The Graph Voronoi Diagram with Applications

Martin Erwig
FernUniversitat Hagen
Praktische Informatik TV

58084 Hagen, Germany
erwig@fernuni-hagen.de

Abstract

The Voronoi diagram is a famous structure of computational geometry. We show
that there is a straightforward equivalent in graph theory which can be efficiently
computed. In particular, we give two algorithms for the computation of graph
Voronoi diagrams, prove a lower bound on the problem, and we identify cases where
the algorithms presented are optimal. The space requirement of a graph Voronoi
diagram is modest, since it needs no more space than the graph itself.

The investigation of graph Voronoi diagrams is motivated by many applications
and problems on networks that can be easily solved with their help. This includes
the computation of nearest facilities, all nearest neighbors and closest pairs, some
kind of collision free moving, and anti-centers and closest points.

1 Introduction

The Voronoi diagram is a data structure extensively investigated in the domain of com-
putational geometry [14]. Originally, it characterizes regions of proximity for a set of k
sites in the plane where distance of points is defined by their Euclidean distance. Optimal
algorithms exist to compute the Voronoi diagram in ©(klogk) time, and the Voronoi
diagram can be represented in O(k) space. Although there have been proposed many ex-
tensions and generalizations [3] we know only of Mehlhorn [13] identifying this structure
in the context of graphs. One reason for that may be that for graphs the above bounds
cannot be achieved — the most general setting within the above bounds is characterized
by so-called “nice metrics” [11, 12]. Nevertheless, it is worthwhile to investigate graph
Voronoi diagrams because they efficiently support solutions to many network problems.
We will consider these applications in Section 4.

In the following we shall drop the above mentioned time/space restrictions and consider
the graph Voronoi diagram, which encodes proximity information in graphs based on
shortest paths between nodes. Of course, in a directed graph with arbitrary (positive)
edge weights the shortest path distance is, in general, not a metric at all. We will see that
both space and running time bounds depend not only on the number of sites, but also on
the number of nodes and edges of the underlying graph. In [13] the improvement of an

algorithm for approximating minimal Steiner trees led to the discovery of this structure for
undirected graphs. We will generalize the definition to directed graphs, and also take care
of unreachable nodes, which were not considered by Mehlhorn. Concerning algorithms
for constructing graph Voronoi diagrams, Mehlhorn just used an extension of Dijstra’s
shortest path algorithm. We refine this algorithm which leads to an asymptotic better
behavior for large sets of Voronoi nodes. Moreover, we present an alternative algorithm
which is more efficient in dense graphs, and we also demonstrate how both methods can
be combined. Finally, we consider lower bounds on the problem, and characterize cases
for which the presented algorithms are optimal.

Let G = (N, F) be a directed graph with node set N and edge set £ C N x N. For
a node v, the set of its successors is denoted by suc(v), and deg*(v) = |suc(v)|. Let
n = |N| and m = |E|. The mapping ¢ : E — IR assigns real-valued, positive costs to
edges, and we use the term network for such a labeled graph. We write ¢(v, w) to denote
the cost of an edge (v, w) € E. A path P of length ¢ from node s to node t is a sequence
of nodes (v, ...,vs) with s = vy, t = vy, and (v;_1,v;) € E for 1 < ¢ < £. The cost of
a path is defined as ¢(P) = Zle ¢(vi—1,v;), and the cost of a shortest path between two
nodes v and w is defined as d(s,t) = min{c(P) | P is a path from s to t}. If there is no
path from s to t, we define d(s,t) = oc.

The following definitions are illustrated in Figure 1. In a directed graph G = (N, E),
the (inward) Voronoi diagram for a set of nodes K = {vy,...,vx} C N is a partition
{N1,...,Ni,U} of N so that

(i) for each node v € N;,d(v,v;) < d(v,v;) for all j € {1,...,k}, and
(ii) U contains all nodes v with d(v,v;) = oo for all i € {1,...,k}.

This means that the inward Voronoi diagram is based on the paths which lead toward the
Voronoi nodes. Let u = |U|. The nodes of K are called Voronoi nodes, the N; are called
Voronoi sets, and U is called the set of isolated or unreachable nodes.

Figure 1: Inward and outward Voronoi diagram for the nodes v and w

For convenience we will sometimes write Ny in place of U. For a fixed set K, we write
d(v) for min{d(v,v;) | v; € K} and d(v) for min{d(v;,v) | v; € K}. The whole partition

is denoted by Vor(G, K), or just Vor(K), if G is understood. The nearest Voronoi node
of node v is given by

_ V; lfHZE{l,,k}’UGNZ
Vi) = {J_ otherwise

The use of L expresses that V' is undefined for isolated nodes.

Note that, in general, the Voronoi diagram is not uniquely defined, for example, if
d(v,v;) = d(v,v;) for i # j, then v may be assigned to either Voronoi set N; or N;. This
is generally not a problem. If, for some reason, it should be required that the Voronoi
diagram is uniquely defined, we can add a condition like

veN; = i=min{j | d(v,v;) = d(v,v;)}

which uses an (arbitrary) ordering among the Voronoi nodes to assign nodes unambigu-
ously.

Next we define the set of Voronoi bridges Ep as the union of the sets E;; with 7,5 €
{0,...,k} and i # j, where E;; = {(v,w) € E | v € N; and w € N;}.

The outward Voronoi diagram is the dual of the inward one, that is, for each node
v € N; we have d(v;,v) < d(vj,v) for all j € {1,...,k}, and U contains all nodes v with
d(v;,v) = oo for all i € {1,...,k}. The outward Voronoi node of node v is denoted by
V(v). The terminology is chosen in analogy to the definition of medians and centers in
[10]. Unless stated otherwise we will always refer to the inward Voronoi diagram.

In the following we shall ignore the trivial cases k¥ = 1 where Vor(K) = {N — U,U}
and k = n where N = K = {v1,...,v,} and Vor(K) = {{v},...,{v.}, @}, that is, we
assume 1 < k£ < n. In Section 2 we prove some elementary properties of graph Voronoi
diagrams. After that we consider their computation in Section 3. In Section 4 we show
how to employ the graph Voronoi diagram in solving network problems. Conclusions
follow in Section 5.

2 Basic Properties

We already noted that unlike its geometric counterpart the graph Voronoi diagram may
contain some unreachable nodes. We can characterize the set U in part by the connect-
edness of G. Let Si,...,Ss be the node sets of the strongly connected components of G,
and let G' = (N, E') be the induced directed acyclic graph defined by N’ = {Si,..., Ss}
and E' = {(S;,S;) | v e Sj,weS;: (v,w) € E}.

A strong component S; is called an (inward) dead end with respect to K iff the following
two conditions hold:

(i) KNS; =@ and
(ii) S; has no successor in G’ or all successors of S; in G' are dead ends.

QOutward dead ends have the dual definition. We have:

Lemma 1 The set U of unreachable nodes of the Voronoi diagram Vor(G, K) equals the
union of all dead ends with respect to K.

Proof. Consider a node w in a strong component S;. First we show that all nodes of
dead ends are contained in U. If no Voronoi node is contained in S;, a path from w to
a Voronoi node has to lead via an edge that induces an edge of E'. Now, if S; has no
outgoing edges in G’, d(w,v;) = oo for all v; € K and thus w € U. It follows by induction
over the length of paths in G’ that w € U if S; has outgoing edges in G’ which all lead to
dead ends.

Assume on the other hand that S; is not a dead end. If K NS; # @, then there is a
path from w to a Voronoi node in S; and thus w ¢ U. If KN S; = &, then there must
be a path in G’ from S; to a component S; containing Voronoi nodes, for if this were not
the case, all paths starting from S; would end up in dead ends and by induction of the
length of such paths it would follow that S; itself is a dead end. Contradiction. So we
have shown that U only contains nodes of dead ends. This completes the proof. O

Not surprisingly, the connectedness of G is related to the existence of unreachable nodes
in the Voronoi diagram.

Corollary 1 G is strongly connected <= U = &. O

A simple representation of a graph Voronoi diagrams is an array that stores for each
node its nearest Voronoi node (or L for unreachable nodes). Concerning the storage
requirement this means:

Lemma 2 The graph Voronoi diagram can represented in O(n) space. O

Sometimes it is helpful to have the following additional information:

(i) for each node the distance d to its nearest Voronoi node,
(ii) for each Voronoi node v; the corresponding Voronoi set V;, and
(iii) for each Voronoi node v; the Voronoi bridges E;;

Clearly, (i) and (ii) require only O(n) additional space. So we may assume in the following
that this information is also available. The bridges may take up to O(m) space, and if
they are given, too, we call the corresponding Voronoi diagram eztended.

Lemma 3 The extended graph Voronoi diagram can represented in O(m + n) space. O

To store the underlying graph explicitly O(m + n) space is needed, and thus the storage
requirements for “normal” as well as for extended Voronoi diagrams lie within this bound.
So from this point of view the above space bounds are tight.

The differences between inward and outward Voronoi diagrams vanish in undirected
graphs; in particular, the respective Voronoi bridges are the same, that is, E;; = Ej; for
all 1 <14,5 < k. This is an important precondition to the application of Voronoi diagrams
in supporting the search for all nearest neighbors (see Section 4.2). Lemma 4 forms the
basis for an appropriate algorithm. We say that two Voronoi nodes v; and v; are direct
neighbors if E;; # @. A nearest neighbor of a Voronoi node v; is a Voronoi node v; # v;
with minimal d(v;, v;).

Lemma 4 In undirected graphs, a nearest neighbor of a Voronoi node is always one of
its direct neighbors.

Proof. Let v; be any nearest neighbor of v;, and assume v; is not a direct neighbor of v;.
We show that this assumption leads to a contradiction. It follows from the assumption
that the shortest path from v; to v; leads via at least two bridges because the shortest
path has to enter and to leave a direct neighborhood of v;, say N,. Assume that the two
bridges (v, w) and (z,y) lie on the shortest path from v; to v; and that v € N;, y € N,
and x € N, where vy, is a direct neighbor of v;. This situation is illustrated in Figure 2.

/ \ - \

Vi

S e

\
\
\
\
\
\
N
\

Figure 2: Illustrating the proof to Lemma 4

We know that
d(vj,v;) = d(vj,v) + c(v, w) + d(w,) + c(z,y) + d(y, v;).
Moreover,
d(vj,v;) < d(vp,x) + c(z,y) + d(y, vi)
because otherwise v, instead of v; would be the nearest neighbor of v;. Thus we get
d(vj,v) + c(v,w) + d(w, z) < d(vs, x)

which means that z is nearer to v; than to v, (because in undirected graphs we have, for
example, d(w, z) = d(z,w)). But this contradicts our assumption z € Nj. O

3 Computation of Graph Voronoi Diagrams

Let us first give a lower bound for the computation of graph Voronoi diagrams. We observe
that Vor(K) can be viewed as a mapping V from N to K U {L}. So with regard to the
output of any algorithm, the trivial lower bound is Q(n).

Now there are (k + 1)"* possibilities for V on N — K, and from an information
theoretic point of view the complexity for computing one instance is Q(log(k + 1)"7%) =
Q((n — k) logk).

Putting these observations together we obtain

Theorem 1 A lower bound for computing graph Voronoi diagrams is given by
Q(max(n, (n — k) logk)). O

Note that the lower bound is Q(nlogn) for k = O(n%*®), where a,b are constants with
b>a. If k=n—0(1) or k =0(1), the lower bound is Q(n).
Next we consider the computation of graph Voronoi diagrams.

3.1 The Parallel Dijkstra Algorithm

For the following algorithm we need the notion of the reverse graph G, which is obtained
from G by reversing the direction of all edges. Instead of constructing G, explicitly we
can interchange in the algorithm an access to successors of a node by an access to its
predecessors and vice versa. Thus we can avoid (for the present) an 2(m) lower bound
for the algorithm. Of course, this presumes an appropriate storage of the graph.

Now, a first approach is to run a variant of Dijkstra’s algorithm [1] on G, with the
Voronoi nodes as multiple sources. (Note that the outward Voronoi diagram can be
computed in much the same way, except that the search has to be performed on G instead
of G,.)

We use the heap-based implementation of Dijkstra’s algorithm, that is, we have avail-
able the operations insert(v, h), which inserts the node v into the heap h with the value
d(v), decrease(A,v,h), which decreases the value for v in h by A, min(h), which yields
the minimal element of the heap h, and deletemin(h), which removes the minimal element
from h. Using, for instance, Fibonacci heaps [8], all operations take O(1) (amortized) time,
except deletemin, which is O(logn). We assume that the heap h is arranged according to
d. First, we perform the following initialization step:

wnat:
for each v € N do
if v € K then
d(v) := 0; V(v) := v; insert(v, h)
else
d(v) ==o00;V(v) := L

We may assume without loss of generalization that the set membership can be tested in
O(1). This can be achieved by initially scanning K and marking all nodes in G appropri-
ately.

Next, the nodes are expanded in the well-known manner until the heap is empty. When
updating a node’s tentative cost d(w) where the update was “caused” by edge (v, w), we
additionally set V' (w) := V(v). Thus, node expansion becomes

expandnert:
v := deletemin(h)
mark v
scansuc(v)

with:

scansuc(v):
for each outgoing edge (v, w) with w not marked do
A = d(v) + ¢(v, w)
if d(w) = oo then
d(w) := A; V(w) := V(v); insert(w, h)
if d(w) < co and A < d(w) then
V(w) := V(v); decrease(A, w, h)

Altogether we have a variant of Dijkstra’s algorithm which we will call “Parallel Dijkstra”
since the shortest path trees starting from the Voronoi nodes grow rather simultaneously.

Parallel Dijkstra:
it
while A is not empty do
expandnext

We observe that computing the graph Voronoi diagram is asymptotically not worse than
the single source shortest path problem.

Theorem 2 The Parallel Dijkstra algorithm computes the graph Voronoi diagram in a
worst-case time of O(m + nlogn).

Proof. For correctness, suppose we add to G, a new node s and edges (s,v;) with
c(s,v;) =0, for all v; € K. Consider a run of Dijkstra’s algorithm starting with s. After
the first step (that is, expansion of s) all v; are on the heap with tentative costs of 0. So
the remaining steps are equal to those of the parallel Dijkstra algorithm, which means
that properties of Dijkstra’s algorithm also hold for the parallel version. On termination,
we obtain a shortest path tree in which each node’s distance from s is equal to its distance
from that v; that lies on the shortest path from s. Therefore each node in a shortest path
subtree rooted at a v; € K is not further from v; than from any other v; € K —{v;}. Since
V is appropriately updated whenever a node’s shortest path tree membership may change,
we conclude that for all reachable nodes the Voronoi diagram is computed correctly. In
addition, the initialization step assures that V is set to L for unreachable nodes.
Concerning running time, we observe that the initialization step takes O(n) steps.
The above run of Dijkstra’s algorithm, and by analogy the parallel version, too, takes
O(m + nlogn) steps (if it is implemented using Fibonacci heaps). O

We can improve the algorithm if we take into account the following observation: the
Voronoi nodes are always the first £ nodes to be expanded. That is, we need not necessarily
insert them into the heap. This is reflected in the following modified initialization step:

mat’:
for each v € N do

if v € K then
d(v) :=0;V(v) := v; mark v
else

d(v) :=o00;V(v) := L
for each v € K do
scansuc(v)

Since the Voronoi nodes have to be marked to prevent them from being inserted into the
heap, scansuc must follow in a second loop. For this version of the algorithm we obtain
a slightly better bound because the number of deletemin operations reduces to n — k and
the initialization still takes O(n) steps.

Corollary 2 The parallel Dijkstra algorithm computes the graph Voronoi diagram in a
worst-case time of O(m +n + (n — k) log(n — k)). O

Of course, this is an improvement only for sufficiently large £, and it affects the overall
running time merely in sparse graphs.

Assume m = O(n). Recall the lower bound from above, which is Q(nlogn) for k =
O(n®*), where a and b are constants with b > a. If k = ©(n%*®), the Parallel Dijkstra
algorithm runs in O(nlogn), which is optimal. If £ =n — O(1), the lower bound is £2(n)
which, too, is actually achieved by Parallel Dijkstra. So we have

Theorem 3 The Parallel Dijkstra algorithm is asymptotically optimal for m = O(n) and
k = ©(n%*), where a, b are constants and b > a. O

3.2 A Direct Method

Concerning dense graphs, it is indeed possible to avoid the Q(m) lower bound of the
algorithm for large values of k. Instead of searching in G, starting with the Voronoi nodes
we can repeatedly build shortest path trees (in G) for nodes v € N — K. Using Dijkstra’s
algorithm we stop when a Voronoi node v; is taken from the heap. Then we can set
V(v) = v; (and V(w) = v; for all w on the shortest path from v to v;). These nodes are
marked permanently. For all other nodes v that were expanded in the current run, we
unmark v and set d(v) = co. We call this the direct method. Let m denote the number of
edges (v, w) with v € N — K. We have

Theorem 4 The direct method computes the graph Voronoi diagram in a worst-case
time of O(n + (n — k)Ym + (n — k)*log(n — k)).

Proof. In an O(n) initialization step we have to mark all nodes of K in G. Then,
employing Dijkstra’s algorithm we consider only edges (v, w) with v € N — K because we
can stop after having taken a Voronoi node from the heap. We have to run the algorithm
repeatedly each time starting with a node that was not marked permanently in any earlier

run. Since in each run at least one node gets marked the algorithm is repeated at most
n — k times expanding no more than n — k£ nodes each time. O

The direct method is faster than Parallel Dijkstra at least if
(n—kym+ (n—k)?*logln—k) < m+ (n—k)log(n—k).

This can only be the case for n — k = o(n/v/logn) because otherwise (n — k)?log(n — k)
would be Q(n?). Soif m =n® for 1 <a <2, and (n — k) =n’, for b < 1, we get

nb(m+ nbblogn) < m+n’blogn
m+nlblogn < n%b+blogn
m < n%%—(n®—1)blogn.

Thus we can combine both approaches in the following way: count 7 by visiting nodes
of N — K until m > n%% — (n® — 1)blogn or all nodes of N — K have been processed. In
the latter case perform the direct method, otherwise use Parallel Dijkstra. We collect our
results in

Corollary 3 The graph Voronoi diagram can be computed in a worst-case time of O(n+
min(m + (n — k) log(n — k), (n — k)m + (n — k)*log(n — k))). O

3.3 Updating Voronoi Diagrams

We can distinguish two kinds of updates that require a rearrangement of the Voronoi
diagram:

(i) altering the graph, that is, adding/dropping nodes and edges, and changing ¢, or
(ii) altering the set of Voronoi nodes

The first case reduces to the problem of updating shortest path trees according to changes
of the underlying graph. This has already been investigated elsewhere, see discussion and
references in [5] on page 284. So here we only consider the latter case.

Adding a new Voronoi node v to K can be done as follows. We insert the new node
into a heap (with cost 0), and then we repeatedly expand nodes using Dijkstra’s algorithm
(in G, for the inward diagram) where we insert only those successor nodes into the heap
which get assigned a smaller distance than in the old Voronoi diagram. This means that
these nodes are nearer to vi;; than to their “old” Voronoi nodes.

The running time of one such update is O (my1+ng41 log ng1) with ng; = | Ngyq| and
my1 denoting the number of edges (v, w) with v € Ny, ;. Unfortunately, this can become
as much effort as constructing the whole diagram from scratch, that is, ng.1 = O(n) and
myy1 = O(m).

To remove a Voronoi node v; from K we first have to address the fact that nodes of the
Voronoi set N; may now become unreachable. Therefore, all d- and V-values for nodes of
Nj are reset to oo and L, respectively. After that we scan all Voronoi bridges of v; putting
the corresponding nodes of NN; into a heap. Finally, repeated node expansion (in G, for
the inward diagram) splits N; among the bordering Voronoi sets (and U).

Drop Voronoi Node(v;):
for each v € N; do
d(v) :=o00;V(v) :== L
for each (w,v) € E;; do
A :=d(v) + c¢(w,v)
if d(w) = oo then
d(w) := A; V(w) := V(v); insert(w, h)
if d(w) < oo and A < d(w) then
V(w) := V(v); decrease(A, w, h)
Set all Eﬂ to &
while A is not empty do
expandnert

Note carefully that the for-loops refer to G whereas the operation erpandnezrt operates
on G,.

Here we made use of the extended Voronoi diagram to obtain the Voronoi bridges. If
it is not available, we can reconstruct all relevant bridges by a run of Dijkstra’s algorithm
starting with v; (similar to the one performed when adding Voronoi nodes) to get the
border vertices of the Voronoi region N;. As with adding Voronoi nodes, the running time
may become O(m + nlogn) in the worst case.

Note that the sets of bridges E;; are no longer relevant after node deletion because v;
is not a Voronoi node anymore. The other bridges of adjacent Voronoi regions are deleted
just after the second for-loop.

Concerning the outward diagram, the second loop must be simply changed to:

for each (v,w) € Ej;; do
A :=d(v) + c(v, w)

Moreover, we have to use d instead of d in all other parts of the algorithm, and ezpandnext
must operate on G.

4 Applications

The idea of the graph Voronoi data structure came up during the investigation of queries
typically found in databases storing network information [7]. We shall first consider the
counterparts of some standard problems in computational geometry that can be solved
with the help of Voronoi diagrams, namely, nearest neighbor, all nearest neighbors, closest
pair, and collision-free moving. In addition, we consider anti-centers, a graph-theoretic
concept naturally arising from graph Voronoi diagrams.

To illustrate the following applications we will assume that G models a transportation
network and that K is a set of nodes where facilities, such as, fire stations, hospitals, post
offices, or shopping malls, are located.

10

4.1 Nearest Facilities

The nearest facility of a query point v is that Voronoi node to which the shortest path
from v has minimal cost. The following information may be of interest:

(i) Which Voronoi node v; is nearest to v 7
(ii) How far is v; from v ?
(iii) What is the shortest path from v to v; ?

As an example suppose an accident happens at node v. Then we seek the shortest path
to the nearest hospital.

Given a Voronoi diagram Vor(G, K), tasks (i) and (ii) can be performed in O(1) by
simply looking up the values of V(v) and d(v), respectively. If the shortest path from v
to V(v) is of length ¢, reconstructing that path can be performed node by node: suppose
that we have already found a shortest path from v to . Then the next node on a shortest
path to V' (v) is any successor w of x with ¢(x, w)+d(w) = d(z). This takes Zf;é deg” (v;)
steps, and in the worst case this may require O(nf) = O(n?) time, but note that in any
case this procedure is faster than, for example, Dijkstra’s algorithm. In particular, for
sparse graphs the bound is expected to be O(¥) since there are only constantly many
successors on the average. Because spatial networks are mainly sparse, this means that
in our example the shortest path can be found in linear time. Moreover, we can achieve
O(¥) searching time in arbitrary networksif we store in addition to the Voronoi diagram
those edges belonging to the shortest path forests that have been built during the Voronoi
search. This needs only O(n) additional space, and the shortest path can then easily be
obtained by tracing back these edges in the appropriate shortest path tree.

Without a graph Voronoi diagram all three tasks require the computation of the short-
est path from v to V(v) which takes O(m+nlogn) when using Dijkstra’s algorithm. This
shows that on the one hand (pre-) computing the Voronoi diagram is asymptotically not
worse than computing nearest facilities directly and that on the other hand it pays off
especially in cases when multiple nearest facility queries are posed (for the same set K,
of course).

Related to nearest facilities is the problem of “constrained routing”. In the simplest
case, a path is to be found from s to ¢ that passes through at least one node with a
specific property (or equivalently, through any node from a specific subset of nodes) and
is otherwise as short as possible. Of course, a shortest path from s to ¢ does not have the
desired property in general. In some cases the graph Voronoi diagram can help finding
a solution: assume we have computed both (inward and outward) Voronoi diagrams for
the subset of nodes to be visited. Now if V' (s) = V(t), the optimal constrained route is
obtained by concatenating the shortest paths from s to V(s) and from V'(s) to ¢ which
can be reconstructed in linear time. This is certainly only of use when s and ¢ lie in the
“neighborhood” of the same Voronoi node which is probably to occur whenever facilities
are few and s and t are not located to far from one another.

4.2 All Nearest Neighbors and Closest Pair

A first approach to obtain all pairs of nearest Voronoi nodes is to perform Dijkstra’s
algorithm from each Voronoi node stopping when another Voronoi node is expanded.

11

Clearly, this will take O(km + knlogn) steps in the worst-case. In general, there seems
to be an improvement employing the graph Voronoi diagram only for undirected graphs
because in that case the inward and outward Voronoi diagrams coincide, which means
that the Voronoi bridges are the same.

Thus, in undirected graphs we can scan all Voronoi bridges maintaining two arrays of
length k, C' and Cy, which record for each Voronoi node the currently closest neighbor
and the cost of the shortest path to it as follows.

All Nearest Neighbors:
for each i € {1,...,k} do
C(i) = L;Cy(i) = o0
for each (v,w) € Ep do
D :=d(v) + c(v,w) + d(w)
if D < Cy(V(v)) then C(V(v)) :==V(w);Cy(V(v)) :==D
if D < Cy(V(w)) then C(V(w)) := V(v); Cqy(V(w)) := D

This method presumes the existence of a bridge between any two nearest Voronoi nodes.
Fortunately, this assumption is justified by Lemma 4 given in Section 2.

The initialization takes O(k) steps, and the scan of the Voronoi bridges takes O(|Eg|)
step. Altogether, all nearest neighbor can be found in O(k + |Eg|) = O(k + m) steps.
In sparse graphs this becomes O(k + n), and for regularly shaped graphs (that is, sparse
spatial graphs in whose embeddings the square of the diameter equals the space occupied,
see [6]) it is expected to be O(k + /n).

The closest pair of Voronoi nodes can be either obtained as the minimum of the above
all nearest neighbors arrays, or it can be computed by a modified version of Parallel
Dijkstra where we allow each non-Voronoi node to be expanded more than once, but at
most k-times (via paths from different Voronoi nodes). We stop when the first Voronoi
node is expanded. This node together with that Voronoi at which the shortest path tree
is rooted is the closest pair. Note that this algorithm will work for directed graphs, too.

For an application suppose the Voronoi nodes are shopping malls. Then the closest
pair indicates those two malls with expected maximum competition whereas the list of all
nearest neighbors gives for each mall the greatest competitor.

4.3 Collision-Free Moving

In the Euclidean plane the edges of the Voronoi diagram for a set of obstacle sites define
locally maximal distances to the obstacles. Moving along the edges is a good policy to
avoid collisions [2]. These edges correspond to bridges in the graph model, and in general,
there are no edges (of the graph) between bridges (that is, endpoints of bridges). Hence,
keeping always a maximum distance from the sites makes no sense because we cannot
always move directly from one bridge to another. Indeed from an application point of
view, the task of keeping always a predefined minimum/maximum distance seems to be
more appropriate.

Imagine that K is a set of water purification units and we are planning a transport of
polluting goods. To avoid a pollution in case of an accident we have to keep a minimum
distance of D from each of the sites. This is supported by the Voronoi diagram in an easy

12

way by deleting all nodes from the graph with d(v) < D and then searching the shortest
path in the modified graph.! If only few queries are posed and the paths to be found
are small with respect to n, we could instead consider during the search only nodes with
d(v) > D.

As an example for not exceeding a maximum distance consider the transport of a
patient from one hospital to another. The distance to the currently nearest hospital may
never be more than D so that in case of emergency we can quickly reach an operating
theater.

4.4 Anti-Centers and Furthest Points

Centers are a well-known concept of graph theory [4]. The (inward) center of a graph is
defined as the set of nodes with minimum eccentricity where the (inward) eccentricity of
a node v is defined as max{d(w,v) | w € N} [10]. The inverse center [9], or periphery
[4], is defined as the set of nodes with maximum eccentricity.

In addition, we define the following kind of centers. In a directed graph G = (N, E),
the inward (outward) anti-center with respect to K is the set of nodes v € N with
maximum d(v) (d(v)). This means that anti-centers are nodes which are farthest away
from K.

Finding the anti-center has the following applications: Suppose that K is the set of
nodes at which police stations are located. Since a clever bank robber wants to avoid the
police she seeks for her robbery that node (at which, of course, a bank is located) which is
farthest away from K. There is another, less criminal, example where the Voronoi nodes
are shopping malls: a chain of stores plans to build a new shopping mall, and in order to
minimize competition, a node in the graph is sought which is located as far as possible
from the set K of already existing shopping malls.

Given a Voronoi diagram, the anti-center can be obtained in time O(n) by looking
up all d/d-values. If the Voronoi diagram is not given, the anti-center can be computed
by running the Parallel Dijkstra algorithm and pushing all expanded nodes onto a stack.
After the algorithm has finished pop off all nodes from the stack that have the same
d-value as the last node taken from the heap. The anti-center is just the set of these
nodes.

The anti-center must not be confused with the well-known furthest point query, which
asks for the Voronoi node which is farthest from a query node v. This may be obtained by
executing Dijkstra’s algorithm starting with v and stopping when the last Voronoi node
is taken from the heap. The anti-center rather corresponds to the largest empty circle
query [15].

5 Conclusions

We have defined the Voronoi diagram for graphs, and we have shown that (i) it can be
efficiently computed, (ii) it needs asymptotically no more space than the graph itself, and

LThis is correct only if the polluting goods move along the network to the purification unit (for instance,
in a river or canal network).

13

(iii) it can be used for quite many interesting applications. We feel that the significance
and simplicity of this concept stems from the fact that the Voronoi diagram is a natural
extension of the shortest path problem (multiple sources plus concurrent search) and that
proximity is a central concept in many graph applications.

From another point of view the present work generalizes Euclidean geometry to what
could be called “graph geometry”. Beyond Voronoi diagrams it would be interesting to
investigate other concepts and algorithms from computational geometry in the context of
graphs (planar graphs may be an interesting intermediate stage). For instance, an obvious
definition for the convex hull with respect to a set of nodes K is the set of nodes that are
contained in any shortest path between any two nodes of K. There are some operations
that are not interesting at all, for example, region intersection reduces to the intersection
of node sets. But there are also some less obvious relationships, for instance, a polyline
corresponds to a constrained shortest path, or a visibility region corresponds to a set of
nodes to which the shortest path leads via a specified set of nodes.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms. Addison-Wesley
(1983).

[2] H. Alt and C. K. Yap. Algorithmic Aspects of Motion Planning: A Tutorial (Part 2). Algorithms
Reviews 1 (1990) 61-77.

[3] F. Aurenhammer. Voronoi Diagrams — A Survey of a Fundamental Geometric Data Structure. ACM
Computing Surveys 23 (1991) 345-405.

[4] F. Buckley and F. Harary. Distance in Graphs. Addison-Wesley (1989).

[5] N. Deo and C. Pang. Shortest-Path Algorithms: Taxonomy and Annotation. Networks 14 (1984)
275-323.

[6] M. Erwig. Encoding Shortest Paths in Spatial Networks. Networks 26 (1995) 291-303.

[7] M. Erwig and R. H. Giiting. Explicit Graphs in a Functional Model for Spatial Databases. IEEE
Transactions on Knowledge and Data Engineering 5 (6) (1994) 787-804.

[8] M. L. Fredman and R. E. Tarjan. Fibonacci Heaps and Their Uses in Improved Network Optimiza-
tion Algorithms. Journal of the ACM 34 (1987) 596—615.

[9] S. L. Hakimi. Optimum Distribution of Switching Centers in a Communication Network and Some
Related Graph Theoretic Problems. Operations Research 13 (1965) 462-475.

[10] G. Y. Handler and P. B. Mirchandani. Location on Networks: Theory and Algorithms. MIT Press
(1979).

[11] R. Klein. Concrete and Abstract Voronoi Diagrams. LNCS 400. Springer-Verlag (1989).

[12] R. Klein and D. Wood. Voronoi Diagrams Based on General Metrics in the Plane. Symp. on
Theoretical Aspects of Computer Science (1988) 281-291.

[13] K. Mehlhorn. A Faster Approximation Algorithm for the Steiner Problem in Graphs. Information
Processing Letters 27 (1988) 125-128.

[14] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag (1985).

[15] M. I. Shamos and D. Hoey. Closest Point Problems. IEEE Symp. on Foundations of Computer
Science (1975) 151-162.

14

