replace it with the result of the reduction. Thus, we first match node 4, and we
get the context

(([(R,1),(R,2)],4,APP,[(L,5),(R,6)]),g')

whereg'  is any representation of the graph:

In this case we have to apply aδ-rule for computingsqr 3, and we re-insert node 4
with the result as the new node label, with the old predecessors, and with no succes-
sors, that is,

val r = embed (([(R,1),(R,2)],4,VAL (INT 9),[]),g’)

Thus we obtain the graph shown in Figure 3 in which nodes 5 and 6 have become gar-
bage. Note that after the updateg is still bound to the original graph; graph reduction
as described here happens purely functionally, that is, node 4 is not destructively over-
written.

Summarizing we see thatembed implements node and edge insertion and thatmatch

comprises the operations of finding and deleting nodes and edges. Amatch  followed
by embed can be used to realize update functions. It is not difficult to derive specific
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graph operations from these general ones. For instance, the insertion of a single labeled
edge can be simply done by:

fun insEdge (v,w,l) g =
    let val ((p,_,vl,s),g') = match (v,g)
     in
        embed (p,v,vl,(l,w)::s,g')
    end

We will see the need for some more predefined graph operations when considering
example programs in Section 4. Mostly on the grounds of efficiency we also provide
the following functions.

val matchFwd : ('a,'b) graph -> 'a * 'b out
val matchAny : ('a,'b) graph -> ('a,'b) context * ('a,'b) graph
val isEmpty  : ('a,'b) graph -> bool
val newNodes : int -> ('a,'b) graph -> node list

The functionsmatchFwd  andmatchAny  are just special versions ofmatch : matchFwd

selects only the node label and the successors, andmatchAny  matches an arbitrary
node context. This means thatmatchAny  is non-deterministic and can assume any valid
term representation of its argument graph to return the outermost node context of this
representation.The functionisEmpty  tests whether a graph is the empty graph, and
newNodes i g  generates a sequence ofi  nodes that are not contained in the graphg.

3 Persistent Graph Structures

The representation of a graph by (an array of) adjacency lists is often favored over the
incindence matrix representation since its space requirement is linear in the graph size
whereas an incidence matrix always needsΩ(n2) space which is very wasteful for
sparse graphs. Moreover, adjacency lists offer O(k) access time to thek successors of
an arbitrary node where we have to spendΩ(n) time to find the successors by scanning
a complete row in an incidence matrix. We therefore focus on two alternatives for mak-
ing adjacency lists persistent: the first representation uses a variant of the version tree
implementation of functional arrays, and the second stores successor (and predecessor)
lists in a balanced binary search tree. The functional array structure is more difficult to
understand because it employs an additional cache array and a further array carrying a
kind of time stamps for nodes. Moreover, to support some of the specialized operations
efficiently, this structure is extended by a two-array implementation of node partitions
to keep track of inserted and deleted nodes. We therefore explain this structure in some
detail and only sketch the rather obvious binary tree implementation.

3.1 Implementation by Functional Arrays

In a first attempt we can make an imperative graph persistent by simply using a func-
tional array for storing adjacency lists and node labels. However, with this representa-
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tion the deletion of a nodev from the graph (which is performed with every match
operation) is quite complex, since we have to remove v from each of its predecessor’s
successor lists and from each of its successor’s predecessor lists. This means, on the
average, quadratic effort in the size of node contexts. To avoid this we therefore store
with each node a positive integer when the node is present in the graph and a negative
integer when the node is deleted. We also carry over positive node stamps into succes-
sor/predecessor lists. This has the following effect: When, for example, nodev is
deleted, we can simply set its stamps(v) to -s(v); we need not remove v from all refer-
encing successor and predecessor lists because when, say, a successor listl of w con-
tainingv is accessed, we can filter out all elements that have non-matching stamps, and
by thisv will not be returned as a successor. Whenv is re-inserted into the graph later,
we sets(v) to |s(v)|+1, and take this new stamp over to all newly added predecessors
and successors. Now if w is not among the new predecessors, the old entry inl with
stamps(v) is still correctly ignored whenl is accessed.

In the version tree implementation of functional arrays as described in [2] changes
to the original array are recorded in an inward directed tree of (index, value) pairs that
has the original array at its root. Each different array version is represented by a pointer
to a node in the version tree, and the nodes along the path to the root mask older defini-
tions in the original array (and the tree). Adding a new node to the version tree can be
done in constant time, but index access might take up tou steps whereu denotes the
number of updates to the array. By adding an imperative “cache” array to the leftmost
node of the version tree the array represented by that node is actually duplicated. Since
index access in this array is possible in constant time, algorithms that use the functional
array in a single-threaded way have the same complexity as in the imperative case, since
the version tree degenerates to a “left spine” path offering O(1) access all the time dur-
ing the algorithm run.

There is a subtlety in this implementation having justone cache array: if a functional
array is used a second time, the cache has already been consumed for the previous com-
putation and cannot be used again. This gives a surprising time behavior: the user exe-
cutes a program on a functional array, and it runs quite fast. However, running the same
program again results, in general, in much larger execution times since all access now
goes via the version tree. Therefore, we create in our implementation a new cache for
each new version derived from the original array.

An initial functional array representation ofg is shown in Figure 4.
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Fig. 4. Functional Array Representation of Graphg
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Each array entry consists of a list of predecessors (extending downwards), a node
label, and a list of successors (extending upwards). Empty lists are represented by •.
Note that initially all node stamps are set to 1.

Now consider the result of the expressionmatch (4,g) . First, the predecessor list,
the node and its label, and the successor list are retrieved, and then the decomposed
graphg'  is constructed. Here, it suffices to add a single node to the version tree indicat-
ing that node 4 is deleted. If we had not the node stamps available, we would have to
add four (!) more nodes to the version tree specifying the change of the successor lists
(for nodes 1 and 2), respectively, predecessor lists (for nodes 5 and 6). The updated
graph structure is shown in Figure 5.3

If we now access, say, the successors of node 2, we obtain just the list[(L,3)]  – node
4 is omitted, since the node stamp found in the successor list does not match the stamp
currently stored with the node.

Let us finally consider what happens if we re-insert node 4 to obtain the reduced
graphr  from Figure 3. First, the stamp of node 4 changes to +2, and a modification node
with empty successor list and the old predecessors is added to the version tree. Unfor-
tunately, we are not finished yet: we have to add node 4 to the successor lists of each of
its predecessors, that is, we have to create corresponding nodes in the version tree. Note
that in both these successor lists node 4 appears twice, but only the entry with the new
stamp is relevant. The resulting graph representation is shown in Figure 6.

In principle, we had to update the predecessor lists for all successors, too, but this
does not apply in this particular case, since the successor list is empty. The described
updates actually use the array in a single-threaded way so that the version tree degener-
ates to a path with the cache at its end. If we now perform a further update to the original
graphg, this is reflected in the version tree by a new sibling node ofg' . Since this ver-
sion was created from the original versiong, the node is also equipped with its own

3. Note that the actual implementation differs in a minor point: instead of one array storing four-
tuples we are working with four individual arrays for stamps, labels, predecessors, and
successors. This simplifies the implementation at some points. On the other hand, the structure
is easier to explain using only one array.

Fig. 5. Functional Array Representation of Graphg'
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cache array to speed up single threaded operations on this version, too. This new cache
is needed, since the other cache is still in use.

The array representation is expected to perform quite well in situations where
graphs are used in a single-threaded way. However, in cases when the cache cannot be
used the need for traversing possibly long paths in the version tree can slow down the
structure significantly. Actually, few applications use graphs in a persistent manner.
Maybe this is due to the fact that graph algorithms are traditionally expressed in an im-
perative style? In any case, a trivial, yet important, persistent use of graphs is given by
executing more than one algorithm on a graph. By spending a new cache for each “pri-
mary” version, the functional array implementation is well prepared for these situations,
too.

The functional array implementation is fine for the (minimal) interface described in
Section 2. However, some algorithms require operations that cannot be easily reduced
to the three basic ones and should therefore also be provided by a library. For instance,
a simple algorithm for reversing the edges in a graph (see Section 4.2) uses the functions
matchAny  andisEmpty . Now in the array representation an implementation ofmatch-

Any is quite inefficient, since, in general, we have to scan the whole stamp array to find
a valid, that is, non-deleted, node. The same is true forisEmpty  and also fornewNodes.
Here the simple array implementation also requires, in general, linear time by scanning
the whole array.
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Fig. 6. Functional Array Representation of the Reduced Graphr
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Thus to reasonably use the array implementation in those cases we have to extend
the implementation to support these two operations in constant time.

We therefore keep for each graph a partition of inserted nodes (that is, nodes existent
in the graph) and deleted nodes: when a node is deleted (decomposed), it is moved from
the inserted-set into the deleted-set, when a node is inserted into the graph, it is moved
the other way. The node partition is realized by two arrays,index andelem, and an in-
tegerk giving the number of existent nodes, or, equivalently, pointing to the last existing
node. The arrayelem stores all existent nodes in its left part and all deleted nodes in its
right part, andindex gives for each node its position in theelem array. A nodev is exis-
tent if index[v] ≤ k, likewise, it is deleted ifindex[v] > k. Inserting a new nodev means
to move it from the deleted-set into the inserted-set. This is done by exchangingv’s po-
sition inelem with the node stored atelem[k+1] (that is, the first deleted node) followed
by increasingk by 1. The entries inindex must be updated accordingly. To delete node
v, first swapv andelem[k], and then decreasek by 1. All this is possible in constant time.

Now all the above mentioned graph operations can be implemented to work in con-
stant time:matchAny can be realized by callingmatch with elem[1], isEmpty is true if
k=0, andnewNodes i can simply return a list of nodes [elem[k+1], …, elem[k+i]].
Some other useful graph operations are efficiently supported by the node partition:k
gives the number of nodes in the graph, and all nodes can be reported in time O(k) which
might be much less than the size of the array. The described implementation of node
partitions is an extension of the sparse set technique proposed in [3].

Although offering some nice features, the described extension has its drawbacks and
limits: Keeping the partition information requires additional space and causes some
overhead. Moreover, arrays do not become truly dynamic since they (at least in the cur-
rent implementation) can neither grow nor shrink. In the following we will report test
results for both the static array implementation (Array) and also for the semi-dynamic
version (DArray) whenever this is possible.

The attentive reader might wonder whether the garbage nodes in successor and pre-
decessor lists (that is, invalid and unused references to deleted nodes) are a source of
inefficiency. Although we have not studied the problem in detail, it seems that in prac-
tice, this is not a problem. For example, in the case of graph reduction, where graphs are
heavily updated, only 25-30% of nodes in successor and predecessor lists are filtered
out due to invalid stamps.

3.2 Implementation by Balanced Binary Search Trees

We use the implementation of balanced binary search trees as provided by the SML/NJ
library. Actually, this is the implementation described in [1]. For convenience, we have
added two functionsupdate andfindSome. Althoughupdate can be realized by
remove andinsert, the directly implemented version saves multiple traversals of the
same path.

Since a binary search tree can be used as a functional array implementation, we ob-
tain an immediate realization of functional graphs, that is, a graph is represented by a
pair (t, n) wheret is a tree of pairs (node, (predecessors, label, successors)) andn is the
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largest node occurring int. Note thatn is used to support the operationnewNodes. Keep-
ing the largest node value used in the graph, this is possible in O(1) time.

3.3 Tuned Implementations

There are two principal sources for improving efficiency of any graph implementation:
first, carrying edge labels in unlabeled graphs wastes unnecessarily space and causes
some overhead. Second, keeping predecessor information is not necessary in algo-
rithms that only access successors.

So in addition to the labeled/full-context array and tree implementations we have
implemented unlabeled/full-context, labeled/forward, and unlabeled/forward versions
to see which speed-ups can be achieved. It should be clear that thematch operation is
not available in the forward implementations. Instead an operationmatchFwd giving
only node label and successors is provided. Note that evenmatchFwd cannot be (effi-
ciently) realized in a forward-tree implementation, since removing a node from a graph
means to remove it from all referencing successor lists, but without the predecessor in-
formation, which provides direct access to all referencing nodes, all successor lists of
the graph had to be scanned, which is not acceptable.

More extensions and improvements are conceivable, for example, combining the
stamping technique with the tree implementation or making functional arrays fully dy-
namic. These will be examined in the near future.

4 Test Programs and Running Times

We have selected the following example programs to get a picture of the graph imple-
mentations’ performances in different situations: depth-first search (dfs, Section 4.1),
reversing the edges of a graph (rev, Section 4.2), generating cliques (clique, Section
4.3), combinator graph reduction (red, Section 4.4), and computing maximal indepen-
dent sets of nodes (indep, Section 4.5). We cannot use the benchmarking kit Auburn
[8] since (i) it is restricted to unary type constructors (labeled graphs have two type
parameters), and (ii) argument and result types must not contain applications of other
type constructors (embed andmatch take/yieldlists of nodes (and labels)).

All programs have been run with SML of New Jersey 109.29 under Solaris 2 on a
SUN SPARCstation 20 with 64MB main memory. Reported are the average user times
(average taken over ten4 runs). The benchmarks are intended to serve two goals: first,
we would like to find out which graph implementation performs best in which scenario,
and second, whether it is worthwhile to use specialized implementations in situations
where only part of the functionality is needed.

With regard to the latter we consider three aspects: (1)Kind of context. This address-
es the fact that there are graph algorithms (for example,dfs) that move only in forward
direction through the graph. For all these, a graph representation that does not explicitly
store predecessors is more space efficient and is expected to be faster because of less

4. Some implementations crashed due to memory shortage on large graphs. In those cases
averages over three or five runs have been taken.
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overhead. (2)Edge Labels. Many graph algorithms (for example,dfs, rev) do not need
edge labels, that is, they also work on graphs without edge labels, and the question is
whether they perform faster on a specialized graph type for unlabeled graphs. (3)Graph
Size. For algorithms that do not change or at least do not increase the size of the graph
the static array representation (without node partitions) is expected to run faster than
semi-dynamic arrays.

For the comparison of the two main implementations we distinguish graph algo-
rithms by the neededoperations on graphs. Many algorithms use graphs in a “read-
only” fashion, that is, they only decompose the graph by means of thematch operation.
On the other hand, there are algorithms that build or change graphs, and the perfor-
mance picture might be different here. Algorithms for this case can be distinguished fur-
ther according to whether they aredynamic, that is, generate new nodes and truly extend
a graph, orstatic, that is, just perform operations on existing nodes and edges. Finally,
although most algorithms seem to use graphs in a single-threaded way, there are exam-
ples of persistent graph uses, and it is interesting to know which structures are prefera-
ble in those situations.

The test programs provide examples for each kind of graph use, operation, and spe-
cialization:

The test results provide some advice of the kind “If you have a graph problem of type
X, then it is best to use graph implementationY.”

4.1  Depth First Search

One of the most important general graph algorithm is certainly depth first search. We
consider the task of computing a depth first spanning forest for a graph. We choose for-
ests storing only nodes without labels; they are represented by:

datatype tree = BRANCH of node * tree list

Now a functional version of depth first search is defined by the two mutual recursive
functionsdfs1 anddfsn which work as follows: First,dfs1 decomposesv fromg get-
ting the list of successors (and node labels)s and the reduced graphg1. Then for each
element ofs (that is, for each second component) a depth first spanning tree is com-
puted recursively by callingdfsn. Note that by usingg1 as the graph argument ofdfsn
it is ensured thatv cannot be encountered again in a recursive call todfs1. Finally, the

Graph Use Operation Specialization Program

single-
threaded

match forward, unlab dfs

embed (static) unlab rev

embed (dynamic)
unlab clique

red

persistent embed unlab indep
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constructorBRANCH is applied tov and to the resulting forestf yielding the spanning
tree ofv. In addition, the part of the graph not visited by the recursion is returned. Now
dfsn does nothing more than callingdfs1 for each node of its argument list, passing
around decomposed graphs.

fun dfs1 (v,g) =
    let val ((_,_,_,s),g1) = match (v,g)
        val (f,g2) = dfsn (map (fn (_,w)=>w) s,g1)
     in
        (BRANCH (v,f),g2)
    end
and dfsn ([],g)   = ([],g)
 |  dfsn (v::l,g) =
    let val (t,g1) = dfs1 (v,g)
        val (f,g2) = dfsn (l,g1)
     in
        (t::f,g2)
    end
    handle Match => dfsn (l,g)

Since the graph might consist of unconnected components, the depth-first spanning
forest is obtained by applyingdfsn to all nodes of the graph:

fun dfs g = dfsn (nodes g,g)

The running times fordfs (user time in seconds, including garbage collection) are
given in Table 1 for sparse graphs (of average degree 8) depending on the number of
nodes in the graph and the chosen graph implementation.

We see that both array implementations are always faster than the tree implementation
and thatDArray tends to take 70% more time thanArray. It is interesting thatTree per-
forms quite well with only a factor of about 3 slower thanArray.

In Table 2 we show running times for unlabeled (u) and forward only (f) specialized
implementations. We observe that omitting labels yields a speed-up of at least 7% (Ar-
ray) or 12% (Tree) up to 20% (for bothTree andArray), and just keeping forward links
(which is only possible with the array implementation) is about 3 to 18% faster. The un-
labeled/forward implementation gives, as expected, the best performance and is 13 to
25% faster.

1000 5000 10000 50000 100000 Ratios

Array 0.08 0.53 1.12 9.75 21.42 1

DArray 0.14 0.77 1.79 16.68 36.98 1.45 .. 1.75

Tree 0.25 1.63 3.62 29.61 67.01 3.04 .. 3.23

Table 1. Running Times fordfs
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The improvements in running time obtained by the specialized implementations are
similar for the other examples programs, so we shall not give any additional tables in
the following.

4.2 Reversing Graphs

The second graph problem considered is to reverse the edges of a graph. The following
simple algorithm can be used:

fun rev g =
    if isEmpty g then g else
    let val ((p,v,l,s),g') = matchAny g
     in
        embed ((s,v,l,p),rev g')
    end

We have already noticed thatisEmpty  andmatchAny  are efficiently supported only by
the dynamic array implementation. Thus we omit the running times for the static ver-
sion, since this would make rev  actually a quadratic algorithm. The graphs used are
the same as for thedfs  tests.

It is striking thatTree outperforms the array implementation. This is certainly due to
the fact thatmatchAny  is realized by just taking the tree’s root, which is very fast and,
in particular, creates little garbage. It is therefore interesting to consider in this case the
running times without garbage collection. Here the figure changes, and the tree imple-
mentation takes up to 50% more time, see Table 4.

1000 5000 10000 50000 100000 Ratios

Array 0.10 0.53 1.12 9.75 21.42 1

Arrayu 0.07 0.48 0.88 7.73 20.00 0.79 .. 0.93

Arrayf 0.07 0.51 0.99 9.46 20.66 0.88 .. 0.97

Arrayuf 0.06 0.41 0.84 7.53 18.70 0.75 .. 0.87

Tree 0.25 1.63 3.62 29.61 67.01 1

Treeu 0.20 1.31 2.94 26.01 55.41 0.80 .. 0.88

Table 2. Speed-ups gained by Unlabeled and Forward Graphs

1000 5000 10000 50000 100000 Ratios

DArray 0.27 2.12 4.35 47.27 120.59 1.04 .. 2.55

Tree 0.26 1.68 3.33 21.24 47.38 1

Table 3. Running Times forrev
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At this point it is important to mention that the test program for iterating theDArray
implementation exhausted heap memory already on graphs with 50000 nodes, and we
were forced to take the average only over three runs. All in all this shows that worst-
case running times given in big-Oh notation are one aspect and that actual running
times as well as practicability and reliability of implementations are often a different
matter.

Note that we can efficiently reverse graphs with the static array implementation if
we rewrite the algorithm as follows.

fun revi ([],g)   = g
 |  revi (v::l,g) =
    let val ((p,_,lab,s),g') = match (v,g)
     in
        embed ((s,v,lab,p),revi (l,g'))
    end
    handle Match => g

fun revd g = revi (nodes g,g)

By avoiding the functionsmatchAny  andisEmpty  we obtain a linear algorithm. Deter-
ministic matching causesTree to spend more time on searching node contexts, and the
static array implementation is again ahead, see Table 5.

Sorev  is only of limited use in judging the implementations’ efficiency for graph con-
struction.

4.3 Generating Cliques

For a better comparison of the implementations ofembed, we therefore use the follow-
ing program5 for generating cliques of a specified size (map (fn x=>((),x))  just

5. For testingDArray we need a slightly different program taking into account thatempty  needs
n as a size parameter.

1000 5000 10000 50000 100000 Ratios

DArray 0.23 1.18 2.37 12.88 24.32 1

Tree 0.24 1.42 2.88 16.79 36.36 1.04 .. 1.50

Table 4. Command Times forrev  (without GC)

1000 5000 10000 50000 100000 Ratios

Array 0.21 1.32 3.27 33.66 73.57 1

Tree 0.35 2.43 6.55 39.19 83.89 1.14 .. 2.00

Table 5. Running Times forrevd
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extends the list of nodes by a unit edge label):

fun clique 0 = empty
 |  clique n =
    let val g   = clique (n-1)
        val l   = map (fn x=>((),x)) (nodes g)
        val [v] = newNodes 1 g
     in
        embed ((l,v,(),l),g)
    end

The results in Table 6 show that the tree implementation performs better in construct-
ing graphs.

4.4 Combinator Graph Reduction

The graph type to be used for graph reduction was already given in Section 2. For lack
of space we do not give here the complete code of the graph reducer.6 We have imple-
mented combinator graph reduction as described in Chapter 12 of [7]. The main com-
ponents are the functionsunwind andred: unwinding the graph’s spine yields the
combinator to be reduced together with all argument nodes and the root node to be
replaced. The functionred actually contains the reduction rules for all combinators.
Consider the case for theK combinator: first, the argument nodes and the root node as
given byunwind are bound to the variablesx, y, andr. Then the root noder is matched
in the graphe which is to be reduced. This is just to decomposer from e and to
remember the references to it in the listrp. After that the label (xl) and the successors
(xs) of x are determined by applying the functionfwd. Note thatmatch need not be
used here, sincex is not to be changed. Finally, noder is re-inserted, now with label
and successors ofx, but with its own predecessors (rp). This realizes, in a functional
way, the “overwriting” of r. The situation is similar for theS combinator: bindings are
created, the root is decomposed, and the new graph is built by node insertion. Note,
however, that two new nodes (n andm) have to be generated. Performing this node gen-
erationbefore matching ofr takes place ensures a single-threaded use of the graph,
and we could, in principle, use an imperative graph implementation for the graph
reducer. In contrast, if new nodes were generated in an imperative graph after matching
r, r could be returned (“recycled”) as one of the new nodes which would definitely
lead to wrong results.

6. The code for all examples can be found in the FGL distribution.

50 100 500 1000 Ratios

DArray 0.05 0.22 18.15 85.67 1.14 .. 2.00

Tree 0.03 0.17 8.45 46.69 1

Table 6. Running Times forclique
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fun red (v,e) =
    let val (comb,args) = unwind (v,[],e)
     in
        case comb of
          COMB "K" =>
            let val [x,y,r] = args
                val ((rp,_,_,_),e') = match (r,e)
                val (xl,xs) = fwd (x,e')
             in
                embed ((rp,r,xl,xs),e')
            end
        | COMB "S" =>
            let val [f,g,x,r] = args
                val [n,m] = newNodes 2 e
                val ((rp,_,_,_),e') = match (r,e)
             in
                embed ((rp,r,APP,[(L,n),(R,m)]),
                embed (([],n,APP,[(L,f),(R,x)]),
                embed (([],m,APP,[(L,g),(R,x)]),e')))
            end
        ...
    end

We give the running times for the reduction of graphs that represent applications of the
fibonacci function on different arguments. We know that fibonacci has been criticized
as a benchmark for graph reduction, but we are testing the underlying graph imple-
mentation, not the graph reducer, and for that fibonacci is sufficient by causing reduc-
tions and allocations. Unfortunately, DArray exhausts heap memory even for a single
run when computingfib 20. For the smaller sizes, the tree implementation is clearly
faster.

4.5 Maximal Independent Node Sets

The functionindep  for computing sets of non-adjacent nodes of maximal size is an
example of an algorithm that uses graphs in a truly persistent way. Although the algo-
rithm has exponential complexity (the problem is NP-hard) it is much faster than
blindly trying all possible node subsets: in the second line a noden with maximum
degree is determined. Then two node sets are computed, namely, the independent set of

fib 10 fib 15 fib 20 Ratios

DArray 0.52 11.91 — 1.33 .. 1.79

Tree 0.39 6.66 289.93 1

Reductions
Allocations

1 031
814

11576
9 139

128521
101464

Table 7. Running Times forred
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g simply withoutn, andn plus the independent set ofg withoutn and all its neighbors.
The larger of the two sets is the result.

fun indep g =
    if isEmpty g then [] else
    let val n = any (max,deg g) (nodes g)
        val ((p,_,_,l),g1) = match (n,g)
        val i1 = indep g1
        val i2 = n::indep (delNodes (l@p,g1))
     in
        if length i1>length i2 then i1 else i2
    end

Looking at the results in Table 8 it is striking thatArray behaves very poorly on larger
graphs. The reason is thatnodes is linear in the size of the representation (that is, the
size of the starting graph) and not linear in the number of nodes of the (usually much
smaller) graph in the current recursion.

5 Conclusions

The test results indicate that the tree implementation should be used as the primary
representation of functional graphs. Although it is in some cases slower than the func-
tional array implementation, it is more versatile and more reliable on large graphs. The
tree implementation can also be easily translated into Haskell making the graph library
accessible to a broader range of users, although the running times might be quite dif-
ferent due to the effects of lazy evaluation.
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