
MADMAX: A DSL for Explanatory Decision Making∗
Martin Erwig

Oregon State University
Corvallis, Oregon, USA
erwig@oregonstate.edu

Prashant Kumar
Oregon State University
Corvallis, Oregon, USA

kumarpra@oregonstate.edu

Abstract
madmax is a Haskell-embedded DSL for multi-attribute,
multi-layered decision making. An important feature of this
DSL is the ability to generate explanations of why a com-
puted optimal solution is better than its alternatives.
The functional approach and Haskell’s type system sup-

port a high-level formulation of decision-making problems,
which facilitates a number of innovations, including the grad-
ual evolution and adaptation of problem representations, a
more user-friendly form of sensitivity analysis based on prob-
lem domain data, and fine-grained control over explanations.

CCS Concepts: • Software and its engineering → Do-
main specific languages.

Keywords: AHP, decision making, explanations
ACM Reference Format:
Martin Erwig and Prashant Kumar. 2021. MADMAX: A DSL for
Explanatory Decision Making. In Proceedings of the 20th ACM SIG-
PLAN International Conference on Generative Programming: Con-
cepts and Experiences (GPCE ’21), October 17–18, 2021, Chicago, IL,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3486609.3487206

1 Introduction
Multi-attribute decision making (MADM) is an important
part of modern decision sciences [22], and the Analytic Hier-
archy Process (AHP) [16] is a popular MADM method that
supports the hierarchical decomposition of decision making.

The theory and methods of MADM have been extensively
applied in many areas, ranging from engineering projects,
economics, public administration, to management and mil-
itary projects. For example, in 1986 the Institute of Strate-
gic Studies in Pretoria, a government-backed organization,
∗This work is partially supported by the National Science Foundation under
the grants CCF-1717300 and CCF-2114642.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
GPCE ’21, October 17–18, 2021, Chicago, IL, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9112-2/21/10. . . $15.00
https://doi.org/10.1145/3486609.3487206

used AHP to analyze the conflict in South Africa and recom-
mended actions ranging from the release of Nelson Mandela
to the removal of apartheid and the granting of full citi-
zenship and equal rights to the black majority [18]. All the
recommendations were implemented within a short time.
Another high-profile example is the use of AHP in the 1995
US/China conflict over Chinese illegal copying of music,
video, and software [19]. An AHP analysis involving four hi-
erarchies for benefits, costs, opportunities, and risks showed,
surprisingly, that it was much better for the United States
not to sanction China. The result of the study predicted what
happened. Shortly after the study was complete, the United
States awarded China the most-favored nation status and
didn’t sanction it. In the domain of business, the Xerox Cor-
poration has used AHP to allocate almost a billion dollars
to its research projects [17], and IBM used AHP in 1991 in
designing its successful mid-range AS 400 computer [20].
Alas, the programming language support for AHP is not

commensurate with the important role it plays in decision
making in today’s world. Most programming languages ei-
ther provide minimal or no support for AHP. Even the small
number of AHP libraries offered by various programming
languages require the AHP problems to be encoded in special
formats, such as JSON, making them inconvenient to use.

In this paper we address this shortcoming by introducing
an embedded Haskell DSL called madmax (which stands for
Multi-Attribute Decision Making And eXplaining) that fa-
cilitates the formulation of AHP problems on a high level,
relieving users from the need to normalize data and encode
the problem in a rigid form. The high-level problem repre-
sentation supports the following three specific features.

• Maintainability. AHP problems can be dynamically
adapted without the need to re-encode data.

• Understandability. Results (especially from sensitivity
analyses) can be presented in terms of the problem
description and not just through their encodings.

• Explainability. Solutions can be explained by direct
comparison with rivaling alternatives, especially by
identifying minimal sets of attributes that have made
a difference for the decision.

Haskell’s type system has been essential in managing the
complexity of the domain and obtaining a succinct DSL de-
sign. First, mappings play a pivotal role as a uniform rep-
resentation of data and are used to represent (1) individual

144

https://doi.org/10.1145/3486609.3487206
https://doi.org/10.1145/3486609.3487206
https://doi.org/10.1145/3486609.3487206

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Martin Erwig and Prashant Kumar

objects as records (mapping attributes to values), (2) a collec-
tion of objects (mapping names to records), (3) normalized
data about objects, required to facilitate comparisons in the
optimization process, and (4) differences between objects and
differences between normalized data. Second, type classes
facilitate a uniform naming of similar functionality in dif-
ferent contexts and also allow the overloading of generic
functions for selecting and otherwise manipulating data of
different types and dimensions. These representations offer
not only convenience, but also support the dynamic evolu-
tion and adaptation of problem representations. In particular,
the maintenance of normalized as well as original data pro-
vides a distinctive advantage over existing AHP libraries.

The rest of the paper is structured as follows. We intro-
duce the problem domain of multi-attribute decision making
and our basic representation with a simple (non-hierarchical)
example in Section 2. We then demonstrate the hierarchical
aspect of AHP and show how to work with multiple lay-
ers of attributes in Section 3. In Section 4 we illustrate how
decisions computed by madmax can be explained through
identifying a subset of attribute combinations that are most
relevant for the decision. In Section 5 we present an evalua-
tion of the explanation component of madmax, which shows
a significant reduction in the size of explanations, and we
also measure the runtime performance. We discuss related
work in Section 6 and present conclusions in Section 7.

2 One-Dimensional Decision Making
Imagine you want to buy a new car, deciding between, say,
a Honda CRV and a BMW X1. If the comparison is based on
only one attribute, such as price or fuel economy, the deci-
sion is easy. More realistically, however, the decision must
take into account several different attributes that cannot
be directly compared with one another. For example, let’s
assume we want to base our decision on price, fuel econ-
omy, and safety rating, which are all measured in different
units (money, miles-per-gallon, and a number between 1 and
10, respectively). One way of taking into account attributes
from different domains is to normalize the data by mapping
attributes into one common domain.
As a first step we can collect the relevant information

in a data structure that maps the decision objects, cars, to
records of their features and corresponding values. To this
end, we define data types for the different features on which
to collect information and the cars that we plan to evaluate.

data Car = Honda | BMW | Toyota
data Feature = Price | MPG | Safety

Records are mappings from features to their values (type
Rec Feature), and the information about cars is stored in a
mapping of type Info Car Feature whose co-domain is given
by feature records. The smart constructor info (see Figure

data Rec a = Rec {unRec :: Map a Double}
data Info o a = Info {unInfo :: Map o (Rec a)}

info :: (Ord o,Ord a) => [(o,[(a,Double)])] -> Info o a
(!) :: Eq o => Info o a -> o -> Rec a
diff :: (Ord o,Ord r) => Info o r -> o -> o -> Rec r

Figure 1. Data Representation via maps (based on Data.Map).

1)1 constructs mappings of cars to feature records (the arrow
--> is simply syntactic sugar for building pairs).

carFeatures :: Info Car Feature
carFeatures = info [

Honda --> [Price --> 34000, MPG --> 30, Safety --> 9.8],
BMW --> [Price --> 36000, MPG --> 32, Safety --> 9.1]]

This representation already supports some interesting com-
putations. With records defined as instances of Num, we can
compare objects based on the differences for each attribute
by simply using subtraction.

> diff carFeatures Honda BMW
{Price -> -2000.00, MPG -> -2.00, Safety -> 0.70}

The comparison shows that while the Honda is cheaper and
has a slightly better safety rating, it’s fuel economy is worse.
Does that make the Honda or the BMW a better choice? It
depends on how we value the different attributes and the
corresponding differences in their values. To facilitate a com-
parison, we can normalize all attributes by mapping them to
values in a common numeric interval2 such as 0..100 where
larger numbers represent better values. This normalization
is achieved by the function valuation, see Figure 2.

> valuation carFeatures
{Honda -> {Price -> 51.43, MPG -> 48.39, Safety -> 51.85},
BMW -> {Price -> 48.57, MPG -> 51.61, Safety -> 48.15}}

Based on the normalized values we can compute total values
for the cars to see how they compare.

> total $ valuation carFeatures
{Honda -> 151.67, BMW -> 148.33}

Of course, computing total values in this way assumes that
each attribute is weighted equally, which is not always a
realistic assumption. It is not difficult to implement functions
for computing differently weighted averages of an attribute
valuation. However, a more systematic approach for doing
1We mostly show only the type signatures and present implementations
only when they contribute to a better understanding. For the complete code,
see https://github.com/LambdaLand/MADMAX.
2The AHP method uses the interval [0..1], but for better readability we use
the range 0 to 100 and remove the syntactically burdensome “0.” prefixes,
which also makes 3 or 4 digits of precision more palatable.

145

https://github.com/LambdaLand/MADMAX

MADMAX: A DSL for Explanatory Decision Making GPCE ’21, October 17–18, 2021, Chicago, IL, USA

so in the context of the AHP methodology is to modify the
valuation by multiplying it with a weight vector. We will
explain this method in the next section.

The reader may have already noticed the following curios-
ity about how the attributes have been turned into valuations:
Whereas higherMPG values lead to higher valuations, higher
prices lead to lower valuations, which is what we want (a
high price is bad, a high MPG is good). Since this semantic
information cannot be inferred automatically, we have to
provide it explicitly, which we do by assigning a so-called
valence to each attribute indicating whether large numbers
actually mean a positive value contribution.

instance Valence Feature where
valence Price = False
valence _ = True

Based on valence, valuation replaces each value 𝑣𝑖 𝑗 in a record
𝑅𝑖 = {𝐴1 ↦→ 𝑣𝑖1, . . . , 𝐴𝑘 ↦→ 𝑣𝑖𝑘 } that is part of a mapping
𝑀 = {𝑂1 ↦→ 𝑅1, . . . ,𝑂𝑛 ↦→ 𝑅𝑛} by its normalized value
𝑣𝑖 𝑗 , which is defined as follows.3 If attribute 𝐴 𝑗 has positive
valence (𝐴+

𝑗), then 𝑣𝑖 𝑗 is normalized with respect to the sum
of all values 𝑣1𝑗 , . . . , 𝑣𝑛𝑗 used for that attribute. Otherwise
(𝐴−

𝑗), normalization uses the reciprocals of the values.

𝐴+
𝑗 : 𝑣𝑖 𝑗 =

𝑣𝑖 𝑗∑𝑛
𝑙=1 𝑣𝑙 𝑗

× 100 𝐴−
𝑗 : 𝑣𝑖 𝑗 =

1/𝑣𝑖 𝑗∑𝑛
𝑙=1

1/𝑣𝑙 𝑗
× 100

The multiplication by 100 scales the result to a number be-
tween 0 and 100. The function valuation is a straightforward
implementation of this definition.
The normalization step achieves, first and foremost, an

unbiased comparison of the attribute differences. Is the price
difference of $2,000 more significant than a difference of 2
MPG fuel efficiency? Using diff on the normalized records
we can infer from comparing the absolute values that the an-
swer is “no” (again assuming equal weight for the attributes).

> let vd = diff (valuation carFeatures) Honda BMW
{Price -> 2.86, MPG -> -3.23, Safety -> 3.70}

Instead of computing the difference between the two values,
we can apply total to the value difference directly, which
produces the total of the attributes in form of an aggregated
collection (a concept we will explain in Section 4).

total vd
{Price, MPG, Safety} : 3.34

Note that the values for the attributes are based on the cur-
rent data, which consists of only 2 cars. If we add more cars,
the total available value of 100 for each attribute will be split
among more cars, and the differences between two specific
cars will inevitably become smaller. A more subtle effect is
3Wewrite 𝑣, 𝑅, and𝑀 for normalized values, records containing normalized
values, and mappings that carry normalized records, respectively.

class Ord a => Valence a where
valence :: a -> Bool
valence _ = True

class (Bounded a,Enum a,Ord a) => Set a where
members :: [a]
members = enumFromTo minBound maxBound

class Aggregate a b | a -> b where
agg :: ([Double] -> Double) -> a -> b

total :: Aggregate a b => a -> b
total = agg sum

type Val o a = Info o a
data Agg a = Agg [a] Double

valuation :: (Ord o,Set a,Valence a) => Info o a -> Val o a
total :: Ord a => Val o a -> Rec o
total :: Rec a -> Agg a

Figure 2. Valuations. The function members of the Set class
enumerates all elements of an instance type, which is needed
for iterations in several normalization functions. All attribute
typesmust implement Set. The Aggregate class facilitates relat-
ing types based on numeric aggregation functions. Instances
for the types Info and Rec allow the use of the function total

to map each object to its total value. Another instance is
for records and aggregated collections, which allows us to
compute the total valuation for an individual record.

that the relative importance of an attribute can change as
well. For example, consider the following addition.

threeCars :: Info Car Feature
threeCars = carFeatures `union` info [

Toyota --> [Price --> 27000, MPG --> 30, Safety --> 9.4]]

As expected, valuation yields smaller attribute values.

> valuation threeCars
{Honda -> {Price -> 31.2, MPG -> 32.6, Safety -> 34.6},
BMW -> {Price -> 29.5, MPG -> 34.8, Safety -> 32.2},
Toyota -> {Price -> 39.3, MPG -> 32.6, Safety -> 33.2}}

But more importantly, if we again compare the significance
of the attributes, we see that the price difference between
Honda and BMW, which hasn’t changed, has lost in signifi-
cance relative to the MPG difference.

> let vd3 = diff (valuation threeCars) Honda BMW
{Price -> 1.73, MPG -> -2.17, Safety -> 2.47}

The price difference was about 90% (≈ 2.9/3.2) of the value
that MPG contributed when we looked at two cars. Since the
overall price range has increased through the addition of the
third car while the safety rating range remained the same, the

146

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Martin Erwig and Prashant Kumar

relative value has dropped to about 77% (≈ 1.7/2.2). To see
the impact each attribute has on the overall value difference,
we can compute what we call their value difference impact
(VDI), and we can observe how the relative impacts change
for a comparison of two cars when data is added, even if the
data of the compared cars doesn’t change.

> impact vd
{Price -> 29%, MPG -> 33%, Safety -> 38%}

> impact vd3
{Price -> 27%, MPG -> 34%, Safety -> 39%}

Computing the impact of attributes is a special case of focus-
ing in a multi-dimensional comparison on the contributions
of attributes from a specific dimension, which we will discuss
in the next section.

In general, the relative contribution of different attributes
to the overall valuation of individual items helps explain
the computed rankings. We will discuss the explanation of
comparisons and ranking decisions in Section 4.

3 Multiple Layers of Attributes
The basic form of valuation distributes 100 value points
across 𝑘 alternatives for each of 𝑛 attributes, that is, the
total number of points is 100𝑛, each attribute will on average
have 100/𝑘 points, and each alternative will have on average
100𝑛/𝑘 points. This representation views a data set through
the lens of comparing 𝑛 independent attributes. When we
want to combine all attributes into one value to determine
the best alternative, we can achieve this, as shown in the pre-
vious section, by simply extracting the total value with the
function total, but we can also do this more systematically
by combining the three attributes into one.
This operation is a special case of refining an attribute

dimension of type a by an attribute dimension of another
type b. In our example wewant to refine the feature attributes
by weights. To better explain the approach let us assume
that we want to entertain different weightings (from which
we can later select a specific one). Specifically, in addition to
our own personal weighting scheme we also consider how
experts weight the attributes. To this end, we first define a
data type for the new attribute dimension capturing different
opinions about what weighting scheme to use.

data Opinion = Personal | Expert

We can record the different preferences about how to weight
attributes in the same way as the data about car features.

featureOpinions :: Info Feature Opinion
featureOpinions = info [

Price --> [Personal --> 5, Expert --> 3],
MPG --> [Personal --> 3, Expert --> 5],
Safety --> [Personal --> 2, Expert --> 2]]

class Covers t a | t -> a where
project :: t -> a

class Expand t a u | t a -> u where
expand :: t -> a -> u

instance Covers (a,b) a where project = fst
instance Covers (a,b) b where project = snd
...

instance Expand (a,b) c (a,b,c) where expand (a,b) c = (a,b,c)
...

extendBy :: (Ord o,Ord a,Valence b,Set b,Ord u,
Expand t b u,Covers t a) =>
Val o t -> Info a b -> Val o u

only :: (Eq a,Covers t a) => a -> Info o t -> Info o t
except :: (Eq a,Covers t a) => a -> Info o t -> Info o t

Figure 3. Functions for working with multi-dimensional
attributes. The class Covers relates a tuple type to all its com-
ponent types whereas the class Expand t b u is defined for
three types if u is the tuple type that results from appending
the type b to the tuple type t.

The weightings can be applied to the feature data by multi-
plying the two nested mappings. This essentially amounts to
a matrix multiplication (which is how it is defined in AHP).
To prepare the extension we convert the valuation of car
features into one that wraps the feature records in a single-
ton tuple. This requirement facilitates the overloading of the
extendBy function for arbitrary tuples, see Figure 3.

featureVal :: Val Car (OneTuple Feature)
featureVal = mkOneTuple (valuation carFeatures)

carOpinions :: Val Car (Feature,Opinion)
carOpinions = featureVal `extendBy` featureOpinions

The values for the two attributes Personal and Expert refine
the values of the Feature attributes. The Opinion dimension
also acts as a summary of the Feature dimension.

> carOpinions
{Honda ->
{(Price,Personal) -> 25.71, (Price,Expert) -> 15.43
(MPG,Personal) -> 14.52, (MPG,Expert) -> 24.19,
(Safety,Personal) -> 10.37, (Safety,Expert) -> 10.37},

BMW ->
{(Price,Personal) -> 24.29, (Price,Expert) -> 14.57,
(MPG,Personal) -> 15.48, (MPG,Expert) -> 25.81,
(Safety,Personal) -> 9.63, (Safety,Expert) -> 9.63}}

The valuation carOpinions distributes 100 points as before
across 2 car alternatives, but now for only 2 attributes,
Personal and Expert, which can be seen when computing the
totals, which now sum to 200.

147

MADMAX: A DSL for Explanatory Decision Making GPCE ’21, October 17–18, 2021, Chicago, IL, USA

> total carOpinions
{Honda -> 100.59, BMW -> 99.41}

Extending a valuation𝑀 = {𝑂1 ↦→ 𝑅1, . . . ,𝑂𝑛 ↦→ 𝑅𝑛} means
to refine each record 𝑅𝑖 = {𝐴1 ↦→ 𝑣𝑖1, . . . , 𝐴𝑘 ↦→ 𝑣𝑖𝑘 } ac-
cording to a mapping 𝑁 = {𝐴1 ↦→ 𝑆1, . . . , 𝐴𝑘 ↦→ 𝑆𝑘 } that
carries for each attribute 𝐴 𝑗 a record 𝑆 𝑗 , which itself con-
sists of 𝑙 attributes from a generally different domain, that is,
𝑆 𝑗 = {𝐵1 ↦→ 𝑤 𝑗1, . . . , 𝐵𝑙 ↦→ 𝑤 𝑗𝑙 }. First, we can normalize 𝑁
by normalizing each record 𝑆 𝑗 in the same way as described
earlier, which yields 𝑆 𝑗 = {𝐵1 ↦→ 𝑤 𝑗1, . . . , 𝐵𝑙 ↦→ 𝑤 𝑗𝑙 }.

In a second step the refinement is achieved by multiplying
𝑀 and 𝑁 , which, for each record 𝑅𝑖 , combines each 𝐴 at-
tribute with each 𝐵 attribute from the corresponding record
𝑆𝑖 to define a joined value from the two attributes. This multi-
plication yields the mapping 𝐿 = {𝑂1 ↦→ 𝑄1, . . . ,𝑂𝑛 ↦→ 𝑄𝑛}
where each record 𝑄𝑖 has the following form

𝑄𝑖 = {(𝐴1, 𝐵1) ↦→ 𝑢𝑖11, . . . , (𝐴1, 𝐵𝑙) ↦→ 𝑢𝑖1𝑙 ,

. . . ,

(𝐴𝑘 , 𝐵1) ↦→ 𝑢𝑖𝑘1, . . . , (𝐴𝑘 , 𝐵𝑙) ↦→ 𝑢𝑖𝑘𝑙 }
and where each value 𝑢𝑖𝑝𝑞 (1 ≤ 𝑝 ≤ 𝑘, 1 ≤ 𝑞 ≤ 𝑙) is defined
as 𝑢𝑖𝑝𝑞 = 𝑣𝑖𝑝 ×𝑤𝑝𝑞/100.
A comparison of the cars based on these sums implicitly

values expert and personal experience equally. If we want to
see how the cars compare exclusively under our personal or
the expert view, we can project the valuation onto specific
attributes in the Opinion dimension, which produces either
one of the two columns of carOpinion. Of course, we can also
compute the totals for those projections to see the effect of
the different weightings.

> total $ only Personal carOpinions
{Honda -> 50.60, BMW -> 49.40}

> total $ only Expert carOpinions
{Honda -> 49.99, BMW -> 50.01}

The personal weighting slightly favors the Honda whereas
the expert weighting slightly favors the BMW. We can also
see that the difference between the two cars under the per-
sonal valuation is slightly larger than under the expert valua-
tion, which is consistent with the result of total carOpinions.

The functions only and its dual except are instances of the
general function filter for extracting subsets of data; they
are defined using the function project to focus on a particular
component of a tuple type.

filter :: (t -> Bool) -> Info o t -> Info o t

To facilitate projection onto individual components of tuple
types, the type of the attribute filtered upon (a) is covered
by the tuple type of the data (t), again see Figure 3.
Finally, we can add one more dimension to our car selec-

tion problem to aggregate the different opinions about how

𝐵1 Price MPG Safety
Honda 0.51 0.48 0.52
BMW 0.49 0.52 0.48

𝐵2 Personal Experts
Price 0.5 0.3
MPG 0.3 0.5
Safety 0.2 0.2

𝐵3 Weight
Personal 0.6
Expert 0.4

Weight

Personal Expert

Price MPG Safety

Honda BMW

Figure 4. The AHP decision matrices/model for the car selec-
tion problem (𝐵1 ≈ Feature, 𝐵2 ≈ Opinion, and 𝐵3 ≈ Weight).

to weight features. In our example we weight the personal
opinion with 60% and the expert opinion with 40%. The ex-
tension of the valuation happens similarly to the previous
refinement step, except that the new dimension has only one
attribute, for which we introduce a smart constructor.

weight :: a -> [(Weight,a)]
weight x = [Weighted --> x]

carsW :: Val Car (Feature,Opinion,Weight)
carsW = carOpinions `extendBy` info [

Personal --> weight 0.6,Expert --> weight 0.4]

The total of the valuation yields the final verdict about how
the cars’ values compare according to the model.

> total carsW
{Honda -> 50.36, BMW -> 49.64}

madmax provides additional functions, for example, to
change individual attribute values, to add and remove at-
tributes, or to generate ranked lists of alternatives. The se-
lection of functions shown here illustrates how to work with
the DSL to model hierarchical decision problems. In partic-
ular, note the high degree of flexibility that the functional
implementation brings to the table: We can easily change
data on the fly and instantly recompute valuations, differ-
ences, ranking, etc. Moreover, we can dynamically extract
different slices of the data (cf. only) and thus explore and look
at the data from different angles through queries without
having to change the representation.
Compare this to the AHP approach in which all relevant

data is stored in a set of matrices. Figure 4 shows the AHPma-
trix representation of our car selection example. To change a
decision model, these matrices have to be edited, and values
have to be renormalized before new rankings can be com-
puted. Specifically, suppose we want to add a third car to be
considered in the comparison. We can’t simply add another
row to matrix 𝐵1: we also have to change all existing entries,

148

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Martin Erwig and Prashant Kumar

renormalizing them based on the newly added information.
Since in our approach valuations are derived from the origi-
nal data through a simple function, we can regenerate the
required normalized data automatically.

> valuation threeCars
{Honda -> {Price -> 31.21, MPG -> 32.61, Safety -> 34.63},
BMW -> {Price -> 29.48, MPG -> 34.78, Safety -> 32.16},
Toyota -> {Price -> 39.31, MPG -> 32.61, Safety -> 33.22}}

The hierarchical composition of the different levels is ex-
pressed in AHP through a DAG that shows all multiplicative
combinations of the involved attributes as they are used to
compute an overall value at the top for each of the alter-
natives at the bottom, see Figure 4. The graph provides a
blueprint for the structure of the matrices and is typically
designed at the outset of modeling a decision problem. Once
we have the normalized values for the various features of
the involved alternatives stored in the matrices, the matrix
product 𝐵1𝐵2𝐵3 gives the valuations of the alternatives.

The AHP approach is a proven, effective method for solv-
ing a fixed decision problem. The realization as an embedded
DSL turns this approach into a flexible data decision explo-
ration tool that allows users to dynamically build and adapt
decision problems.

4 Explaining Decisions with Layered
Dominating Sets

Modeling a decision problem and then computing a solution
is the core of decision making. However, it is only one part
of the whole process. Once an optimal alternative has been
determined, questions often arise as to why the chosen alter-
native is best, especially, why is it better than the second-best
alternative? All the AHP method can point to is the overall
valuation score as an answer. However, in many cases this is
not satisfying, and one often wonders what it is about the
first choice that makes it better than the alternative(s).

To address this question we show how to explain decisions
by identifying attribute sets that work for and against a spe-
cific choice and thus contribute to the decision. Specifically,
we show how the concept of minimal dominating sets [6]
can be employed for that purpose and how it can be nicely
integrated into the overall structure of madmax.

In our example the valuation totals suggest that the Honda
is a better choice than the BMW. This decision is the result
of the aggregation of all attribute values along the different
dimensions. But why exactly? What attributes are responsi-
ble for this evaluation? Notice that our attribute structure
has become more complicated, since the refinement of the
model has added the two dimensions Opinion and Weight to
the original dimension Feature. Therefore, we can’t simply
talk about the value of, say, Price or MPG anymore. Instead,
we need to consider combined value contributions such as

(Price,Personal,Weighted). We can certainly print the com-
plete valuation, but that doesn’t help much in understanding
how the final decision came about.

> carsW
{Honda ->

{(Price, Personal,Weighted) -> 15.43,
(MPG, Personal,Weighted) -> 8.71,
(Safety,Personal,Weighted) -> 6.22,
(Price, Expert, Weighted) -> 6.17, ...},

BMW ->
{(Price, Personal,Weighted) -> 14.57,
(MPG, Personal,Weighted) -> 9.29,
(Safety,Personal,Weighted) -> 5.78,
(Price, Expert, Weighted) -> 5.83, ...}}

The first thing we notice is that the dimension Weight does
not contribute anything to distinguishing between different
attributes, because it has only one attribute Weighted. Its sole
purpose (stemming from the AHP approach) is to consoli-
date the valuations into a normalized range between 0 and
100. We can simplify the attribute structure and shrink the
dimensional space by simply removing the Weight dimension
while keeping the values. The shrinking of valuations is im-
plemented using an overloaded function shrink for removing
a component of a tuple type, see Figure 5.

> let cars = shrinkVal carsW :: Val Car (Feature,Opinion)
{Honda ->

{(Price,Personal) -> 15.43, (Price,Expert) -> 6.17,
(MPG,Personal) -> 8.71, (MPG,Expert) -> 9.68,
(Safety,Personal) -> 6.22, (Safety,Expert) -> 4.15},

BMW ->
{(Price,Personal) -> 14.57, (Price,Expert) -> 5.83,
(MPG,Personal) -> 9.29, (MPG,Expert) -> 10.32,
(Safety,Personal) -> 5.78, (Safety,Expert) -> 3.85}}

This is easier to read, but still not easy to process. To make
better sense of all these numbers, we can try to identify
those attributes of the preferred alternative whose values
are “winning” over the attributes that are in favor of the
competitor.

In a first step we compute again the differences of attribute
values for the two alternatives to be compared.

> let vd = diff cars Honda BMW
{(Price,Personal) -> 0.86, (Price,Expert) -> 0.34,
(MPG,Personal) -> -0.58, (MPG,Expert) -> -0.65,
(Safety,Personal) -> 0.44, (Safety,Expert) -> 0.30}

The value differences tell us that fuel efficiency counts
against the Honda whereas price and safety count in its
favor, but we already knew that. However, we can now look
in more detail at which attributes (or attribute combinations)
really make a difference in the decision. Specifically, we can
ask which sets of attributes with a positive value can over-
come the negative impact of the MPG attribute. Such a set is
called a dominator [6]. It turns out that even in our small

149

MADMAX: A DSL for Explanatory Decision Making GPCE ’21, October 17–18, 2021, Chicago, IL, USA

class Shrink t t' | t -> t' where shrink :: t -> t'

instance Shrink (OneTuple a) () where shrink _ = ()
instance Shrink (a,b) b where shrink = snd
instance Shrink (a,b) a where shrink = fst
instance Shrink (a,b,c) (b,c) where shrink (a,b,c) = (b,c)
...

class (Covers t a,Shrink t t') => Split t a t' where {}

instance Split (OneTuple a) a ()
instance Split (a,b) a b
instance Split (a,b) b a
instance Split (a,b,c) a (b,c)
instance Split (a,b,c) b (a,c)
...

Figure 5. Additional functions for manipulating tuple types.

example there are already 5 such sets. When we consider
dominators, we are not so much interested in the valuations
of the individual attributes as their totals.

> map total $ dominators vd
[{(Price,Personal),(Safety,Personal)} : 1.30,
{(Price,Personal),(Price,Expert),(Safety,Personal)} : 1.64,
{(Price,Personal),(Price,Expert),(Safety,Expert)} : 1.50,
{(Price,Personal),(Safety,Personal),(Safety,Expert)} : 1.60,
{(Price,Personal),(Price,Expert),(Safety,Personal),
(Safety,Expert)} : 1.94]

In this case the function total is the instance of the Aggregate

class for the type Agg, see Figure 2.
The simplest reason for why the Honda is preferred over

the BMW is given by the dominator that has the fewest
elements, called minimal dominating sets (or MDS). We have
only one such MDS in our example.

> let honda:_ = mds vd
> total honda
[{(Price,Personal), (Safety,Personal)} : 1.30]

A solutions to an AHP decision problem can be effectively
explained with an MDS as follows. First, a decision problem
is given by a valuation for a multi-dimensional attribute set.
The solution to the problem is the entry with the highest
total valuation (the “winner”), and an explanation for this
decision is the MDS with respect to the value difference
between the winner and some other entry. In most cases
an explanation would be sought with respect to the closest
contestant, or the “runner-up,” which is the entry with the
second highest total valuation. In our example we have:

> winner cars
Honda

> runnerUp cars
BMW

data Dominance a = Dominance (Agg a) (Agg a)
data Explanation o a = Explanation o o (Dominance a)

dominators :: Ord a => Rec a -> [Rec a]
mds :: Ord a => Rec a -> [Rec a]
dominance :: Ord a => Rec a -> Dominance a

explain :: (Ord o,Ord a,Ord b,Shrink a b) =>
Val o a -> Explanation o b

Figure 6. Functions for computing dominators and explana-
tions.

We can combine the computation in a function explain that
determines the two best choices in a valuation and compares
them via a critical set of attributes, see also Figure 6.

> explain cars :: Explanation Car (Feature,Opinion)
Honda is the best option; it is better than BMW because
{(Price,Personal), (Safety,Personal)}:1.30 >
|{(MPG,Personal), (MPG,Expert)}:-1.23|

The explanation says that the total positive value attributed
to the personal opinion about price and safety is enough to
overcome the negative value that results from the personal
and expert opinion about fuel efficiency. We call the attribute
set of the runner-up and its valuation the barrier, which is
to be overcome by a dominator of the winner. The barrier is
the strongest argument in favor of the runner-up, and any
dominator is by definition a convincing counter argument.

Since our car example is relatively small, the computation
of (minimal) dominating sets might not seem to be such a
big help. In more realistic examples where the number of
dimensions and attributes is larger, the valuations may grow
considerably, and the reduction achieved by an MDS can
be significant. We present an estimation of the explanatory
simplifications that can be achieved by MDSs in Section 5.

4.1 Attribute-Focused Explanations
In addition to the sheer number of individual attribute values,
another potential source of confusion is the multitude of
different attribute combinations. Even in our small example
the attribute combinations in the MDS are non-symmetric
in the sense that the barrier contains one feature but two
opinions whereas the MDS has two features but one opinion.
We can make the roles of the different attributes and their
dimensions more clear in two different ways.

First, we can simply ignore a refinement of one dimension
by the other and look at the decision on a more coarse-
grained level. For example, we can ask how the decision can
be explained in terms of features only, which means to sum
all valuations for one feature over different opinions. The
focused value difference looks as follows.

150

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Martin Erwig and Prashant Kumar

> focus vd :: Rec Feature
{Price -> 1.20, MPG -> -1.23, Safety -> 0.74}

We can also ask directly for an explanation of the decision
that is focused just on features.

> explain $ focus cars :: Explanation Car Feature
Honda is the best option; it is better than BMW because
{Price, Safety} : 1.94 > |{MPG} : -1.23|

As we can see, again, price and safety considerations out-
weigh fuel efficiency. But since we are focusing on features
only, the opinion breakdown is not reported. While the expla-
nation is simpler, it is also less precise, since it does not reveal
that only the personal opinion were required for reaching
the decision. Similarly, we can focus on opinions only.

> explain $ focus cars :: Explanation Car Opinion
Honda is the best option; it is better than BMW because
{Personal} : 0.72 > |{Expert} : -0.01|

This explanation is consistent with the computation of total
valuations in which we project on personal and expert opin-
ions, but it also shows, partially due to the weighting, that
the personal opinions dominate the decision.
We can also analyze the impact of a specific dimension

on the decision. The function factor computes the impact
of the different attributes in one specific dimension on the
valuation. The dimension is specified as the first compo-
nent of a type annotation that splits a multi-dimensional
mapping of type (𝑇1, . . . ,𝑇𝑛) → 𝑇 into one in which com-
ponent 𝑇𝑘 is lifted, that is, into a mapping of type 𝑇𝑘 →
(𝑇1, . . . ,𝑇𝑘−1,𝑇𝑘+1, . . . ,𝑇𝑛) → 𝑇 . We represent a factored val-
uation as a mapping from the type that was factored to the
remaining types, see Figure 7. In the following example we
apply factor to the MDS to isolate the Feature type.

> factor honda :: Factor Feature Opinion
{Price -> 66% {Personal -> 100%},
Safety -> 34% {Personal -> 100%}}

The factor perspective on the MDS tells us that the price
is about 2/3 responsible for selecting the Honda, and the
safety rating counts for 1/3 of the decision, where for both of
these aspects we only need to take into account the personal
judgment, and the expert opinion doesn’t really matter. In
this case, since we only have 2 dimensions to work with, the
focus on Opinion gives us the same information in a slightly
different form.

> factor honda :: Factor Opinion Feature
{Personal -> 100% {Price -> 66%, Safety -> 34%}}

We can apply the same scrutiny to the attribute set of the
runner-up, which, as we already mentioned, is called the
barrier of the value difference.

data Factor a t = Factor {unFactor :: Map a (Double,Rec t)}

factor :: (Ord t,Ord a,Ord t',Split t a t') =>
Rec t -> Factor a t'

Figure 7. Functions for factoring valuations.

> let bmw = barrier vd
{(MPG,Personal) -> -0.58, (MPG,Expert) -> -0.65}

> factor bmw :: Factor Feature Opinion
{MPG -> 100% {Personal -> 47%, Expert -> 53%}}

We observe that MPG is the only attribute in favor of the BMW
and that its value is the result of 47% of Personal opinion
and 53% of Expert opinion. Again, we can obtain the same
information in a different format by switching the focus from
Feature to Opinion.
In summary, focusing and factoring provide a variety of

perspectives on the attribute sets that are responsible for a
decision. The insights can help a decision maker to get a bet-
ter sense of how a decision is challenged and supported by
the underlying data, which is not only useful for understand-
ing a decision but also for presenting it, answering questions
about it, and potentially even defending it.

4.2 Sensitivity Analysis
In addition to explaining a decision, one might also wonder
how relevant or decisive a decision is, that is, how much
better is the first alternative than the second (or even third)?
This often leads to questions of how much specific attributes
have to change for the decision to change. In the context of
our car-buying scenario wemight want to know, for example,
by how much the price of BMW needs to be decreased such
that it becomes the preferred option. Questions like this
are sometimes called sensitivity analysis queries [21], which
result, in this case, in a mapping of cars to associated changes
in their prices that would lead to a different ranking.
A sensitivity analysis query can be expressed as a rela-

tionship between an attribute of a specific feature and the
attributes of the feature it refines. For the price-change query,
the query feature and attribute are Feature and Price, respec-
tively, and the change feature is Car. Query and change fea-
tures must always be consecutive levels in an AHP.

We capture the result of a sensitivity analysis in a mapping
Change (see Figure 8). To account for the fact that in some
cases no changes in a feature can change the outcome, the
result type of the mapping is Maybe Double.

The main computation is performed by the auxiliary func-
tion sensitivityNorm, which takes as its first input (type a)
a tuple of mappings that represent the AHP problem and
defines the data space within which the sensitivity analysis
takes place. In our example, this is the following value.

151

MADMAX: A DSL for Explanatory Decision Making GPCE ’21, October 17–18, 2021, Chicago, IL, USA

data Change a = Change (Map a (Maybe Double))

class (Set q, Set c,Ord c,Covers a (Info c q),Valence b) =>
Sensitivity a o q c | a o c -> q where

sensitivityNorm :: a -> (o,o) -> q -> Change c

sensitivity :: (Norm a,Ord b,Sensitivity o a q c,Limit q) =>
a -> (o,o) -> q -> Change c

Figure 8. Functions for sensitivity analysis.

carData :: (Info Car Feature, Info Feature Opinion,
Info Opinion Weight)

carData = (carFeatures,featureOpinions,weights)

The class Norm contains a function to normalize tuples of Info
maps into tuples of normalized values. The second argument
is a pair of alternative objects (of type o) whose ranks are to
be swapped. In our example these are Honda and BMW of type
Car. The third argument is an attribute of the query feature
(of type q, in our case Price of type Feature) with respect to
which the sensitivity analysis is to be performed. The class
constraint Limit allows users to define upper and lower limits
on the values of that type to be considered by the analysis to
eliminate unreasonable change suggestions (such as a price
of $0). Finally, the result type c represents the change feature
of the sensitivity analysis query.
Since sensitivityNorm works with normalized values, we

have to de-normalize the computed results and convert them
back to the original units provided by the user. Otherwise,
the computed results would be difficult to make sense of. This
happens in the function sensitivity, which again makes use
of the whole data space (here carData). We can thus answer
the question about the price change by running the following
sensitivity analysis.4

> sensitivity carData (Honda,BMW) Price
{Honda -> 1085.34, BMW -> -1124.72, Toyota -> -20479.90}

The result tells us different possible changes in the prices of
cars that would change relative ranking of Honda over BMW.
Specifically, if the price of Honda increased by at least 1085.34,
or the price of the BMW decreased by at least 1124.72, or the
price of Toyota decreased by at least 20479.90, then BMW
would rank higher than Honda. Interestingly, a change in
the price of Toyota can also swap the rankings of Honda and
BMW. This is because the sum of the normalized attribute
values for a given attribute should be 100. Changing the price
of Toyota leads to re-normalization to enforce this condition,
which leads to a change in the normalized values of Honda
and BMW that may reverse their ranking.

4Note that the madmax pretty printer omits Just constructors when print-
ing Maybe values.

Of course, we can perform the sensitivity analysis with
respect to any other attribute of Feature. For example, the
following query computes the necessary changes in fuel
efficiency to change the ranking.

> sensitivity carData (Honda,BMW) MPG :: Change Car
{Honda -> -0.92, BMW -> 0.99, Toyota -> Nothing}

As expected, a decrease for the Honda and an increase for
BMW in that attribute can flip the ordering. The entry for
Toyota shows that no change in its fuel efficiency can affect
a change in the ordering.
In addition to different attributes, we can perform the

sensitivity analysis on other features as well. For example,
we can ask “How dependent is the current ranking on the
personal opinion?” In this case the input feature is Opinion

and the output feature is Feature. While we are still trying
to identify conditions for changing the ranking of the cars,
we are now doing this indirectly by changing the value of
the Opinion feature so that the induced change in Feature is
enough to change the car ranking.

sensitivity carData (Honda,BMW) Personal :: Change Feature
{Price -> -3.98, MPG -> 2.95, Safety -> Nothing}

The result says the car ranking changes if theweight assigned
to the Price attribute is decreased by 3.98 or if the weight
assigned to the MPG attribute is increased by 2.95, but no
weight change to the Safety attribute can alter the ranking.

All previous AHP implementation that we know of re-
port the result of any sensitivity analysis in terms of their
normalized encodings, which can be hard to interpret. One
important contribution of madmax is the ability to present
the results of sensitivity analyses in terms of the original
values specified in the problem, which enhances understand-
ability and makes sensitivity analyses more user friendly.

5 Evaluation
To assess the effectiveness of MDS explanations for AHP
decisions, we have performed a number of experiments to
estimate the reduction in complexity that they can be ex-
pected to deliver. In the following we describe the setup and
results of these experiments.

First, we have to establish criteria to measure the efficacy
of explanations. Without explanations users need to inspect
all 𝑛 trace components generated by the AHP process. The
explanatory strength of an MDS comes from the fact that it
can often reduce this number considerably, say, to𝑚 trace
components. This aspect can be captured by defining the
explanatory ratio of an MDS as𝑚/𝑛. The smaller the ratio,
the fewer components users have to look at (relative to the
unexplained original decision), thereby making it easier to
understand the decision. A related aspect that seems a bit
more intuitive is to express the reduction of the trace size

152

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Martin Erwig and Prashant Kumar

achieved by anMDS as the percentage of the original number
of trace components. We thus define the MDS reduction as
𝑅 = (1 −𝑚/𝑛) × 100. For example, an explanation ratio of
0.15 translates into a reduction of 85%. This definition means:
the higher the reduction, the more effective the MDS.

Next, we need test data to run our experiments on. Since
there are no AHP benchmark data sets available, we need
to generate data that reflects the examples found in real life.
Judging from the examples reported in the literature, we
infer that AHP models are hardly ever deeper than 6 levels.
However, each dimension can be very wide: For example,
an AHP model with 51 attributes in one dimension can be
found in [11]. In general, it is not uncommon for an AHP to
have about 10 attributes in one of the dimensions [13].

We therefore randomly generated data for AHP examples
having between 3 to 6 levels and computed the reduction
for each case. For AHP examples with 3 levels the number
of components was limited to 30 because there is only 1
intermediate dimension, and the examples in the literature
suggest that such a limit is a reasonable assumption. For
an AHP examples with 4, 5, or 6 levels, we limited the total
number of components in AHP to 100, with intermediate
dimensions having between 2-10 components each. To gener-
ate graphs for each decision margin, we used 20,000 random
inputs. For an AHP problem with a fixed number of levels,
the random inputs vary in two regards: (a) the number of
attributes at each level, and (b) the values of the decision
matrices. Varying the number of attributes results in vary-
ing number of trace components. The average of reduction
percentages of all the inputs with a given number of trace
components, say 𝑥 , is shown as the reduction percentage for
𝑥 on the 𝑦-axis of the graph.

Another aspect that should be reflected in the test data
is whether an explanation is necessary at all. For example,
when the first alternative from an AHP process is better than
the runner-up in every regard, no explanation is necessary.
In contrast, an explanation is most helpful in cases when the
two alternatives are really close, that is, when the priority
values of the alternatives are similar. To reflect this situation,
we filter out those cases whose first two alternatives are not
close. We call the relative difference between the priority
values of two alternatives their decision margin. Specifically,
we consider different scenarios in which the decision margin
is bounded 1%, 5%, 10%, 20%, and 30%.
Figure 9 shows how MDS reduction varies with the total

number of components. We show graphs for AHPs with dif-
ferent number of levels containing plots for different decision
margins. The plots show some interesting trends.
First, on average an MDS can prune the number of trace

components by about 55-60% even when the top two alter-
natives are very close, that is, even for a decision margin as
low as 1%.
Second, the reduction decreases with smaller decision

margins, which makes some intuitive sense, since a greater

value distance between alternatives provides more opportu-
nities to explain the difference with fewer trace components.
But unfortunately this also means that the efficacy of MDS
explanation shrinks when they might be needed most.

Third, we can observe that with an increasing number of
levels, the curves “move upwards,” that is, for a given decision
margin the reduction increases with the number of levels in
the AHP problems. In other words, MDS explanations scale
well with the structural complexity of AHP problems.

To assess the performance of madmax for AHP problems
with a given number of levels, we measured the timing infor-
mation for solving 20000 randomly generated AHP problems
with the same number of levels. Performing the experiment
on a collection of problems gives us better insight into the av-
erage performance of madmax. For AHP examples with 4, 5,
and 6 levels we constrained the total number of components
to be less than 100 as was the case in the MDS evaluation.
For AHP examples with 3 levels, we again constrained the
number of components to 30, since it is uncommon to find
an AHP with 3 levels having more than 30 components. We
performed these experiments on a laptop with Intel i-7 pro-
cessor with a clock speed of 2.60 GHz, 4 cores, and 16 GB
RAM. The timing results are shown in Figure 10. The evalua-
tion shows that the average time taken to solve the problem
increases linearly with the number of levels. Moreover, mad-
max runs fast: Even the most computationally intensive AHP
problems with six levels can be solved on average in less
than 4 milliseconds.

6 Related Work
Since madmax is a DSL for AHP decision making with expla-
nations, we compare it first with other AHP decision-making
tools. After that we also compare our MDS-based explana-
tions with other explanation approaches.
First, AHP problems can be represented as tables in Ex-

cel [1], which is quite effective when getting the priorities
for alternatives is the only requirement. However, this ap-
proach is limited and doesn’t provide sensitivity analyses,
visualizations, or explanations of the results. Most other AHP
tools fall into one of the two categories: (1) UI-based tools,
which allow users to describe the shape of the AHP model
as well as the decision matrices in an interactive way, and (2)
language-specific libraries, in which the problem is encoded
using representations offered by the host language.
The most prominent tool in the first category is Expert

Choice [7]. Other tools in this category are TransparentChoice
[10] and Super Decisions [8]. These tools have built-in facili-
ties to perform sensitivity analysis on the various attributes
of the AHP problem. The presence of a graphical user inter-
face and built-in functionalities makes these tools convenient
to use, which is essential for non-technical users. However,
most of these tools are sold as end-user products and can’t
be adapted to specific user needs. A major disadvantage is

153

MADMAX: A DSL for Explanatory Decision Making GPCE ’21, October 17–18, 2021, Chicago, IL, USA

Number of levels: 3 Number of levels: 4

Number of levels: 5 Number of levels: 6

Figure 9.MDS reduction dependent on the number of components for AHP problems with different number of levels. Decision
margins: ≤ 30%, ≤ 20%, ≤ 10%, ≤ 5%, ≤ 1%

Levels Mean (sec) Std Dev (sec)
3 24.26 0.17
4 42.88 1.51
5 63.04 1.02
6 70.77 0.92

Figure 10. Performance of madmax on AHP Problems

that these tools don’t integrate with existing programming
languages. In contrast, madmax allows users to integrate
AHP decision making in their software. Perhaps the biggest
advantage of madmax over the aforementioned tools is the
ability to provide explanations for the decisions in addition
to sensitivity analysis.
The second category of AHP tools are language-specific

AHP libraries, such as the ahp library for R [9], the pyAHP
library for Python [12], and the hahp library for Haskell [5].
However, these libraries require verbose and clunky encod-
ings of AHP problems. For example, the ahp library in R
asks the user to specify the AHP model in a separate file in
a special format (yaml), which is then imported in the main

R program. Similarly, the pyAHP and hahp libraries encode
the AHP model in JSON format. Creating such encodings
is time consuming and prone to errors. Moreover, it is cum-
bersome to make even minor changes to the encodings of
models. In contrast,madmax allows users to specify the AHP
model succinctly in the source language without the need
for a special syntax. Moreover, none of these packages offer
explanation primitives.

Sensitivity analysis [21] is the tool of choice employed by
decisionmakers to comprehend the results of variousMADM
methods, including AHP. Sensitivity analysis is usually the
only explanation mechanism available to a decision maker.
madmax also offers functions for performing sensitivity anal-
ysis. An advantage of the representation in madmax is that
we can report the results of a sensitivity analysis in terms of
the original data whereas other tools only report numbers
on normalized data, which is often harder to interpret.
In any case, despite being useful, a potential limitation

of sensitivity analysis is that it can only analyze the impact
of one attribute at a time, keeping other attributes values
constant. Thus, sensitivity analysis produces a number of lo-
calized explanations. In comparison, our explanationmethod,

154

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Martin Erwig and Prashant Kumar

which is based on value differences, is global in the sense that
the MDS mechanism takes into consideration the combined
impact of various attributes in the decision making, leading
to generally more accurate and comprehensive explanations.

The idea of MDS explanation was first proposed in [6] in
the context of explaining the results of dynamic program-
ming algorithms. We have adopted this notion and extended
it to work with multiple layers of attributes. This extension
allows us to explain hierarchical decompositions of data,
which is not possible in the original approach.

Program traces are often used to explain computation re-
sults. However, traces can become very large for non-trivial
programs. Using program slicing one can try to remove non-
relevant parts of the trace. Specifically, dynamic slicing is a
technique for isolating segments of a program that poten-
tially contribute to the value computed at a point of interest.
For example, Biswas describes the generation of a dynamic
slice for a higher-order programming language [4]. Perera
et al. describe the use of dynamic slicing on traces to specifi-
cally generate explanations for the executions of functional
programs [14]. Their approach is based on eliminating those
parts from a trace that do contribute to user-selected parts of
outputs. This approach has been extended to imperative func-
tional programs in [15]. Although the approach is effective,
the resulting traces can still be quite large and include many
details that while technically relevant for the computation
are not contributing to the explanation. We have recently
shown how to generate more succinct program traces that
can be tailored to user needs by offering users the ability to
apply specific trace filters that can be defined with the help
of a trace query language [2, 3]. madmax does not produce
traces as explanations. Instead of collecting intermediate
values over the execution of a program, value decomposi-
tions maintain a more granular representation of values that
are still aggregated. Our approach requires some additional
work on the part of the programmers in decomposing the
inputs (even though in our implementation we have tried
to minimize the required effort). An advantage of our ap-
proach is that we only record the information relevant to
an explanation in contrast to generic tracing mechanisms,
which generally have to record every computation that oc-
curs in a program, and require aggressive filtering of traces
afterwards.

7 Conclusions
We have presented the Haskell-embedded DSL madmax that
facilitates the high-level representation of (potentially hierar-
chical) multi-attribute decision-making problems. madmax
specifically supports the AHP decision-making method.
madmax offers two distinctive advantages over previous

approaches. First, it supports the gradual adaptation and
evolution of AHP problems, since users are freed from the
(re-)encoding of data. Second, it reports results in a more

user-friendly way: On the one hand, results are presented in
terms of the problem description (instead of encodings). On
the other hand, results can be succinctly explained by direct
comparison with rivaling alternatives using the concept of
minimal dominating sets.

References
[1] Addinsoft. [n. d.]. XLSTAT: An Excel Addin for AHP. https://www.

xlstat.com/en/solutions/features/analytic-hierarchy-process.
[2] D. Bajaj, M. Erwig, D. Fedorin, and K. Gay. 2021. A Visual Notation

for Succinct Program Traces. In IEEE Int. Symp. on Visual Languages
and Human-Centric Computing. To appear.

[3] D. Bajaj, M. Erwig, D. Fedorin, and K. Gay. 2021. Adaptable Traces
for Program Explanations. In Asian Symp. on Programming Languages
and Systems. To appear.

[4] S. K. Biswas. 1997. Dynamic Slicing in Higher-order Programming
Languages. Ph. D. Dissertation. University of Pennsylvania.

[5] Y. Dubromelle and J. Prunaret. 2016. hahp: An AHP library for Haskell.
https://github.com/Taeradan/hahp.

[6] M. Erwig and P. Kumar. 2021. Explainable Dynamic Programming.
Journal of Functional Programming 31, e10 (2021).

[7] E. Forman. 1997. Expert Choice. https://www.expertchoice.com/2020.
[8] Creative Decisions Foundation. 1996. Super Decisions. http://www.

superdecisions.com/about/.
[9] C. Glur. 2018. ahp: An AHP Library for R. https://cran.r-project.org/

web/packages/ahp/.
[10] TransparentChoice Limited. 2013. TransparentChoice. https://www.

transparentchoice.com/.
[11] L. Liu, P. Berger, A. Z. Zeng, and A. Gerstenfeld. 2008. Applying

the analytic hierarchy process to the offshore outsourcing location
decision. Supply Chain Management 13 (2008), 435–449.

[12] A. Mishra. 2018. pyAHP: An AHP library for Python. https://github.
com/pyAHP/pyAHP.

[13] N. Pan. 2008. FUZZY AHP APPROACH FOR SELECTING THE SUIT-
ABLE BRIDGE CONSTRUCTION METHOD. Automation in Construc-
tion 17 (2008), 958–965.

[14] R. Perera, U. A. Acar, J. Cheney, and P. B. Levy. 2012. Functional
Programs That Explain Their Work. In 17th ACM SIGPLAN Int. Conf.
on Functional Programming. 365–376.

[15] W. Ricciotti, J. Stolarek, R. Perera, and J. Cheney. 2017. Imperative
Functional Programs That Explain Their Work. Proc. ACM Program.
Lang. 1, Article 14 (2017), 28 pages.

[16] R. W. Saaty. 1987. The Analytic Hierarchy Process—what it is and how
it is used. Mathematical Modelling 9, 3 (1987), 161–176.

[17] T. L Saaty. 2002. Decision making with the Analytic Hierarchy Process.
International Journal of Services Sciences 1 (2002), 83–98.

[18] T. L. Saaty. 2003. The negotiation and resolution of the conflict in South
Africa: The AHP. ORiON 4 (12 2003). https://doi.org/10.5784/4-1-488

[19] T. L. Saaty and Y. Cho. 2001. The decision by the US congress on
China’s trade status: a multicriteria analysis. Socio-Economic Planning
Sciences 35, 4 (2001), 243 – 252.

[20] V. Tang and E. Collar. 1992. IBM AS/400 new product launch process
ensures satisfaction. Long Range Planning 25, 1 (1992), 22 – 27. http:
//www.sciencedirect.com/science/article/pii/002463019290306M

[21] E. Triantaphyllou and A. Sánchez. 1997. A Sensitivity Analysis Ap-
proach for Some Deterministic Multi-Criteria Decision-Making. Deci-
sion Sciences 28 (1997), 151–194.

[22] E. Z. Zavadskas, Z. Turskis, and S. Kildienė. 2014. State of art surveys
of overviews on MCDM/MADM methods. Technological and Economic
Development of Economy 20, 1 (2014), 165–179.

155

https://www.xlstat.com/en/solutions/features/analytic-hierarchy-process
https://www.xlstat.com/en/solutions/features/analytic-hierarchy-process
https://github.com/Taeradan/hahp
https://www.expertchoice.com/2020
http://www.superdecisions.com/about/
http://www.superdecisions.com/about/
https://cran.r-project.org/web/packages/ahp/
https://cran.r-project.org/web/packages/ahp/
https://www.transparentchoice.com/
https://www.transparentchoice.com/
https://github.com/pyAHP/pyAHP
https://github.com/pyAHP/pyAHP
https://doi.org/10.5784/4-1-488
http://www.sciencedirect.com/science/article/pii/002463019290306M
http://www.sciencedirect.com/science/article/pii/002463019290306M

	Abstract
	1 Introduction
	2 One-Dimensional Decision Making
	3 Multiple Layers of Attributes
	4 Explaining Decisions with Layered Dominating Sets
	4.1 Attribute-Focused Explanations
	4.2 Sensitivity Analysis

	5 Evaluation
	6 Related Work
	7 Conclusions
	References

