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Abstract. Functional programs, by nature, operate on functional, or persistent,
data structures. Therefore, persistent graphs are a prerequisifgressefunc-
tional graph algorithms. In this paper we describeitwplementations of persis-
tent graphs and compare their running times diergifiit graph problems. Both
data structures essentially represent graphs as adydcs#acThe first uses the
version tree implementation of functional arrays to enalljaceng lists persis-
tent. An array cache of thewest graph ersion together with a time stamping
technique for speeding up deletions ek asymptotically optimal for a class of
graph algorithms that use graphs in a single-threadgdie second approach
uses balanced search trees to store adjpdists. For both structures we also
consider seeral \ariations, for gample, ignoring edge labels or predecessor in-
formation.

1 Intr oduction

A data structure is callgubrsistent if it is possible to access ol@nrsions after updates.
It is calledpartially persistent if old versions can only be read, and it is cafialdy
persistent if old versions can also be changed [4]. There is wigginterest in persis-
tent data structures, for a recenerview, see [9]. Hwever, persistent graphs va
almost been ignored. In [6] weVesletched an implementation of unlabeledeéix
size persistent graphs by functional arrays. The purpose of that pagdraever, to
demonstrate an indueé vienv of graphs and a corresponding functional style of writ-
ing graph algorithms, mainly based on graph fold operations, and wo h&#o this
style facilitates reasoning about and optimization of graph algorithms.

In this paper wexplain the implementation by functional arrays in more detail, and
we etend it in sgeral ways. First, we are moable to vork with labeled graphs. Sec-
ond, the implementation can also be used in semi-dynamic situations, thatnedes
can be dfciently allocated, and graphs cangrto a limited dgree. This has become
possible through arxeension of the graph representation by node partitions which are
realized in a \ay similar to the implementation of sparse sets described in [3]. Third,
we consider seeral specialized implementations: one for unlabeled graphs,eape k
ing only successor information, and one for a combination of both. Marebe un-
derlying functional array implementation has been imgdo

Besides thexglanation of the persistent graph implementation based on functional
arrays, the main goal of this paper is to find a good “standard representation” suitable
for most application scenarios.eare therefore implemented persistent graphs also
on the basis of balanced binary search treespk¥sent somexample programs and
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report running times of the d&frent graph implementations.eé/dlso pay attention to
the question of whether specialized implementations (unlabedegijrig only succes-
sors) are wrthwhile. The results of this papenteahelped us in the design ofweic-

tional graph library, which has been implemented in Standard ML and which can be
downloaded from

http://www.fernuni-hagen.de/inf/pi4/erwig/fgl

All examples of this paper are contained in the distidim. The main contriltions of
this work are:

(1) The world’s first functional graph library
(2) Several implementations of persistent graphs
(3) Empirical results about the performance ofedi#nt persistent graph structures

Section 2 introduces a compact graph data type whose operations are briefly demon-
strated with gamples takn from graph reduction. Theseaenples are used in Section

3 to «plain the diferent implementations of persistent graphs. In Section 4 we
describe a set of test programs and report running times of faeedtfgraph imple-
mentations. Conclusions folloin Section 5.

2 A DataTypefor Graphs

In the folloving we consider directed node- and edge-labeled multi-graphs. This is a
sufficiently general model of graphs, and maniher graph types can be obtained as
special cases: for instance, undirected graphs can be represented by symmetric
directed graphs where “symmetric” means that presence of gdggifplies the
existence of edgex{ v). Unlabeled graphs kia node and/or edge label typgt , and
graphs embedded in the Euclidean plane can be modeledibg teal * real node
type.

Typical operations on graphs are the creation of an empty graph, addingingtrie
and deleting nodes and edges, and réimigand changing node and edge labeks cah
cover all these functions by a simple inté consisting of just three operationg W
have a type for nodes, which we assume for simplicity tmte and a type for graphs
whose type parametees and'b denote the type of node and edge labels, respbcti

type node = int
type (‘a,'b) graph

Additionally, we use the follwing type abbreiations that mak the typings of some
operations more concise.

type 'b adj =(b*node) list
type (‘a,'b) context ='b adj * node * 'a * 'b adj]

Concerning operations, we\leaa constaftempty representing the empty graph, an
operationembed that extends a graph by awenode together with incoming and out-
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going edges, and an operatimatch that retri#es and at the same time reras a
node with all its incident edges from the graph.

val empty : (‘a,'b) graph
val embed : (‘a,'b) context * (‘a,'b) graph -> (‘a,'b) graph
val match : node * (‘a,'b) graph -> (‘a,'byontexta, byraph

Since graphs are not freely constructeeapty andembed, that is, since there are dif-
ferent term representations denoting the same graph, matching is, in general, not
uniquely defined. The additionabde parameter allws us to specify which represen-
tation is to be selected (namely that one with tiverginode inserted last) and thus
makesmatch a function agin; match is actually anxample of aractive pattern as
described in [5]. If the node to be matched is not in the graptatch exception is
raised?

Consider for example, the graph in Figure 1 that represents the combinater e
pressionggr 3) + (&gr 3). The node numbers arevem for later reference.

‘@
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Fig. 1. Example Graply

The type ofy is (combinator,direction) graph with

datatype value = INT of int | BOOL of bool
datatype direction =L | R
datatype combinator =
APP
| COND
| VAL of value
| OP of (value * value -> value)
| COMB of string

We have omitted the edge labels from the picture since #thaeg are implied by the
spatial embedding of the edges. The felltg expression constructsin a bottom-up
manner

1. Note that in the array implementati@mpty takes an intger agument specifying the
maximum graph size.

2. The reader might nder wly the agument node ahatch is also returned as a result (as part
of the typecontext ). It is for consistencwith the operatiomatchAny (see Section 4.2) that
does not ta a node gument and therefore reports the node actually matched.



val g = foldr embed empty
(0.1, APP,[(L,2),(R,4)]), (0.2.,APP.[(L,3),(R.4)]),
([1.3,0P plus,[]), (1.4,APP.[(L,5),(R,6)]),
([1,5,0P sqr,[l), ([1,6,VAL (INT 3),[) 1]

As already indicated this is indeed not the onsywo huild the graplty. Actually, we
can insert the nodes inyaorder For a precise definition of the semantics of graph
constructors, see [6].

Suppose no we are to reducg We first hae to reduce the subgraph rooted at node
4, and replace it with the result of the reduction. Thus, we first match node 4, and we
get the contet

(([(R,1),(R,2)],4,APP,[(L,5),(R,6)]).9)

whereg' is ary representation of the graph:

Fig. 2. Decomposed Grapdi

In this case we h& to apply a-rule for computingsgr 3, and we re-insert node 4
with the result as the menode label, with the old predecessors, and with no succes-
sors, that is,

val r = embed (([(R,1),(R,2)],4,VAL (INT 9),[D).g")

Thus we obtain the graph sk in Figure 3 in which nodes 5 and 6/e6decome ar-
bage. Note that after the updatés still bound to the original graph; graph reduction
as described here happens purely functiontdbt is, node 4 is not destrwetiy over-
written.

Fig. 3. Reduced Graph

Summarizing we see thatbed implements node and edge insertion and ritzth
comprises the operations of finding and deleting nodes and edgesctA followed
by embed can be used to realize update functions. It is nfitudlif to derve specific
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graph operations from these general onesifstance, the insertion of a single labeled
edge can be simply done by:

fun insEdge (v,w,l) g =
let val ((p,_,vl,s),g") = match (v,g)
in
embed (p,v,vl,(I,w)::s,9")
end

We will see the need for some more predefined graph operations when considering
example programs in Section 4. Mostly on the grounds fadieficy we also preide
the following functions.

val matchFwd : (‘a,'b) graph ->'a * 'b out

val matchAny : (‘a,'b) graph -> (‘a,'b) context * (‘a,'b) graph
val isEmpty : (‘a,'b) graph -> bool

val newNodes : int -> (‘a,'b) graph -> node list

The functionsnatchFwd andmatchAny are just specialersions ofmatch : matchFwd
selects only the node label and the successorsmattiAny matches an arbitrary
node contet. This means thabatchAny is non-deterministic and can assumg ealid
term representation of itsgarment graph to return the outermost node ctmkthis
representation.The functiasEmpty tests whether a graph is the empty graph, and
newNodesig generates a sequence afodes that are not contained in the grgph

3  Persistent Graph Structures

The representation of a graph by (an array of) adjgdésts is often &vored wer the
incindence matrix representation since its space requirement is linear in the graph size
whereas an incidence matrixnalys need;Q(nZ) space which is ery wasteful for
sparse graphs. Moreer, adjaceng lists ofer O() access time to thesuccessors of

an arbitrary node where weugato spend2(n) time to find the successors by scanning

a complete nev in an incidence matrix. &therefore focus on malternaties for mak-

ing adjaceny lists persistent: the first representation usearint of the ersion tree
implementation of functional arrays, and the second stores successor (and predecessor)
lists in a balanced binary search tree. The functional array structure is nfiotdt dif
understand because it emydcaan additional cache array and a further array carrying a
kind of time stamps for nodes. Mokem, to support some of the specialized operations
efficiently, this structure isx@¢ended by a te-array implementation of node partitions

to keep track of inserted and deleted nodes thérefore xplain this structure in some

detail and only sitch the rather ofious binary tree implementation.

3.1 Implementation by Functional Arrays

In a first attempt we can malan imperatie graph persistent by simply using a func-
tional array for storing adjacentists and node labels. Maver, with this representa-
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tion the deletion of a node from the graph (which is performed witkiegy mat ch
operation) is quite comptesince we hee to remee v from each of its predecessor’
successor lists and from each of its succesgedecessor lists. This means, on the
average, quadratic fefrt in the size of node contis. To avoid this we therefore store
with each node a posit integger when the node is present in the graph andjatine
integer when the node is deletede\Also carry wer positve node stamps into succes-
sor/predecessor lists. This has the feilg efect: When, for gample, nodev is
deleted, we can simply set its stas(y to -s(v); we need not renve v from all refer-
encing successor and predecessor lists because whea,ss&gessor ligtof w con-
tainingv is accessed, we can filter out all elements tha han-matching stamps, and
by thisv will not be returned as a successbhenv is re-inserted into the graph later
we sets(V) to g(v)|+1, and ta& this nev stamp oer to all nevly added predecessors
and successors. Moif w is not among the mepredecessors, the old entrylimwith
stamps(v) is still correctly ignored whehis accessed.

In the \ersion tree implementation of functional arrays as described in [2] changes
to the original array are recorded in an a&md/directed tree ofr{dex, valug pairs that
has the original array at its root. EacHetiént array ersion is represented by a pointer
to a node in theersion tree, and the nodes along the path to the root mask older defini-
tions in the original array (and the tree). Adding & mede to the ersion tree can be
done in constant timeubinde« access might takup tou steps wher@ denotes the
number of updates to the arr8y adding an imperate “cache” array to the leftmost
node of the grsion tree the array represented by that node is actually duplicated. Since
index access in this array is possible in constant time, algorithms that use the functional
array in a single-threadechy hare the same complity as in the imperate case, since
the \ersion tree dgenerates to a “left spine” pathfaing O(1) access all the time dur-
ing the algorithm run.

There is a subtlety in this implementatiowing justonecache array: if a functional
array is used a second time, the cache has already been consumed ferdhe poen-
putation and cannot be usedhag This gves a surprising time beliar: the user xe-
cutes a program on a functional arragd it runs quitegfst. Havever, running the same
program agin results, in general, in muchdar execution times since all accessano
goes via the ersion tree. Therefore, we create in our implementatiorwacaehe for
each ne version dened from the original array

An initial functional array representation @fs shavn in Figure 4.

R41 Ran Re/1

L2i1 L3n L sn

b !
-@'l@'[ | ++][,@|sar 3"

171 * 211 *3/1 * 471 * 5/1 ¢6/1
Lia L2ai R11 L4 Ran

R2/1
Fig. 4. Functional Array Representation of Gragph
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Each array entry consists of a list of predecessoter(ding devnwards), a node
label, and a list of successorsténding upvards). Empty lists are represented by e.
Note that initially all node stamps are set to 1.

Now consider the result of thegressiormatch (4,g) . First, the predecessor list,
the node and its label, and the successor list arevesdriand then the decomposed
graphg' is constructed. Here, it Sides to add a single node to thersion tree indicat-
ing that node 4 is deleted. If we had not the node stawgislale, we would hae to
add four (') more nodes to thergion tree specifying the change of the successor lists
(for nodes 1 and 2), respealy, predecessor lists (for nodes 5 and 6). The updated
graph structure is sha in Figure 5

R41 R4n Ren

L2/ Lan Lsn

|+ @[jsare 3"
171 * 21 * 31 * 471 * 5/1 *6/1
Li1 |L2ia Ri1 L4n Ran

g
R2/1
@] @[ ++[- |sare 3]
71 V21 V31 41 /51 el
Fig. 5. Functional Array Representation of Gragh
If we now access, sayhe successors of node 2, we obtain just thgllis)] — node

4 is omitted, since the node stamp found in the successor list does not match the stamp
currently stored with the node.

Let us finally consider what happens if we re-insert node 4 to obtain the reduced
graphr from Figure 3. First, the stamp of node 4 changes to +2, and a modification node
with empty successor list and the old predecessors is added &rsfenvree. Unfor-
tunately we are not finished yet: wevsato add node 4 to the successor lists of each of
its predecessors, that is, wevbao create corresponding nodes in thision tree. Note
that in both these successor lists node 4 appears twicenly the entry with the me
stamp is releant. The resulting graph representation issghim Figure 6.

In principle, we had to update the predecessor lists for all successorsttthos b
does not apply in this particular case, since the successor list is dmptgescribed
updates actually use the array in a single-threadgdsa that theersion tree dgener-
ates to a path with the cache at its end. If we perform a further update to the original
graphg, this is reflected in theavsion tree by a mesibling node ofy' . Since this er-
sion was created from the originaéssiong, the node is also equipped with itsro

3. Note that the actual implementationféit in a minor point: instead of one array storingfour
tuples we are wrking with four indvidual arrays for stamps, labels, predecessors, and
successors. This simplifies the implementation at some points. On the other hand, the structure
is easier toxplain using only one array
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Fig. 6. Functional Array Representation of the Reduced Graph

cache array to speed up single threaded operations ortsisn too. This e cache
is needed, since the other cache is still in use.

The array representation igpected to perform quite well in situations where
graphs are used in a single-threaded. Wowever, in cases when the cache cannot be
used the need for trarsing possibly long paths in thergion tree can siodown the
structure significantlyActually, few applications use graphs in a persistent manner
Maybe this is due to thadt that graph algorithms are traditionatpeessed in an im-
peratize style? In apcase, a tvial, yet important, persistent use of graphs vegiby
executing more than one algorithm on a graph. By spending @aehe for each “pri-
mary” version, the functional array implementation is well prepared for these situations,
too.

The functional array implementation is fine for the (minimal) imfdescribed in
Section 2. Hwever, some algorithms require operations that cannot be easily reduced
to the three basic ones and should therefore also biglpddby a libraryFor instance,

a simple algorithm for keersing the edges in a graph (see Section 4.2) uses the functions
matchAny andisEmpty . Now in the array representation an implementatianash-

Any is quite ineficient, since, in general, weVato scan the whole stamp array to find
a\alid, that is, non-deleted, node. The same is trusHotpty and also fonewNodes.

Here the simple array implementation also requires, in general, linear time by scanning
the whole array



Thus to reasonably use the array implementation in those casesenvio ledend
the implementation to support theseteperations in constant time.

We therefore &ep for each graph a partition of inserted nodes (that is, nxidene
in the graph) and deleted nodes: when a node is deleted (decomposed)étisrora
the inserted-set into the deleted-set, when a node is inserted into the graphyéds mo
the other vaty. The node partition is realized bydwarraysjndex andelem, and an in-
tegerk giving the number oféstent nodes, pequvalently, pointing to the lasbésting
node. The arraglem stores all gistent nodes in its left part and all deleted nodes in its
right part, andndex gives for each node its position in tdem array A nodev is eis-
tent ifindex[v] < k, likewise, it is deleted ifndex[v] > k. Inserting a n& nodev means
to move it from the deleted-set into the inserted-set. This is donrdiyaegingv's po-
sition inelem with the node stored aten[k+1] (that is, the first deleted node) falled
by increasind by 1. The entries imdex must be updated accordinglp delete node
v, first swapv andelem[K], and then decreagédy 1. All this is possible in constant time.

Now all the abge mentioned graph operations can be implementedo iw con-
stant timenat chAny can be realized by callimt ch with elem[1], i sEnpt y is true if
k=0, andnewNodes i can simply return a list of nodeddm[k+1], ..., elem[k+i ]].
Some other useful graph operations afiieftly supported by the node partitida:
gives the number of nodes in the graph, and all nodes can be reported indinbiCy{
might be much less than the size of the arfdye described implementation of node
partitions is anxdension of the sparse set technique proposed in [3].

Although ofering some nice features, the describgdmrsion has its dvebacks and
limits: Keeping the partition information requires additional space and causes some
overhead. Moreeer, arrays do not become truly dynamic sincey tta least in the cur-
rent implementation) can neither graor shrink. In the folloving we will report test
results for both the static array implementati@rrgy) and also for the semi-dynamic
version DArray) wheneer this is possible.

The attentie reader might ender whether theagbage nodes in successor and pre-
decessor lists (that is,Malid and unused references to deleted nodes) are a source of
inefficiengy. Although we hae not studied the problem in detall, it seems that in prac-
tice, this is not a problemoFexample, in the case of graph reduction, where graphs are
heavily updated, only 25-30% of nodes in successor and predecessor lists are filtered
out due to imalid stamps.

3.2 Implementation by Balanced Binary Search Trees

We use the implementation of balanced binary search treesvaseprby the SML/NJ
library. Actually, this is the implementation described in [19r Eorvenience, we he
added tw functionsupdat e andfi ndSome. Althoughupdat e can be realized by
renmove andi nsert, the directly implementedevsion saes multiple traersals of the
same path.

Since a binary search tree can be used as a functional array implementation, we ob-
tain an immediate realization of functional graphs, that is, a graph is represented by a
pair ¢, n) wheret is a tree of pairmpde, (predecessors, label, successors)) andn is the
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largest node occurring inNote thah is used to support the operatiwNodes. Keep-
ing the lagest node alue used in the graph, this is possible in O(1) time.

3.3 Tuned Implementations

There are tw principal sources for impving efiiciengy of ary graph implementation:
first, carrying edge labels in unlabeled graplastes unnecessarily space and causes
some ®erhead. Second,ekping predecessor information is not necessary in algo-
rithms that only access successors.

So in addition to the labeled/full-comtearray and tree implementations wevéa
implemented unlabeled/full-conte labeled/forvard, and unlabeled/foavd \ersions
to see which speed-ups can be agde It should be clear that thet ch operation is
not available in the fonard implementations. Instead an operatianchFwd giving
only node label and successors isviifed. Note thatvenmat chFwd cannot be (éf
ciently) realized in a forard-tree implementation, since rewitay a node from a graph
means to reme it from all referencing successor listsf twvithout the predecessor in-
formation, which preides direct access to all referencing nodes, all successor lists of
the graph had to be scanned, which is not acceptable.

More etensions and impk@ments are conagible, for @ample, combining the
stamping technigue with the tree implementation or making functional arrays fully dy-
namic. These will bexamined in the near future.

4  Test Programsand Running Times

We have selected the folling example programs to get a picture of the graph imple-
mentations’ performances in flifent situations: depth-first seareti §, Section 4.1),
reversing the edges of a graptey, Section 4.2), generating cliques { que, Section
4.3), combinator graph reductiored, Section 4.4), and computing maximal indepen-
dent sets of nodes{dep, Section 4.5). W cannot use the benchmarking kit Aui

[8] since (i) it is restricted to unary type constructors (labeled graprestha type
parameters), and (ii) gument and result types must not contain applications of other
type constructorserbed andmat ch take/yieldlists of nodes (and labels)).

All programs hge been run with SML of Ne Jersg 109.29 under Solaris 2 on a
SUN SRARCdation 20 with 64MB main memorReported are thevarage user times
(average takn over terf runs). The benchmarks are intended toesémo goals: first,
we would like to find out which graph implementation performs best in which scenario,
and second, whether it isowthwhile to use specialized implementations in situations
where only part of the functionality is needed.

With regard to the latter we consider three aspectKifd of context. This address-
es the &ct that there are graph algorithms (feample,dfs) that mae only in forvard
direction through the graphoFall these, a graph representation that doesdpticily
store predecessors is more spadieiet and is gpected to bedster because of less

4. Some implementations crashed due to memory shortage gm daaphs. In those cases
averages wer three or fie runs hae been tagin.
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overhead. (2JEdge Labels. Mary graph algorithms (foreample,dfs, rev) do not need

edge labels, that is, thalso work on graphs without edge labels, and the question is
whether thg perform fister on a specialized graph type for unlabeled graphSréBh

Sze. For algorithms that do not change or at least do not increase the size of the graph
the static array representation (without node partitionsypeaed to rundster than
semi-dynamic arrays.

For the comparison of the bmmain implementations we distinguish graph algo-
rithms by the needeodperations on graphs. Mary algorithms use graphs in a “read-
only” fashion, that is, thyeonly decompose the graph by means ofititech operation.

On the other hand, there are algorithms thaidbor change graphs, and the perfor-
mance picture might be é#frent here. Algorithms for this case can be distinguished fur-
ther according to whether tharedynamic, that is, generate wenodes and truly@éend

a graph, ostatic, that is, just perform operations oxigting nodes and edges. Finally
although most algorithms seem to use graphs in a single-threagiettieve are>eam-

ples of persistent graph uses, and it is interesting tev kvfich structures are prefera-
ble in those situations.

The test programs primle examples for each kind of graph use, operation, and spe-
cialization:

Graph Use | Operation Secialization || Program
mat ch forward, unlab ||df s
single- enbed (static) | unlab rev
threaded ~ | unlab clique
enbed (dynamic)
red
persistent | enbed unlab i ndep

The test results pvide some advice of the kind “If youv¥ea graph problem of type
X, then it is best to use graph implementaidn

4.1 Depth First Search

One of the most important general graph algorithm is certainly depth first sea&rch. W
consider the task of computing a depth first spanning forest for a grapthdfise for-
ests storing only nodes without labels;tlage represented by:

dat atype tree = BRANCH of node * tree |ist

Now a functional ersion of depth first search is defined by the tutual recursie
functionsdf s1 anddf sn which work as follavs: First,df s1 decomposes fromg get-

ting the list of successors (and node labelahd the reduced graph. Then for each
element ofs (that is, for each second component) a depth first spanning tree is com-
puted recursiely by callingdf sn. Note that by using1 as the graph gument ofif sn

it is ensured that cannot be encounteredadigin a recursie call todf s1. Finally, the
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constructoBRANCH is applied tos and to the resulting forestyielding the spanning
tree ofv. In addition, the part of the graph not visited by the recursion is returned. No
df sn does nothing more than callinfjs1 for each node of its gument list, passing
around decomposed graphs.

fun dfsl (v,g) =
let val ((_,_,_,s),gl) = match (v, Q)
val (f,g2) = dfsn (map (fn (_,w)=>w s,gl)
in
(BRANCH (v, f), 02)

end
and dfsn ([],9) = ([].09)
| dfsn (v::1,0) =
let val (t,gl) = dfsl (v,g)
val (f,g2) = dfsn (I,gl)
in
(t::f,02)
end

handl e Match => dfsn (I, g)

Since the graph might consist of unconnected components, the depth-first spanning
forest is obtained by applyindf sn to all nodes of the graph:

fun dfs g = dfsn (nodes g, Q)

The running times fodf s (user time in seconds, includingrpage collection) are
given in Table 1 for sparse graphs (afesage dgree 8) depending on the number of
nodes in the graph and the chosen graph implementation.

1000 5000 10000 50000( 100000 Ratios

Array 0.08 0.53 1.12 9.75 21.42 1
DArray 0.14 0.77 1.79 16.68 36.98(1.45 .. 1.75
Tree 0.25 1.63 3.62 29.61 67.01)| 3.04 .. 3.23

Table 1. Running Tmes fordf s

We see that both array implementations aneags$ fister than the tree implementation
and thaDArray tends to tai& 70% more time thafrray. It is interesting thatree per-
forms quite well with only adctor of about 3 steer thanArray.

In Table 2 we shw running times for unlabeled)and forvard only ) specialized
implementations. \& obsere that omitting labels yields a speed-up of at leastAt% (
ray) or 12% {Tree) up to 20% (for botfAree andArray), and just keping forvard links
(which is only possible with the array implementation) is about 3 to 48¢érfThe un-
labeled/forvard implementation ges, as xpected, the best performance and is 13 to
25% faster
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1000 5000 10000 50000/ 100000 Ratios

Array 0.10 0.53 1.12 9.75 21.42 1
Array! 0.07 0.48 0.88 7.73 20.00//0.79 .. 0.93
Array' 0.07 0.51 0.99 9.46 20.66/0.88 .. 0.97
Array'f 0.06 0.41 0.84 7.53 18.700.75 .. 0.87
Tree 0.25 1.63 3.62 29.61 67.01 1
Tree" 0.20 1.31 2.94 26.01 55.41//0.80 .. 0.88

Table 2. Speed-upsaned by Unlabeled andFvard Graphs

The impravements in running time obtained by the specialized implementations are
similar for the otherxamples programs, so we shall notegary additional tables in
the following.

4.2 Reversing Graphs

The second graph problem considered istense the edges of a graph. The follyg
simple algorithm can be used:

funrevg=
if isSEmpty g then g else
let val ((p,v,l,s),9") = matchAny g
in
embed ((s,v,l,p),rev g’
end

We havre already noticed th&Empty andmatchAny are eficiently supported only by
the dynamic array implementation. Thus we omit the running times for the sgatic v
sion, since this wuld male rev actually a quadratic algorithm. The graphs used are
the same as for thifs tests.

1000 5000 10000 50000| 100000 Ratios
DArray 0.27 2.12 4.35 47.27 120.59| 1.04 .. 2.55
Tree 0.26 1.68 3.33 21.24 47.38 1

Table 3. Running Tmes forrev

It is striking thatTree outperforms the array implementation. This is certainly due to
the fact thatmatchAny is realized by just taking the treg’oot, which is gry fast and,

in particular creates little grbage. It is therefore interesting to consider in this case the
running times without @rbage collection. Here the figure changes, and the tree imple-
mentation taks up to 50% more time, seable 4.
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1000 5000 10000 50000, 100000 Ratios
DArray 0.23 1.18 2.37 12.88 24.32 1
Tree 0.24 1.42 2.88 16.79 36.36|1.04 .. 1.5Q

Table 4. Command imes forrev (without GC)

At this point it is important to mention that the test program for iteratindpfreay
implementation hausted heap memory already on graphs with0B0nodes, and we
were forced to tak the aerage only wer three runs. All in all this sk that vorst-
case running times ¢gn in big-Oh notation are one aspect and that actual running
times as well as practicability and reliability of implementations are ofterfexedif
matter

Note that we can f€iently reverse graphs with the static array implementation if
we rewrite the algorithm as folles.

funrevi(l.9) =g
| revi (vi:l,g) =
let val ((p,_,lab,s),g") = match (v,g)
in
embed ((s,v,lab,p),revi (1,9%))
end
handle Match => g

fun revd g = revi (nodes g,9)

By avoiding the functionsnatchAny andisEmpty we obtain a linear algorithm. Deter-
ministic matching causéBee to spend more time on searching node odstand the
static array implementation is@g ahead, seeable 5.

1000 5000 10000 50000( 100000 Ratios
Array 0.21 1.32 3.27 33.66 73.57 1
Tree 0.35 2.43 6.55 39.19 83.89|| 1.14 .. 2.0€

Table 5. Running Tmes forrevd

Sorev is only of limited use in judging the implementationgicéncy for graph con-
struction.

4.3 Generating Cliques

For a better comparison of the implementationsnafed, we therefore use the folle
ing program for generating cliques of a specified simeyg (n x=>((),x)) just

5. For testingDArray we need a slightly diérent program taking into account tleatpty needs
n as a size parameter
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extends the list of nodes by a unit edge label):

fun clique 0 = empty
| clique n =
let val ¢ = clique (n-1)
val | = mp (fn x=>((),x)) (nodes Q)
val [v] = newNodes 1 g

in
enbed ((I,v,(),!1),09)
end

The results in dble 6 shw that the tree implementation performs better in construct-
ing graphs.

50 100 500 1000 Ratios
DArray 0.05 0.22 18.15 85.67|| 1.14 .. 2.00
Tree 0.03 0.17 8.45 46.69 1

Table 6. Running Tmes forcl i que

4.4 Combinator Graph Reduction

The graph type to be used for graph reductias wiready gen in Section 2. ¢ lack

of space we do not\g here the complete code of the graph redlivée hare imple-
mented combinator graph reduction as described in Chapter 12 of [7]. The main com-
ponents are the functionswwi nd andr ed: unwinding the grapk’ spine yields the
combinator to be reduced together with afjiement nodes and the root node to be
replaced. The functioned actually contains the reduction rules for all combinators.
Consider the case for tilecombinator: first, the gument nodes and the root node as
given byunwi nd are bound to theariablest, y, andr. Then the root nodeis matched

in the graphe which is to be reduced. This is just to decompodeom e and to
remember the references to it in thetigt After that the labelx| ) and the successors
(xs) of x are determined by applying the functiomd. Note thatrat ch need not be
used here, since is not to be changed. Finallyoder is re-inserted, n@ with label
and successors @f but with its avn predecessors {§). This realizes, in a functional
way, the “overwriting” of r. The situation is similar for th®combinator: bindings are
created, the root is decomposed, and thve graph is hilt by node insertion. Note,
however, that two nav nodes it andm) have to be generated. Performing this node gen-
erationbefore matching ofr takes place ensures a single-threaded use of the graph,
and we could, in principle, use an imperatigraph implementation for the graph
reducerin contrast, if n& nodes were generated in an impemagraph after matching

r, r could be returned (“rgcled”) as one of the menodes which wuld definitely
lead to wrong results.

6. The code for allxamples can be found in the FGL distriion.



16

funred (v,e) =
let val (comb,args) = unwind (v,[],e)
in
case comb of
COMB "K" =>

let val [x,y,r] = args
val ((rp,_,_,_),e") = match (r,e)
val (xI,xs) = fwd (x,e")

in
embed ((rp,r,xl,xs),e")

end

| COMB "S" =>

let val [f,g,x,r] = args
val [n,m] = newNodes 2 e
val ((rp._._._).e") = match (r.e)

in
embed ((rp,r,APP,[(L,n),(R,m)]),
embed (([],n,APP,[(L,f),(R,x)]),
zmbed ((0.mAPP [(L.9).(RX)]).€)))

en

end

We give the running times for the reduction of graphs that represent applications of the
fibonacci function on diérent aguments. W knav that fibonacci has been criticized

as a benchmark for graph reductiont lwve are testing the underlying graph imple-
mentation, not the graph reducend for that fibonacci is didient by causing reduc-
tions and allocations. UnfortunateArray exhausts heap memoryen for a single

run when computinfib  20. For the smaller sizes, the tree implementation is clearly
faster

fib 10 fib 15 fib 20 Ratios
DArray 0.52 11.91 —[1.33 .. 1.79
Tree 0.39 6.66 289.93 1
Reductions 1031 11576 128521
Allocations 814 9139 101464

Table 7. Running Tmes forred

45 Maximal Independent Node Sets

The functionindep for computing sets of non-adjacent nodes of maximal size is an
example of an algorithm that uses graphs in a truly persist@ntAithough the algo-
rithm has &ponential compbety (the problem is NP-hard) it is muclaster than
blindly trying all possible node subsets: in the second line a modigh maximum
degree is determined. Thendwode sets are computed, nam#ig independent set of
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g simply withoutn, andn plus the independent setgfvithoutn and all its neighbors.
The lager of the tw sets is the result.

fun indep g =
if isEnpty g then [] else
let val n = any (nmax, deg g) (nodes Q)

val ((p,_, _,1),91) = match (n,q)
val il = indep gl
val i2 = n::indep (del Nodes (| @, gl))

in
if length il>length i2 then il else i2
end

Looking at the results inable 8 it is striking thafrray behaes \ery poorly on lager
graphs. The reason is thatdes is linear in the size of the representation (that is, the
size of the starting graph) and not linear in the number of nodes of the (usually much
smaller) graph in the current recursion.

15 20 50 Ratios

Array 0.02 4.00| 2264.89|2.00 .. 8.68
DArray 0.02 1.85 555.34(1.97 .. 2.13
Tree 0.01 0.94 261.02 1

Table 8. Running Tmes fori ndep

5 Conclusions

The test results indicate that the tree implementation should be used as the primary
representation of functional graphs. Although it is in some casasrsiban the func-

tional array implementation, it is morengatile and more reliable ondergraphs. The

tree implementation can also be easily translated intodHaskking the graph library
accessible to a broader range of users, although the running times might be quite dif-
ferent due to the fdcts of lazy ealuation.
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