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Abstract: We demonstrate an approach to transform keyword queries 
automatically into queries that combine keywords appropriately by boolean 
operations, such as and and or .  Our approach is based on an analysis of 
relationships between the keywords using a taxonomy. The transformed queries 
will be sent to a search engine, and the returned results will be presented to the 
user. We evaluate the effectiveness of our approach by comparing the precision 
of the results returned for the generated query with the precision of the result 
for the original query. Our experiments indicate that our approach can improve 
the precision of the results considerably. 

1. Introduction 

The most common way to find information on the Internet is to use a search engine 
and provide a list of keywords describing the sought information. A problem with 
keyword-based search is that it often returns too many irrelevant results. The use of 
boolean operators can improve the preciseness of queries considerably. However, 
there is strong empirical evidence that end users, who are by far the largest group of 
users of search engines, are not able to use Boolean operators correctly. For instance, 
Pane and Myers found that sometimes, when people say and, they actually mean or  
[11] (for example, “ I am interested in blue and red cars”  usually expresses the interest 
in cars that are red or blue.) This and/or confusion happens very frequently when 
keywords are used that are closely related in a concept hierarchy (for example, red and 
blue are both colors). 

Based on this observation, we have designed and implemented a front end for 
search engines, called KeyQuery, which groups keywords based on their similarity and 
inserts the Boolean operator or  between keywords in one group and connects different 
groups by and. Our approach is based on identifying the relations among the 
keywords used in a query by using a taxonomy. The transformed structured queries 
produce more relevant results, in particular, in the first couple of returned pages. 

For example, a user wants to buy a Honda car and he likes red and blue colors. So 
he might input “ red blue Honda”  to search the Internet to find some information. The 
default relation between keywords for most search engines is and. So the web pages 
that contain all the three words “red” , “blue” , and “Honda” will be returned as a result. 
Other useful pages, which contain only “ red”  and “Honda” , or only “blue”  and 



“Honda”, but not all the three words, will not be in the results. The user might miss a 
lot of useful information. Aa another example, suppose a user wants to find the 
biographies of some classical musicians, and he types “biographies Mozart Debussy 
Beethoven Liszt Tchaikovsky”  on the Internet, he may get only a few web pages 
because only a few web pages contain all the keywords. In fact, there are many web 
pages on the Internet that contain information about biographies of one or several of 
the musicians. All keywords except the first are related by the category “musician”. 
Therefore, our goal is to add the boolean operator or  between these keywords, and 
transform the whole query into “biography and (Mozart or  Debussy or  Beethoven or  
Liszt or  Tchaikovsky)” . This query returns more relevant information, in particular, 
on the first two pages of results.  

The query interface is shown in Figure 1 on the left. A list of entered keywords will 
be transformed behind the scenes into a structured query, which will then be executed 
by a search engine capable of dealing with boolean operators (we are currently using 
Google [7]). The results will then be presented to the user in the same browser 
window. For example, Figure 1 shows on the right the result of the above 
musician/biography query. 

  

Fig. 1. User interface and example query results 

The rest of this paper is structured as follows. In Section 2 we discuss the general 
approach and give an overview over the query system. In Section 3 we introduce our 
similarity measures for keywords and describe the concept of a distance matrix, which 
is used by the algorithm to form groups of similar keywords, introduced in Section 4. 
In Section 5 we evaluate our approach by comparing search results for keyword 
queries with the results for the transformed queries. We draw some conclusions and 
give remarks on future work in Section 6. 



2. System Overview 

Our system KeyQuery can be considered as query preprocessing front end for web 
browsers. We require access to the taxonomy WordNet [14], either installed locally or 
through the Internet. The query processing is performed in several steps. Step 1: In a 
dedicated user interface, users can input a query that consists of one or more keywords. 
We call this query Q. Step 2: The user interface sends the query Q to the “Word 
Finder” , which sends all the keywords to WordNet and obtains a classification file C 
for each keyword. Step 3: The “Sense retriever”  extracts all the senses S for each 
keyword from the classification files obtained from WordNet. Step 4: The 
“Categorizer”  calculates similarity between every pair of keywords and categorizes 
them based on these similarities by using a threshold-based algorithm. A new query Q’, 
combined with boolean operators and and or , will be generated based on the 
categorized keywords. Step 5: The “Redirector”  sends Q’  to a search engine that 
supports Boolean operators. It obtains the results R from the search engine and sends 
the results back to the user interface. The system architecture is summarized in Figure 
2. 
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Fig. 2. System structure 

To categorize a list of keywords into different groups, we use WordNet’s lexical 
database as the taxonomy in a semantic similarity measurement task. WordNet was 

Q Original keyword query 

C Classification files downloaded from WordNet for each keyword 

S The senses of all the keywords 

Q’  Transformed query 

R The results returned by the search engine 



developed by the Cognitive Science Laboratory at Princeton University and has been 
used in many different projects [2, 8, 13]. WordNet essentially provides information  
regarding four relationships [9]: 1. Synonymy, 2. Antonymy, 3. Meronymy, and 4. 
Hyponymy. Our system currently exploits only the hponymy/hypernymy relationship, 
which basically represents an IS-A relationship. For example, “sedan”  is a kind of 
“car” . 

In the IS-A hierarchy provided by WordNet, each word has one or several senses. 
A sense is one meaning of a word. As an example, we show sense 3 of the word “red”  
in Figure 3. We can see that the structure of a word sense is a DAG. 

 

 
 

Fig. 3.  Structure of a word sense 

3. Similar ity 

The groups that are derived from a list of keywords depend on the similarity between 
those words. The degree of similarity of two words A and B is determined by their 
conceptual distance, which we define as follows. 

 
Definition 1 (Conceptual Distance):  If there is not any common ancestor for word A 
and word B, then DAB = Dmax , where Dmax is the maximal value of conceptual distance; 
otherwise, if there is a common ancestor at level i of sense m in word A’s ancestors 
and level j of sense n in word B’s ancestors, then we define: 
 

DAB = C *  (m + n – 2 ) + i + j 



It is easy to verify that if the distance between A and B is DAB, the distance between 
B and A is also DAB. For every pair of common ancestors, we apply this formula and 
get the conceptual distances D1, D2, D3, …, Dp. Let DAB = min (D1, D2, D3, …, Dp). C 
is a constant, called “sense amplifier” , used to enlarge the conceptual distance of two 
words linearly with the sense levels.  We use this sense amplifier to penalize similarity 
in later senses since WordNet orders senses by their frequencies of usage. 

The presented formula presents a compromise between simplicity and expressive-
ness; our experiments have shown that it yields good results. In particular, we have 
found that C = 4 is a good choice. Let us explain the use of C by the following 
example. Consider the query “ red blue black coat” . We can find that level 1 of sense 1 
of the word “red”  has a common ancestor “chromatic color”  with level 1 of sense 1 of 
the word “blue”. So by definition, their conceptual distance is 2. However, the 
conceptual distance between the word “red”  and the word “black”  is 4 since the 
closest ancestor of “black”  is “achromatic color” . Both, “ red”  and “black”, are 
expected to be in the same category “color”  by most people. By our definition, the 
conceptual distance between “blue”  and the word “coat”  is 8. If we do not introduce 
the sense amplifier and consider all senses have the same role and only count the level 
difference, the distance between “Blue”  and  “coat”  is also 2. However, “blue”  is not 
similar to “coat”  because most people will think that “blue”  is a kind of “color”  like 
“ red”  while “coat”  is a kind of “clothing” . Thus we need a sense amplifier to enlarge 
the distance if two words have no common ancestor in their first senses. 

WordNet lists as the first sense the most often used meaning for a word. WordNet 
ranks senses of a word by the frequency of usage of that sense. To determine if two 
words are similar, we also need a threshold value. We call this value group distance 
and write ∆ for it. Only if the conceptual distance between two words is less than ∆, 
they should be in the same group and we say that they are “similar” ; otherwise, they 
are called “different” . It is very important to choose an appropriate group distance. If 
the group distance is too small, then a lot of similar words will not be correctly 
grouped. If the group distance is too large, then more words will be similar to each 
other than normally considered by users. The group distance also depends on the 
value of the sense amplifier, which must, in particular, allow similarity between words 
on second-level senses. The key point is that we must find a balance that can fairly 
treat the weight of senses as well as the group distance. For C = 4 we have found that 
∆ = 7 yields good results. 

We can calculate the conceptual distance between each pair of keywords by using 
the definition of conceptual distance. Given a list of keywords K1, K2, …, Kn, we can 
put the distances into a so-called “distance matrix” . (Since the conceptual distance is 
symmetric, we need only half of the matrix.) 

 
Distance K 1 K 2 … K n 
K 1 0 D12 … D1n 
K 2  0 … D2n 
…   0 … 
K n    0 



4. Keyword Categor ization 

In grouping similar words together, we have to resolve the following ambiguity. 
Consider the keyword query “yellow orange apple”  and assume Dmax = 99, ∆ = 7, and 
C = 4. The conceptual distance between “yellow”  and “orange” is 6, so “yellow”  and 
“orange”  are similar and could be in the same group. Meanwhile, the conceptual 
distance between “orange” and “apple”  is 3, so “orange” and “apple”  are also similar 
and also could be in the same group. The problem is, “orange” could be in the same 
group with “yellow”  and also could be in the same group with “apple” . But “yellow”  
and “apple”  could not be in the same group since their conceptual distance is 99 and 
greater than the group distance. To solve this conflict, we employ the following rule: 
 
Pr ior ity Grouping Rule: Words with smaller conceptual distance have a higher 
priority to be grouped. 
 
This priority grouping rule is realized in the following algorithm by sorting the 
keyword pairs that are to be grouped by their conceptual distances and processing 
them in order of increasing distance. We write S ⊕ X for S U {  X } . 

 

Categor ization Algor ithm:   

Input: A list of keywords K = { K1, K2, …, Kn}  
Output: A set of groups G = {  g1, g2, …, gs }   
M ethod: First, we determine the distance matrix D for K, with entries D12, D13, …, D1n, 

D23, …, D(n-1)n. Let L be the sorted list that contains the (n2 - n) / 2 elements (the upper 
right half of the matrix) in D.  
If n = 1, there is only one element, so we get only one group, i.e., let G = { { K1} } .  
If n > 1, we proceed as follows: 

Let G = ∅� 
For every element in L do  

If Dij < ∆ then S 
Consider the following cases: 

 Case 1: ∀ g ∈ G, K i, K j ∉ g. Then let G = G ⊕ {  K i, K j }  
 Case 2: ∃ gm ∈ G, K i ∈ gm and ∀ g ∈ G, K j ∉ g. 
 If ∀ Ka ∈ gm, Daj < ∆ then let G = G – {  gm }  ⊕�(gm  ⊕�K j) 
   else let G = G ⊕�{ K j}  
 Case 3: Symmetric to Case 2 with K i, K j swapped. 
 Case 4: ∃ gm ∈ G, K j ∈ gm and ∃ gr ∈ G, K i ∈ gr and gm � gr. 
  If ∀ Ka ∈ gm, Dai < ∆ and ∀ Kb ∈ gr, Drj < ∆ then 
    let G = (G  – { gm,  gr}  ) ⊕ �(gm U  gr) 

If Dij ≥ ∆ then 
If ∀ g ∈ G, K i ∉ g then  let G = G ⊕���K i }  

  If ∀ g ∈ G, K j ∉ g then  let G = G ⊕���K j }  
Sort all the groups in G by the smallest indices of their keywords in ascending order. 
Return G.  � 



  

Here is an example for case 2 when Dij < ∆. Consider the query “yellow orange apple” . 
According this algorithm, “orange”  and “apple”  will be grouped first since they have 
the smallest conceptual distance 3. Then we find that the conceptual distance between 
“orange”  and “yellow”  is smaller than ∆. But because the conceptual distance between 
“yellow” and “apple”  is 99 and is greater than ∆, the word “yellow”  will be placed in 
another group. Cases 3 and 4 are very similar to case 2. 

So far, we can categorize a list of keywords into different groups based on the 
distance matrix. We also sort these groups by the smallest indices of their keywords in 
ascending order since in some search engines, such as Google and Yahoo, the order of 
the keywords will affect the results. We try to preserve the original order of the 
keywords. Finally, the groups of keywords will be transformed into a query by 
inserting or  between all keywords in a group and and between all groups. 

5. Evaluation 

The two most common measures of retrieval effectiveness are recall and precision. 
Recall measures the percentage of relevant documents in a collection that are actually 
found by a retrieval system—i.e., the ratio of the number of relevant retrieved 
documents over the total number of relevant documents contained in the collection. 
Precision measures the percentage of retrieved documents that are judged to be 
relevant to the original request—i.e., the ratio of the number of relevant retrieved 
documents over the total number of retrieved documents. Normally there is a trade-off 
between recall and precision.  

It is very common that a user gets millions of results returned from a keyword 
search. However, most users only go over the first one or two pages. Therefore, 
precision in the first two pages is crucial to search engines. The ranking of results by 
search engines has an influence on the precision in the first pages. In particular, 
ranking pages by their popularity yields much better results than by using just a count 
of number of contained keywords (cf. Google’s PageRank™ [16] techonology).  

For our system we can observe that if no two keywords are similar in a query, 
KeyQuery will and all the keywords, so the results will be the same as for the original 
query because the boolean operator and is the default relation between keywords for 
most search engines. From this it follows that in these cases the recall and precisions 
of KeyQuery and the other search engines are the same since KeyQuery does not 
change the original query. But if some keywords are similar to each other, KeyQuery 
will insert the relation or  between those keywords. The transformed query will be 
different from the original query. Since we add the or  operator between keywords, the 
infamous trade-off between precision and recall will hit: if the overall recall is 
increased, then the overall precision will be decreased as we retrieve more results than 
the original ones. 

If we redirect our transformed query to Google, what will happen? Let us consider 
a query “A1 A2 B1” . We assume that A1 and A2 are similar words and are grouped 
together by our algorithm. B1 is in a different group. The original results from Google 



are ‘ ranked web pages that contain “A1 A2 B1”  by their popularity. The new results 
are ‘ ranked web pages that contain “A1 B1”  or “A2 B1” by their popularity’ . Do we 
improve the precision for the first two pages? 

We explain the effect of our approach for this example in Figure 5. Assume that a 
user looks only at the first five results. Table 1 holds the results of original query. We 
assume that R1, R2, R3, R4 and R5 are the ranked results and 2100, 1300, 900, 500 
and 300 are their PageRank values, respectively. Now we reorganize the query into 
two queries: “A1 B1” and “A2 B1”. Table 2 and 3 hold envisioned results of the 
queries “A1 B1”and “A2 B1” , respectively. Table 4 holds the results of the 
transformed query “ (A1 or  A2) and B1”  that we get from our KeyQuery system. All 
the results in these tables are ranked by their corresponding PageRank values. Some of 
the original query results are in the results for the reorganized queries. For example, 
R1 = L2 = K4. The results in table 4 are those results with highest PageRank values 
chosen from table 2 and table 3. We can observe that the constraint of three keywords 
prevents some of the possibly more relevant results, i.e., the results with larger 
PageRank values, from appearing in the initial part of the result list for the original 
query. From these tables, we can conclude that the first five results for the transformed 
query are possibly more relevant than those for the original query. 

 

 

Fig. 5. Abstract example 

As another example, consider again the query “biography Mozart Debussy Beethoven 
Liszt Tchaikovsky”  (This is query 1). Since Google supports boolean operators, we 
have used Google as our back end search engine, and we have checked the relevance 
of the first 20 returned links. A group of students from different departments have 
judged the search engine results for relevance. We have averaged all the precision 
rates. We have obtained an average of 9.2 relevant links with the original query, which 
means the precision is 46%. With the transformed query, the precision is 96%. As 
another example, consider the query “admission engineering MIT Stanford” . With the 
original query, the precision is only 26%. However, the transformed query obtained by 
our system yields a precision of 98%. Other queries used in our evaluation are: 

 
3. California Hawaii Vacation package 
4. Seattle Chinese Japanese Mexican restaurant 



5. Red blue Honda coupe 
6. Diamond ruby emerald wedding ring 
7. Smoked pork beef recipe 
8. How to plant apple pear orange tree 
9. Cat dog training program 
10. BMW convertible sedan dealer Portland 

 
The results are shown in Figure 6.  
 

 Precision (%) 

Query# Original Query Transformed Query Improvement 

1 46 96 109 

2 26 98 277 

3 87 95 9 

4 69 94 36 

5 60 93 55 

6 78 97 24 

7 85 100 18 

8 50 57 14 

9 63 69 10 

10 35 95 171 

Avg. Precision (%) 60 89 72 
 

Fig. 6. Comparison table 

6. Conclusions and Future Work 

We have developed the system KeyQuery that can improve the precision of search 
results for keyword queries considerably. The approach taken was to use a taxonomy 
to automatically insert boolean operators and and or  between keywords. Since the 
generated queries are in boolean form, we can apply our approach to any search 
engine or database that support boolean operators. 

One of the next steps is to perform a systematic study of the precision 
improvements that can be achieved by our system. Moreover, the system can be 
improved in several ways. One route for future work is to include adjectives and 
adverbs from WordNet. 

Another area of future work is to construct a taxonomy besides WordNet. The 
reason is that WordNet does not include many common words, like brand names, such 
as Honda. However, since manually maintaining such taxonomies is almost impossible, 
we currently consider a strategy of generating and updating these taxonomies by web 
queries themselves.  
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