
KeyQuery – A Front End for the Automatic
Translation of Keywords into Structured Quer ies

Martin Erwig and Jianglin He

School of EECS, Oregon State University, Corvallis, OR 97331
{ er wi g, hej i } @cs. or st . edu

Abstract: We demonstrate an approach to transform keyword queries
automatically into queries that combine keywords appropriately by boolean
operations, such as and and or . Our approach is based on an analysis of
relationships between the keywords using a taxonomy. The transformed queries
will be sent to a search engine, and the returned results will be presented to the
user. We evaluate the effectiveness of our approach by comparing the precision
of the results returned for the generated query with the precision of the result
for the original query. Our experiments indicate that our approach can improve
the precision of the results considerably.

1. Introduction

The most common way to find information on the Internet is to use a search engine
and provide a list of keywords describing the sought information. A problem with
keyword-based search is that it often returns too many irrelevant results. The use of
boolean operators can improve the preciseness of queries considerably. However,
there is strong empirical evidence that end users, who are by far the largest group of
users of search engines, are not able to use Boolean operators correctly. For instance,
Pane and Myers found that sometimes, when people say and, they actually mean or
[11] (for example, “ I am interested in blue and red cars” usually expresses the interest
in cars that are red or blue.) This and/or confusion happens very frequently when
keywords are used that are closely related in a concept hierarchy (for example, red and
blue are both colors).

Based on this observation, we have designed and implemented a front end for
search engines, called KeyQuery, which groups keywords based on their similarity and
inserts the Boolean operator or between keywords in one group and connects different
groups by and. Our approach is based on identifying the relations among the
keywords used in a query by using a taxonomy. The transformed structured queries
produce more relevant results, in particular, in the first couple of returned pages.

For example, a user wants to buy a Honda car and he likes red and blue colors. So
he might input “ red blue Honda” to search the Internet to find some information. The
default relation between keywords for most search engines is and. So the web pages
that contain all the three words “red” , “blue” , and “Honda” will be returned as a result.
Other useful pages, which contain only “ red” and “Honda” , or only “blue” and

“Honda”, but not all the three words, will not be in the results. The user might miss a
lot of useful information. Aa another example, suppose a user wants to find the
biographies of some classical musicians, and he types “biographies Mozart Debussy
Beethoven Liszt Tchaikovsky” on the Internet, he may get only a few web pages
because only a few web pages contain all the keywords. In fact, there are many web
pages on the Internet that contain information about biographies of one or several of
the musicians. All keywords except the first are related by the category “musician”.
Therefore, our goal is to add the boolean operator or between these keywords, and
transform the whole query into “biography and (Mozart or Debussy or Beethoven or
Liszt or Tchaikovsky)” . This query returns more relevant information, in particular,
on the first two pages of results.

The query interface is shown in Figure 1 on the left. A list of entered keywords will
be transformed behind the scenes into a structured query, which will then be executed
by a search engine capable of dealing with boolean operators (we are currently using
Google [7]). The results will then be presented to the user in the same browser
window. For example, Figure 1 shows on the right the result of the above
musician/biography query.

Fig. 1. User interface and example query results

The rest of this paper is structured as follows. In Section 2 we discuss the general
approach and give an overview over the query system. In Section 3 we introduce our
similarity measures for keywords and describe the concept of a distance matrix, which
is used by the algorithm to form groups of similar keywords, introduced in Section 4.
In Section 5 we evaluate our approach by comparing search results for keyword
queries with the results for the transformed queries. We draw some conclusions and
give remarks on future work in Section 6.

2. System Overview

Our system KeyQuery can be considered as query preprocessing front end for web
browsers. We require access to the taxonomy WordNet [14], either installed locally or
through the Internet. The query processing is performed in several steps. Step 1: In a
dedicated user interface, users can input a query that consists of one or more keywords.
We call this query Q. Step 2: The user interface sends the query Q to the “Word
Finder” , which sends all the keywords to WordNet and obtains a classification file C
for each keyword. Step 3: The “Sense retriever” extracts all the senses S for each
keyword from the classification files obtained from WordNet. Step 4: The
“Categorizer” calculates similarity between every pair of keywords and categorizes
them based on these similarities by using a threshold-based algorithm. A new query Q’,
combined with boolean operators and and or , will be generated based on the
categorized keywords. Step 5: The “Redirector” sends Q’ to a search engine that
supports Boolean operators. It obtains the results R from the search engine and sends
the results back to the user interface. The system architecture is summarized in Figure
2.

User Interface
(Web Browser)

Word Finder

Sense Retriever

Categorizer

Redirector

Q

C

S

Q'

Search Engine

WordNet

Key Words (Q)

Classifications (C)

Structured Query (Q')

Query Results (R)

Fig. 2. System structure

To categorize a list of keywords into different groups, we use WordNet’s lexical
database as the taxonomy in a semantic similarity measurement task. WordNet was

Q Original keyword query

C Classification files downloaded from WordNet for each keyword

S The senses of all the keywords

Q’ Transformed query

R The results returned by the search engine

developed by the Cognitive Science Laboratory at Princeton University and has been
used in many different projects [2, 8, 13]. WordNet essentially provides information
regarding four relationships [9]: 1. Synonymy, 2. Antonymy, 3. Meronymy, and 4.
Hyponymy. Our system currently exploits only the hponymy/hypernymy relationship,
which basically represents an IS-A relationship. For example, “sedan” is a kind of
“car” .

In the IS-A hierarchy provided by WordNet, each word has one or several senses.
A sense is one meaning of a word. As an example, we show sense 3 of the word “red”
in Figure 3. We can see that the structure of a word sense is a DAG.

Fig. 3. Structure of a word sense

3. Similar ity

The groups that are derived from a list of keywords depend on the similarity between
those words. The degree of similarity of two words A and B is determined by their
conceptual distance, which we define as follows.

Definition 1 (Conceptual Distance): If there is not any common ancestor for word A
and word B, then DAB = Dmax , where Dmax is the maximal value of conceptual distance;
otherwise, if there is a common ancestor at level i of sense m in word A’s ancestors
and level j of sense n in word B’s ancestors, then we define:

DAB = C * (m + n – 2) + i + j

It is easy to verify that if the distance between A and B is DAB, the distance between
B and A is also DAB. For every pair of common ancestors, we apply this formula and
get the conceptual distances D1, D2, D3, …, Dp. Let DAB = min (D1, D2, D3, …, Dp). C
is a constant, called “sense amplifier” , used to enlarge the conceptual distance of two
words linearly with the sense levels. We use this sense amplifier to penalize similarity
in later senses since WordNet orders senses by their frequencies of usage.

The presented formula presents a compromise between simplicity and expressive-
ness; our experiments have shown that it yields good results. In particular, we have
found that C = 4 is a good choice. Let us explain the use of C by the following
example. Consider the query “ red blue black coat” . We can find that level 1 of sense 1
of the word “red” has a common ancestor “chromatic color” with level 1 of sense 1 of
the word “blue”. So by definition, their conceptual distance is 2. However, the
conceptual distance between the word “red” and the word “black” is 4 since the
closest ancestor of “black” is “achromatic color” . Both, “ red” and “black”, are
expected to be in the same category “color” by most people. By our definition, the
conceptual distance between “blue” and the word “coat” is 8. If we do not introduce
the sense amplifier and consider all senses have the same role and only count the level
difference, the distance between “Blue” and “coat” is also 2. However, “blue” is not
similar to “coat” because most people will think that “blue” is a kind of “color” like
“ red” while “coat” is a kind of “clothing” . Thus we need a sense amplifier to enlarge
the distance if two words have no common ancestor in their first senses.

WordNet lists as the first sense the most often used meaning for a word. WordNet
ranks senses of a word by the frequency of usage of that sense. To determine if two
words are similar, we also need a threshold value. We call this value group distance
and write ∆ for it. Only if the conceptual distance between two words is less than ∆,
they should be in the same group and we say that they are “similar” ; otherwise, they
are called “different” . It is very important to choose an appropriate group distance. If
the group distance is too small, then a lot of similar words will not be correctly
grouped. If the group distance is too large, then more words will be similar to each
other than normally considered by users. The group distance also depends on the
value of the sense amplifier, which must, in particular, allow similarity between words
on second-level senses. The key point is that we must find a balance that can fairly
treat the weight of senses as well as the group distance. For C = 4 we have found that
∆ = 7 yields good results.

We can calculate the conceptual distance between each pair of keywords by using
the definition of conceptual distance. Given a list of keywords K1, K2, …, Kn, we can
put the distances into a so-called “distance matrix” . (Since the conceptual distance is
symmetric, we need only half of the matrix.)

Distance K 1 K 2 … K n
K 1 0 D12 … D1n
K 2 0 … D2n
… 0 …
K n 0

4. Keyword Categor ization

In grouping similar words together, we have to resolve the following ambiguity.
Consider the keyword query “yellow orange apple” and assume Dmax = 99, ∆ = 7, and
C = 4. The conceptual distance between “yellow” and “orange” is 6, so “yellow” and
“orange” are similar and could be in the same group. Meanwhile, the conceptual
distance between “orange” and “apple” is 3, so “orange” and “apple” are also similar
and also could be in the same group. The problem is, “orange” could be in the same
group with “yellow” and also could be in the same group with “apple” . But “yellow”
and “apple” could not be in the same group since their conceptual distance is 99 and
greater than the group distance. To solve this conflict, we employ the following rule:

Pr ior ity Grouping Rule: Words with smaller conceptual distance have a higher
priority to be grouped.

This priority grouping rule is realized in the following algorithm by sorting the
keyword pairs that are to be grouped by their conceptual distances and processing
them in order of increasing distance. We write S ⊕ X for S U { X } .

Categor ization Algor ithm:

Input: A list of keywords K = { K1, K2, …, Kn}
Output: A set of groups G = { g1, g2, …, gs }
M ethod: First, we determine the distance matrix D for K, with entries D12, D13, …, D1n,

D23, …, D(n-1)n. Let L be the sorted list that contains the (n2 - n) / 2 elements (the upper
right half of the matrix) in D.
If n = 1, there is only one element, so we get only one group, i.e., let G = { { K1} } .
If n > 1, we proceed as follows:

Let G = ∅�
For every element in L do

If Dij < ∆ then S
Consider the following cases:

 Case 1: ∀ g ∈ G, K i, K j ∉ g. Then let G = G ⊕ { K i, K j }
 Case 2: ∃ gm ∈ G, K i ∈ gm and ∀ g ∈ G, K j ∉ g.
 If ∀ Ka ∈ gm, Daj < ∆ then let G = G – { gm } ⊕�(gm ⊕�K j)
 else let G = G ⊕�{ K j}
 Case 3: Symmetric to Case 2 with K i, K j swapped.
 Case 4: ∃ gm ∈ G, K j ∈ gm and ∃ gr ∈ G, K i ∈ gr and gm � gr.
 If ∀ Ka ∈ gm, Dai < ∆ and ∀ Kb ∈ gr, Drj < ∆ then
 let G = (G – { gm, gr}) ⊕ �(gm U gr)

If Dij ≥ ∆ then
If ∀ g ∈ G, K i ∉ g then let G = G ⊕���K i }

 If ∀ g ∈ G, K j ∉ g then let G = G ⊕���K j }
Sort all the groups in G by the smallest indices of their keywords in ascending order.
Return G. �

Here is an example for case 2 when Dij < ∆. Consider the query “yellow orange apple” .
According this algorithm, “orange” and “apple” will be grouped first since they have
the smallest conceptual distance 3. Then we find that the conceptual distance between
“orange” and “yellow” is smaller than ∆. But because the conceptual distance between
“yellow” and “apple” is 99 and is greater than ∆, the word “yellow” will be placed in
another group. Cases 3 and 4 are very similar to case 2.

So far, we can categorize a list of keywords into different groups based on the
distance matrix. We also sort these groups by the smallest indices of their keywords in
ascending order since in some search engines, such as Google and Yahoo, the order of
the keywords will affect the results. We try to preserve the original order of the
keywords. Finally, the groups of keywords will be transformed into a query by
inserting or between all keywords in a group and and between all groups.

5. Evaluation

The two most common measures of retrieval effectiveness are recall and precision.
Recall measures the percentage of relevant documents in a collection that are actually
found by a retrieval system—i.e., the ratio of the number of relevant retrieved
documents over the total number of relevant documents contained in the collection.
Precision measures the percentage of retrieved documents that are judged to be
relevant to the original request—i.e., the ratio of the number of relevant retrieved
documents over the total number of retrieved documents. Normally there is a trade-off
between recall and precision.

It is very common that a user gets millions of results returned from a keyword
search. However, most users only go over the first one or two pages. Therefore,
precision in the first two pages is crucial to search engines. The ranking of results by
search engines has an influence on the precision in the first pages. In particular,
ranking pages by their popularity yields much better results than by using just a count
of number of contained keywords (cf. Google’s PageRank™ [16] techonology).

For our system we can observe that if no two keywords are similar in a query,
KeyQuery will and all the keywords, so the results will be the same as for the original
query because the boolean operator and is the default relation between keywords for
most search engines. From this it follows that in these cases the recall and precisions
of KeyQuery and the other search engines are the same since KeyQuery does not
change the original query. But if some keywords are similar to each other, KeyQuery
will insert the relation or between those keywords. The transformed query will be
different from the original query. Since we add the or operator between keywords, the
infamous trade-off between precision and recall will hit: if the overall recall is
increased, then the overall precision will be decreased as we retrieve more results than
the original ones.

If we redirect our transformed query to Google, what will happen? Let us consider
a query “A1 A2 B1” . We assume that A1 and A2 are similar words and are grouped
together by our algorithm. B1 is in a different group. The original results from Google

are ‘ ranked web pages that contain “A1 A2 B1” by their popularity. The new results
are ‘ ranked web pages that contain “A1 B1” or “A2 B1” by their popularity’ . Do we
improve the precision for the first two pages?

We explain the effect of our approach for this example in Figure 5. Assume that a
user looks only at the first five results. Table 1 holds the results of original query. We
assume that R1, R2, R3, R4 and R5 are the ranked results and 2100, 1300, 900, 500
and 300 are their PageRank values, respectively. Now we reorganize the query into
two queries: “A1 B1” and “A2 B1”. Table 2 and 3 hold envisioned results of the
queries “A1 B1”and “A2 B1” , respectively. Table 4 holds the results of the
transformed query “ (A1 or A2) and B1” that we get from our KeyQuery system. All
the results in these tables are ranked by their corresponding PageRank values. Some of
the original query results are in the results for the reorganized queries. For example,
R1 = L2 = K4. The results in table 4 are those results with highest PageRank values
chosen from table 2 and table 3. We can observe that the constraint of three keywords
prevents some of the possibly more relevant results, i.e., the results with larger
PageRank values, from appearing in the initial part of the result list for the original
query. From these tables, we can conclude that the first five results for the transformed
query are possibly more relevant than those for the original query.

Fig. 5. Abstract example

As another example, consider again the query “biography Mozart Debussy Beethoven
Liszt Tchaikovsky” (This is query 1). Since Google supports boolean operators, we
have used Google as our back end search engine, and we have checked the relevance
of the first 20 returned links. A group of students from different departments have
judged the search engine results for relevance. We have averaged all the precision
rates. We have obtained an average of 9.2 relevant links with the original query, which
means the precision is 46%. With the transformed query, the precision is 96%. As
another example, consider the query “admission engineering MIT Stanford” . With the
original query, the precision is only 26%. However, the transformed query obtained by
our system yields a precision of 98%. Other queries used in our evaluation are:

3. California Hawaii Vacation package
4. Seattle Chinese Japanese Mexican restaurant

5. Red blue Honda coupe
6. Diamond ruby emerald wedding ring
7. Smoked pork beef recipe
8. How to plant apple pear orange tree
9. Cat dog training program
10. BMW convertible sedan dealer Portland

The results are shown in Figure 6.

 Precision (%)

Query# Original Query Transformed Query Improvement

1 46 96 109

2 26 98 277

3 87 95 9

4 69 94 36

5 60 93 55

6 78 97 24

7 85 100 18

8 50 57 14

9 63 69 10

10 35 95 171

Avg. Precision (%) 60 89 72

Fig. 6. Comparison table

6. Conclusions and Future Work

We have developed the system KeyQuery that can improve the precision of search
results for keyword queries considerably. The approach taken was to use a taxonomy
to automatically insert boolean operators and and or between keywords. Since the
generated queries are in boolean form, we can apply our approach to any search
engine or database that support boolean operators.

One of the next steps is to perform a systematic study of the precision
improvements that can be achieved by our system. Moreover, the system can be
improved in several ways. One route for future work is to include adjectives and
adverbs from WordNet.

Another area of future work is to construct a taxonomy besides WordNet. The
reason is that WordNet does not include many common words, like brand names, such
as Honda. However, since manually maintaining such taxonomies is almost impossible,
we currently consider a strategy of generating and updating these taxonomies by web
queries themselves.

References:

[1] AltaVista, http://www.altavista.com.
[2] E. Agirre and G. Rigau, “Word Sense Disambiguation Using Conceptual Density” , In

Proceedings of the 16th International Conference on Computational Linguistics (Coling ‘96),
Copenhagen, Denmark, 1996.

 [3] N.J. Belkin, R.N. Oddy, and H.M. Brooks, “ASK for information retrieval: Part 1.
Background and theory” , Journal of Documentation, 38, pp. 61–71, 1982.

 [4] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz, “Analysis of a very large web
search engine query log” , SIGIR Forum, 33 (1): 6-12, 1999. Previously available as Digital
System Research Center TR 1998-014 at http: //www.research.digital.com/SRC

[5] D.D. Lewis and K. Sparck Jones, “Natural Language Processing for Information Retrieval” ,
Comm. ACM, Vol. 39, No. 1, Jan. 1996, pp. 92–101.

[6] M. Erwig. and M.M. Burnett, “Adding Apples and Oranges” , 4th Int. Symp. on Practical
Aspects of Declarative Languages, LNCS 2257, 173-191, 2002.

[7] Google, http://www.google.com.
[8] J.J. Jiang and D.W. Conrath, “Semantic Similarity Based on Corpus Statistics and Lexical

Taxonomy”, in Proceedings of ROCLING X (1997) International Conference on Research
in Computational Linguistics, Taiwan, 1997.

[9] G. Miller, (1990) “Five papers on WordNet” , Special Issue of International Journal of
Lexicography 3(4).

[10] N. Guarino, C. Masolo, and G. Vetere, “OntoSeek: Content-Based Access to the Web”,
IEEE Intelligent Systems, 14(3), 70--80, (May 1999).

[11] J.F. Pane and B.A. Myers, “Tabular and Textual Methods for Selecting Objects from a
Group”, VL 2000: IEEE International Symposium on Visual Languages. IEEE Computer
Society, September 10-13 2000, pp. 157-164. Seattle, WA.

[12] R. Prieto-Diaz, “ Implementing Faceted Classification for Software Reuse”, Comm. ACM,
Vol. 34, No. 5, May 1991, pp. 88–97.

[13] P. Resnik, “Using Information Content to Evaluate Semantic Similarity in a Taxonomy”,
Proceedings of the 14th International Joint Conference on Artificial Intelligence, Vol. 1,
448-453, Montreal, August 1995.

[14] WordNet, http://www.cogsci.princeton.edu/~wn/
[15] N. Kurtonina and M. de Rijke, “Classifying description logics” , In Proceedings DL'97,

1997.
[16] PageRank, http://www.google.com/technology/PageRank.html

