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Abstract

We encourage a specific view of graph algorithms, which can be paraphrased by “iter-
ate over the graph elements in a specific order and perform computations in each step”.
Data structures will be used to define the processing order, and we will introduce re-
cursive mapping/array definitions as a vehicle for specifying the desired computations.
Being concerned with the problem of implementing graph algorithms, we outline the
extension of a functional programming language by graph types and operations. In par-
ticular, we explicate an exploration operator that essentially embodies the proposed view
of algorithms. Fortunately, the resulting specifications of algorithms, in addition to being
compact and declarative, are expected to have an almost as efficient implementation as
their imperative counterparts.

1 Introduction

Looking at graph algorithms, we observe that many of them have a very similar structure,
namely iterating over nodes or edges and thereby performing computations. Since graph
algorithms are ubiquitous in almost all areas of computer science it is quite natural to ask
for a programming language which takes advantage of this structure by, for instance, offering
particular language features.

To our knowledge, only few approaches to specialized graph programming languages ex-
ist, however: GRAMAS [12] essentially provides an ALGOL-like language, and GRAPL [10]
is primarily designed for use with dynamic algorithms, that is, algorithms that change the
underlying graph. A survey of early approaches can be found in [11]. Most of these languages
more or less provide means to let programs look very similar to the graph algorithms they im-
plement. Notations for expressing algorithms in a rather traditional way are also introduced
in many books on graph algorithms, for example, [16, 5]. Even though SETL [13] introduces
finite sets and maps as abstractions, it is intended to be a prototyping language for general
purpose algorithms and large software systems and pays no special attention to graph algo-
rithms at all. None of these languages really advances by presenting high level operations
utilizing the similar structure claimed above.

From the language designer’s point of view, we search for general schemes from which
particular algorithms can be instantiated by “filling in the slots”. One well-known example for
such a scheme are closed semirings [9] which can be used to compute, for instance, all-pairs
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shortest paths or transitive closures. Actually, this is offered by G* [4], a database query
language restricted to the search and aggregation of paths by pattern matching. Another
scheme will be identified in this paper, which can be used to express a large class of algorithms,
including depth- and breadth-first search, the minimum spanning tree algorithms of Prim and
Kruskal, and Dijkstra’s shortest path algorithm.

Attacking graph algorithms with functional programming is somewhat extraordinary
(mostly for reasons of efficiency), but recently some new, encouraging aspects have been
revealed [8, 1]. There, however, motivation comes from peculiarities of functional program-
ming, and though the applications to functional graph algorithms are certainly nice, they are
rather sporadic and limited.

The purpose of this paper is, from a graph-theoretic point of view, to propose a specific
view of a reasonably large class of algorithms (Section 2) and to derive a very powerful and
descriptive operation from it, called graph exploration (Section 3). Then in Section 4 we
describe the layout of a functional programming language which embodies exploration and
several other features making it well-suited to succinctly expressing graph algorithms. Our
contribution to functional programming is to provide a more conceptual view of arrays by
mappings and to introduce a new paradigm for array definitions, namely iteration approzima-
tion of recursive array definitions. Summarizing, we shall show that functional programming
is definitely appropriate for efficient implementations of graph algorithms. A short discussion
follows in Section 5.

2 Main Idea
We claim that many basic graph algorithms can be characterized by the following scheme:

Visit all or some elements of the graph (that is, nodes and edges)
in a specific order and perform computations meanwhile.

There are, of course, a lot of graph algorithms that are not directly captured by that
view, but we shall demonstrate that when being combined with a functional programming
environment, it covers quite many interesting applications.

Next we work out the parameters of the above scheme to arrive at a concrete language
construct: Given (one or more) start elements in the graph we basically need a description
of (i) how to get to other elements, (ii) the order in which the elements are to be processed,
and (iii) the computations to be performed.

Parameter (i) is called expansion. An expansion is given by an expression of the language
and denotes, in general, a sequence of graph elements.

The processing order of graph elements is crucial to many algorithms and in fact causes
some problems that do not arise when, for example, processing lists or trees: In working on a
list /tree, the order of accessing the yet unvisited elements can be described by a rule involving
the current element and the remaining list /subtrees (see, for example, the definitions of map
and postorder in Section 4.1.3). However, being faced with the task of processing nodes in
a graph we observe that nodes may have a varying number of, say, successors, and since an
algorithm fitting the above scheme works on a single node at a time we have to provide a kind
of buffer for nodes yielded by expansion. Now, such a buffer can be realized by a data struc-
ture, and if we additionally devise specific operations for inserting and retrieving/removing
elements from the structure, we obtain a determinate processing order. Data structures to be
used in the following are special kinds of stacks, queues, and heaps.



A computalion yields a value which is often associated with the graph element currently
being processed. These values are available in following steps. The output of an algorithm
may be some or all of the computed values as well as the processing order of nodes and edges.

When iterating over a graph, we obtain (implicitly or explicitly) a sequence of traversed
edges. Mostly, an additional constraint is put on these edges, namely that these edges have to
form a tree. With such a constraint the corresponding iteration will be called tree exploration
in contrast to the more general case of graph ezploration.

3 Exploration Paradigm and Data Structures

Explorations will be defined by two functions explore and exploreG for which we specify
the slots carried out above, that is, data structure, expansion, and computation. Note that
explore denotes tree exploration whereas exploreG stands for graph exploration. In general, an
exploration produces a set of (local) definitions which can be used in subsequent calculations.

The data structures have associated two designated operations get and put for taking
a single element from and inserting multiple elements into the data structure, respectively.
A get operation obtains a so-called current graph element and removes it from the data
structure. The expansion expression is applied to the current graph element and yields a
sequence which is inserted into the data structure by the put operation. Normally, these
operations are executed implicitly by the exploration mechanism, but for the purpose of
initialization we may use the put operation explicitly. There we also may apply it to a single
element (instead of a sequence). We overload the cons operator for lists (:) to denote all put
operations. Ambiguities can always be resolved from the context.

Let us consider a small example. In breadth-first search, the successors of a node are to
be visited after its siblings. This behaviour can be realized by using a queue to which the
successors of a visited node are appended and from which the front node is taken to be visited
next.

bfs v — explore v:Queue; suc

The details of the syntax will be explained later. Here we assume that explore gets each
node at most once. We call this single-get behaviour, which can be imagined as follows: The
gel operation returns an element only if it was not returned by a previous call of get; the
get-call is repeated until a “new” element is found or the data structure is empty. Thus in
the above example, each node! is returned at most once from the front of the queue though
it may be appended many times. v:Queue means that the argument v is initially appended
to the queue used during the exploration. The expansion is described by the function suc
which yields for the current graph element the sequence of its successors. Note that in this
example computations are not needed; nevertheless, the definition of bfs is not for nothing
since exploration gives always some implicit results. For example, we can find a shortest path
(measured in number of edges) from a node v to a node w by

(v..w).tree.bfs v

The function tree denotes the implicitly computed tree of traversed edges, and the angle
brackets select a specific path from a tree (see Section 4.3.1).

!The type can be inferred from the fact that suc yields a sequence of nodes. We do not go into further
details of type inference here.



Table 1: Behavioural aspects of data structures and operators

get/put
single-put multiple-put
multiple-get
single-get single-get | via each edge < 1 | not-edge-limited || DS-behaviour
bfs, Prim, Kruskal | dfs, Dijkstra | subgraph, Moore Algorithm
sp-reconstruction
Tree/Forest Graph Multi-Graph Search Structure
explore exploreG exploreM Operator

Like computations, expansion expressions are sometimes not needed either. If the order of
accessing graph elements is known prior to the exploration, a corresponding sequence can be
passed directly to the exploration. Consider, for instance, Kruskal’s algorithm for computing
minimum spanning trees:

kruskal = explore (sort cost E):Queue

The expression in parentheses computes a sequence of edges which is ordered according to
cost, a function assumed to be defined on edges. This sequence is appended to a queue. The
actual exploration simply takes the edges from the queue and performs no append at all.
Apparently, in such cases the data structure could as well have been omitted.

For the two examples from above single-get behaviour and tree exploration was appro-
priate. Yet, nodes and edges may be even restricted to be put at most once into the data
structure (which is a stronger restriction and, of course, implies single-get behaviour). There
are, however, also cases, for instance, Dijkstra’s algorithm, where single-get behaviour is re-
quired and where at the same time nodes or edges must be allowed to be put multiple times
into the data structure. Both single-get derivatives are covered by the explore operator. Ob-
viously, this is not sufficient for all imaginable kinds of explorations: For example, when
exploration has to compute a subgraph, a graph structure must be built instead of a tree,
and accordingly, nodes may be got more than once from the data structure (in the sense
that a node may be reached via each incident edge at most once). This behaviour is supplied
by the exploreG operator. There are even more general cases conceivable where a node, for
example, may be reached via each edge multiple times. For that we can devise an exploreM
operator, but then other behavioural aspects of data structures/explorations have to be taken
into account, too, which we will not do in this paper. A summary of the preceding discussion
is sketched in Table 1.

Finally, note that we deal with both directed and undirected graphs, and we shall assume
in all examples that the underlying graph is alternatively directed or undirected, whichever
is appropriate in the context.



4 GEL — A Functional Language with Graph Explorations

Functional languages are widely accepted, since they allow for a declarative style of program-
ming. Hudak gives an overview of the main concepts [7], and Bird and Wadler provide a
thorough introduction to functional programming in the language Miranda? [2].

In this section we show how to integrate the idea of exploration into a functional pro-
gramming language. Our description falls into three divisions: Section 4.1 outlines the basic
concepts of the Graph Exploration Language (GEL). This includes list comprehensions and
mapping definitions. The exploration operators are explicated in Section 4.2. Along with
that exposition, several examples for specifications of graph algorithms will be presented. In
Section 4.3, we describe how to extract and how to combine information computed by the
explorations.

4.1 Basic Language Elements

Our language is designed in the style of Miranda [17, 2]: GEL is a strongly-typed, higher-
order functional programming language with lazy semantics. Due to limitation of space we
just describe those features needed subsequently: We explain how to define and how to use
functions, and we describe the concept of list comprehensions. Actually, the exploration op-
erator will be defined in a fashion similar to list comprehensions. In addition, some graph
relevant types and primitive functions are outlined, and the concept of mappings, that is,
extensionally defined functions, is introduced.

4.1.1 Expressions and Functions

Expressions are used to denote values. An expression is either a function or a function ap-
plication. In this paper functions are defined exclusively by simple pattern matching, that is,

the different cases of the definition are listed one below another, as in®
fib0=1
fibl=1

fib n = fib (n-2) + fib (n-1)

Local definitions may be introduced by means of a where expression; an example will be given
below. In general, function application is denoted by juxtaposition; it is left associative and
has highest precedence (after composition). An exception to that rule are certain binary op-
erators, such as + or *, which are written infix. Note that functions may be applied partially.
Since functions are first-class citizens nested function applications have to be grouped appro-
priately by parentheses to indicate the proper arguments of functions. Annoying parentheses
explosion, however, can be circumvented by the (associative) composition operator which is
defined as follows:

fgx="1(gx)

(Note that we define composition to have higher precedence than function application.) Thus
a cascade of function calls can be rewritten in a convenient way, for example,

reverse (postorder (tree (dfs N))) = reverse.postorder.tree.dfs N

?Miranda is a trademark of Research Software Ltd.

*Examples for patterns involving type constructors are presented below.



4.1.2 Graph Types and Operations

In addition to atomic types like numbers or characters we need special types for graph objects,
that is, nodes, edges, paths, trees, and graphs. If not specified otherwise, all expressions
working on graphs are performed on a “current” graph G with node set N and edge set E.
An edge is represented by a pair of nodes, and a path is equivalent to a sequence of edges.
For convenience we shall assume that a forest is represented by a tree consisting of a dummy
root and the trees of the forest as subtrees and can thus be treated like a tree. Note that
functions defined on graphs may as well be applied to trees, and functions defined on trees
are inherited by paths.

The functions suc, pred, out, and in yield for a node the successor nodes, predecessor
nodes, outgoing edges, and incoming edges, respectively. Applied to an edge e = (a, b) they
return the suc/out values of b, respectively the pred/in values of a. Note that in undirected
graphs suc coincides with pred and in coincides with out.

reverse is a general purpose operation which reverses all edges in a graph (and by inheri-
tance in a tree and a path, too). Applied to a path, reverse also reverses the order of edges in
the corresponding sequence representation. Applied to a sequence, reverse reverses the order
of the elements.

We assume that graphs together with the functions reflecting their structure (such as
suc) are predefined, that is, we do not consider so-called dynamic algorithms where graphs
are changed by operations during their run for this contradicts the functional programming
style and would destroy referential transparency. Nevertheless, as we will see, it is possible
to compute derived graphs which can be used in further calculations.

4.1.3 Constructed Types and Pattern Matching

When we introduced function definitions we already made use of a very simple form of pattern
matching. For the definition of functions on constructed types, such as lists or trees, it is very
convenient to use pattern matching for exploiting the knowledge about the structure of the
arguments. For lists, we have the patterns [ | (empty list) and a:b (list consisting of head a
and tail, that is, rest sequence, b). Now the function map, which applies a function to each
element of a sequence and returns the sequence of results, can succinctly be defined as follows:

map f[] =[]
map f (azb) =fa:mapfb

For trees, we have the patterns e (empty tree) and rast (tree with root r and a sequence of
subtrees st). A traversal of a tree, returning a list of its nodes in postorder, can be defined by

postorder ¢ =[]
postorder (rast) = foldr ++ [r] (map postorder st)

Note that ++ denotes list concatenation and that [r] is the sequence consisting of the single
element r. The expression foldr op unit s reduces the sequence s in a right associative way by
repeated application of the binary function op whith unit as a start element, for example, foldr
op unit [a, b, c] = a op (b op (c op unit)). So in the above definition the postorder sequences of
nodes obtained from the subtrees are all concatenated, and the root of the tree is appended
as the last element.



4.1.4 Sequences and List Comprehensions

A simple way to define a sequence of values is to specify a subrange or to use an identifier
to which a sequence is bound (for example, N denotes the sequence of nodes of the current
graph). Furthermore, we make use of list comprehensions [17] to define sequences. Consider
the set of odd squares defined by {n% | n € {1,...,100} A n is odd} using common notation
of set theory. This can be expressed by a list comprehension as:

[n*n | n < [1..100]; odd n]

The first expression describes the results of the sequence, and the phrases following the bar
are called qualifiers. In the example, the first qualifier is a generator producing values which
are subject to restriction by the second qualifier, which is a filter.

4.1.5 Mappings

Mappings are functions that are extensionally defined by a sequence of value-pairs.* To keep
referential transparency mappings have to be defined in one place and do not change over
time, that is, like functions they always denote the same value. Several means to define
mappings in a functional setting are discussed by Steele and Hillis [15], Wadler [18], and
Hudak [6]. A new way is, of course, disclosed by exploration. This will be demonstrated soon.
Basically, in our framework a mapping can be defined by several equations which may include
syntactically sugared comprehensions, as in

mpf0=1
fn=n*|n < [1.100]

In case of multiple definitions for one and the same argument the last one is taken as the
definition. We define mapping definitions to be strict, that is, the defining expressions are
evaluated instantly so that the mapping’s bindings are immediately available afterwards.

Note that mappings must be defined on atomic types. If generators are given by a name,
say, A’ or B, and the body which defines mapping values is a constant or the identity function,
we allow an abbreviated form of definition:

mpfa=1|a<A
fb=b|b—B

can be written as

mpfA=1
fB=B

An essential part of functional programming is the possibility to define functions by recursive
definitions. The semantics is defined either by reduction rules or by the least fixed point which
can be approximated by iteratively applying the recursive definition to an already obtained
approximation. Now we propose recursive definitions also for mappings where the semantics
of such a recursive definition is defined to be an operator g which maps sequences of named
values (that is, environments) to mappings. For an example consider the following definition:

*Mappings essentially embody much the same concept as arrays — but on a more conceptual level. For
example, programming gets easier with mappings for they can be applied directly like functions.
®We use capital letters to indicate sequence-valued variables.



[i — getvalues]
withhi =hi+1
hl=0

The first line is a generator (as used in usual list comprehension) defining a sequence of
values each of which is named i (getvalues is assumed to be defined elsewhere). We call a
list comprehension consisting only of qualifiers an enwvironment comprehension. The second
line tells to increase h by one at each occurrence of i, and the third line defines h to yield
0 when being undefined (this is nothing but an initialization expression). The meaning of
the specification is the mapping h obtained by iteratively applying the definition to the
environment consisting of each of the named values augmented by the current approximation
of h. So h counts the occurrences of values in a sequence, and the definition is just another
solution to the well-known histogram problem [15, 18, 7, 1].

As a more sophisticated example we show how to express closed semiring applications
with recursive mapping definitions. According to Mehlhorn [9], a closed semiring is a set
with {0,1} € S and &,® : S x § — 5 where (9,@,0) is a commutative monoid, (5,®,1)is a
monoid, ® distributes over @, 0 is a null-element w.r.t. @, infinite sums exist, commutativity
holds for infinite sums, and ® distributes over infinite sums. Moreover, * denotes the closure
operation which is defined by Vs € § : s* = 3,5, s'. Given a graph G = (N,FE) and a
labelling of edges ¢ : E — S, Kleene’s algorithm for solving general path problems can be
realized by applying appropriate mapping definitions to a sequence of triples built using an
environment comprehension:

[k — [0..n]; i< N;j«— N] with
a kij=if k=0 then (if (i, j) € E then c (i, j) else 0)
else if (i=j and j=k) thena kij ¢ 1
else a (k-1)ij @ (a (k-1) ik ® (a (k-1) k k)* @ a (k-1) k j)
mpdij=a0ij|i—N;j— N

For the above definition to work we must assume n = |N| and that integers can be treated
like nodes. Then it is clear that the all pairs shortest path problem can be solved by choosing
0=o00,1=0,% = min, and ® = + leaving the costs in mapping d. Transitive closure is
treated accordingly. Of course, this solution is not very space efficient (needing O(n?®) space),
but we just wanted to give another example for recursive mapping definitions. Anyhow, in
the spirit of this paper it would be more appropriate to create an own operator for semiring
applications.

4.2 Specifying Graph Algorithms by Explorations

We have already seen that the exploration mechanism relies on appropriate data structures
with get and put operations. Here we consider the data structures stack, queue, and heap
with the respective (get, put) operations (top, push), (front, append), and (min, insert). Note
that top, front, and min perform an implicit pop, dequeue, and deletemin, respectively.

The explore operation is defined in a style very similar to list comprehensions, that is, the
data structure and expansion parameters of explore can be viewed as generators which yield
values that can successively be bound to variables (and may be subject to further restriction
by appropriate filters). In the bfs example of Section 3 bindings were not required, but if we,
for example, want to consider only edges with a certain property, we eventually have to refer
to the current and expanded nodes.



bfs’ v = explore a «— v:Queue; b «— suc; cost a b < 100

If, as in the above example, the exploration operator is used within a function definition, the
argument to the function being defined always constitutes an implicit binding. The bindings
of a and b can operationally be regarded as resulting from a nested for-loop where a is taken
from the queue and b is successively bound to the values of suc a. Considering the innermost
loop, in each step a separate binding triple (v, a, b) is built. The filter given by the last
expression refines the exploration in that only qualifying triples are considered. This means,
that only qualifying nodes and edges are expanded, used in computations, and are put into
the data structure. Likewise, only qualifying edges are traversed. In addition, a terminating
condition can be attached to an exploration (by using the key word until) with the effect that
exploration stops when the condition becomes true.

Next, look at the definition of depth-first search.

dfs v = explore v:Stack; suc

Comparing this definition with that of bfs, it becomes evident how exploration focuses on
the very essentials of graph algorithms. This again facilitates the comparison of different
algorithms. We feel that this characteristic together with the succinctness and clarity is a
strong argument for the whole exploration approach. Furthermore, this feature may also be
of educational use.

In Section 3 we already encountered Kruskal’s algorithm. Instead of sorting edges explic-
itly we can delegate the work to a heap by initially inserting all edges into it:

kruskal = explore E:Heap(cost)

Note that the heap data structure needs a parameter function (defined on the items to be
inserted into the heap) according to which the heap order is arranged. Prim’s algorithm for
computing minimum spanning trees extends a tree by selecting always the smallest edge
incident to that tree. We begin by initializing a heap with an edge incident to the start node
that has minimum cost among all outgoing edges.

prim v = explore e:Heap(cost); out
where e = find min cost (out v)

The expression find agg f denotes a function which applies an aggregate function (agg) to a
sequence and returns the first element of the sequence which is mapped by f to the aggregated
value. In the above where-expression, an outgoing edge of v with minimum cost is computed.

4.2.1 Computations

Named, computed values for nodes and edges can as well be regarded as extensionally defined
functions, that is, mappings. Adopting that view, each update performed in an iteration step
approximates the final mapping a little bit, and the whole process of step-by-step computation
is the operational description of another paradigm for mapping definitions. Hence we can view
explore as a mapping operator applicable to mapping specifications. Here the data structure
and the expansion expression serve the purpose of extracting a sequence of values out of the
graph.

Consider, for example, the task of computing the level of each node, that is, the distance
(measured in number of edges) from the start node. This is accomplished by a breadth-first
search:



bfs” v = explore a «— v:Queue; b «— suc
with level v = 0
level b = level a + 1

The key word with indicates that in addition to the information computed implicitly by
explore (see Section 4.3) the specified mappings are also calculated. Since we know that
within an exploration only mappings can be defined we omit the key word mp.

As an example for employing a heap data structure referring to a mapping which is
approximated during the exploration itself consider Dijkstra’s algorithm for computing a
shortest path tree.

dijkstra v = explore a — v:Heap(dist); b — suc
with dist v = 0
dist b = min (dist b) (dist a + cost a b)
dist L = ¢

Here, the parameter function of the heap is defined within the same exploration. This has two
implications: First, changes in the mapping trigger reorganization activities. For example,
decreasing dist for node b by ¢ has the effect of performing decrease(d, b, Heap(dist)). In
particular, this means that on a conceptual level we can ignore duplicates in the heap since
multiple copies of the same item in one heap always have the same key. Second, note carefully
that explore (viewed as a mapping definition operator) is not strict in its sequence (that is,
environment) argument since the sequence may refer to mappings being calculated.

Looking at the definition for dist more closely, we observe that, except for the argument
v, dist is initially totally undefined. So, in general, we would fail to evaluate dist b, and the
whole iteration would not work. Of course, we can circumvent this problem by providing an
initialization expression given by a default value for a mapping which is to be taken whenever
that mapping is evaluated to L (undefined).

4.2.2 Non-Tree Explorations

Until now we have only used tree explorations together with single-get behaviour. As an
example for a graph exploration and multiple-get behaviour consider the computation of a
subgraph spanned by a set of nodes M:

subgraph M = exploreG M:Stack; b « suc; b € M

The actual computation of the subgraph happens rather implicitly by traversing only edges
the endnodes of which pass the membership test.

A similar example is the reconstruction of shortest paths between two nodes. Assume that
we have the mapping dist available giving for each pair of nodes the length of a shortest path
connecting the nodes. Since in general there may be more than one shortest path the result
can be viewed as a subgraph consisting of all edges belonging to some shortest path.

paths v w — exploreG a «— v:Queue; b < suc; dist aw = cost ab + dist b w

Note that in both examples the data structures only serve as buffers and that the processing
orders are not important. This means that we could have interchanged Stack and Queue.

10



4.3 Using Explorations

We assume that in addition to mappings, a graph exploration computes the following informa-
tion (called aspects): Node and edge sequence (in the order visited) and the search tree/forest
(explore) or graph (exploreG). Aspects can be accessed by applying the respective functions
nodes, edges, tree, forest, or graph to expressions containing the exploration defining them.
Mappings are selected in the same way.

To make this clear, we note that explorations are in fact definitions. Thus applying an
expression to an exploration is nothing but syntactic sugar. That is, instead of writing

let (nodes, edges, tree, f, g, ...) =
explore .. . withf=... g=...
in expr

we allow the more compact notation
expr (explore ... withf= ... g=...)

Examples are given in the sequel.

4.3.1 Selections

To obtain a shortest path by means of the dijkstra exploration defined above we have to select
a path from the search tree that has been built during the exploration. Therefore we define
a very general selection operation (a..b) which, applied to a tree t, returns the (unique) path
in t from node a to node b (only, of course, if it exists). By inheritance, selection also applies
to paths. Moreover, it is convenient to allow selections even on lists; note that in this case a
and b must be integers denoting proper positions in the list (positions are numbered starting
with 1). We allow two special forms of selections: (i) (a..) asks for the subtree rooted at a or
the subpath (subsequence) starting with (at position) a and (ii) (a) extracts the element a
or, if a is an integer and (a) is applied to a sequence, the element at position a. Finally, the
function last denotes the position of the last element of a sequence or a path, so the tail of
a sequence can be denoted by (2..last) as well as by (2..). For sequences, a similar notation
was chosen by Tarjan [16]. We illustrate selection by several examples. First, a shortest path
can now be found by path selection:

(v..w).tree.dijkstra v

The length of the shortest path is given by the dist value of w. In order to apply dist to w
element selection is needed:

dist.(w).tree.dijkstra v

Note that w could as well have been selected from the sequence of traversed nodes, that is,
in the above expression, tree could have been interchanged with nodes.

An example for sequence selection is the search for the k next nodes to a given node v
which have a certain property, say prop:

(1..k) [a < nodes.dijkstra v; prop a]

Here we made use of the fact that nodes yields the sequence of nodes in the order visited by
Dijkstra’s algorithm, that is, in monotonically increasing distance from the start node. This

11



example also shows that exploration is well-integrated into the functional language, which
sometimes helps solving graph problems that are not directly expressible as explorations.

Subtree selection is used when asking, for example, for all nodes for which the shortest
path from v leads via x:

(x..).tree.dijkstra v

For computing the network center, we need the notion of a node’s eccentricity, which is defined
as the distance to the node that is farthest away [3]. Here again we use element selection:

eccentricity v = dist.(last).nodes.dijkstra v
center — find min eccentricity N

The definition of center now finds for the sequence of nodes in the current graph a node with
minimum eccentricity.

4.3.2 Repeated Application of Explorations

In the examples considered so far we have only used single elements as initial values for
explorations. Next we demonstrate that collections of initial values are truly useful. Consider,
for example, the definition of dfs. Applied to one node it may happen that only a subset of
all nodes in the graph is reached (if, for instance, the graph G is not strongly connected).
To obtain a complete spanning forest it is extremely helpful that we can apply dfs to N, the
sequence of all nodes:

dfs N

Then, by definition of explore, N is pushed onto the stack used by dfs and we first get a tree
rooted at the first node of N. When no more nodes are reachable, those nodes of N that are
contained in the first tree are ignored and taken from the stack, and exploration continues
with the next node not visited yet. This is repeated until all nodes are contained in a spanning
tree. For this reason we allow arguments of function definitions to be as well single elements
as sequences. Note that in this example the search tree being built is actually a forest.

For another application, consider the task of finding the k nodes having a distance as
large as possible to a set of nodes P. (This is of use for a bank robber who seeks for a hideout
shunning police stations.) We can achieve this by the following function definition:

farthest k P = (last-k+1..last).nodes.dijkstra P

Indeed, this works because the elements of P are all inserted into the heap, and because dist
is initially set to 0 for all elements of P® and to the minimum distance to any element of P
afterwards. Hence, the later nodes are expanded, the larger are their associated dist-values.

To consider a less criminal application, let H be a sequence of nodes at which hospitals
are located. Then we can partition the set of nodes according to their nearest hospital. Recall
that a forest is represented by a tree with a dummy root, so the desired partition is given by
the subtrees of

forest.dijkstra H

SHere the abbreviations for mapping definitions with sequences introduced in Section 4.1.5 are really helpful.
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4.3.3 Changing the Underlying Graph

Sometimes graph operations need to be performed on another than the default graph. This is
done by simply providing a derived graph as an additional first argument which is introduced
by the key word ingraph.

Consider, for instance, Sharir’s algorithm for computing strong components [14]. We first
have to compute a reversed postorder sequence of nodes visited by depth-first search. This
sequence, denoted by M, is used as an initialization expression for a second run of dfs which
is not performed on the default graph G but on the reverse graph, that is, the graph derived
from G by reversing all edges.

forest.dfs ingraph (reverse G) M
where M = (2..).reverse.postorder.forest.dfs N

Note that the selection (2..) is needed to drop the dummy root from M. Finally, we obtain a
forest of trees each of which represents a strong component.

Our last example is the once-around-the-minimum-spanning-tree approximation for the
travelling salesman problem as described in [9]: Essentially, we have to perform a depth-first
search on a minimum spanning tree. This is realized by a function for traversing a tree by
revisiting a root r whenever a traversal of a subtree of r is completed.

walkaround (rq[ ]) = [r]
walkaround (ra(a:b)) = [r] ++ walkaround a ++ walkaround (rab)

tsp = walkaround.tree.kruskal

5 Discussion

We have shown how to express and how to apply graph algorithms in a functional language
using a special operator tailored to graph iteration. The graph exploration scheme not only
facilitates the succinct formulation of many well-known graph algorithms — it also reveals
the main similarities and differences between them.

The concept of mappings in combination with explore as a mapping operator has lead
to an applicative description of graph algorithms. This is an improvement especially for
algorithms computing mappings, which are traditionally formulated in an imperative style.

The language itself is still under development. The major design issue is to effect a com-
promise between the size of the language (that is, the number of different concepts) and its
expressiveness (and efficiency). We use topological sorting as an example to indicate how the
introduction of new language features allows to express certain algorithms more appropriately
(and efficiently). Topological sorting is defined by the following exploration (the topologically
sorted list of nodes is obtained by the expression nodes.topsort):

zeroin =[n | n — N; predn =[]]

topsort = explore a «— zeroin:Queue; b — suc; indeg a = 0}
with indeg b = indeg b — 1
indeg | = count.pred

Now, consider the graph describing the complete order < on {1,...,n}. If suc yields the
successors in decreasing order, during a run of topsort up to O(n?) nodes will be removed
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from the queue without being used in the computation. Although the program runs in time
O(n+ m), it would be nicer (that is, more efficient) to insert only those nodes into the queue
for which indeg is 0. In other words, what we need is a means to fix a condition to a specific
part of exploration: If we were able, for instance, to add a modifier {PUT} to a condition
meaning that only those elements are put into the data structure for which the condition is
true, we could reformulate topological sorting by:

topsort = explore a < zeroin:Queue; b — suc; {PUT indeg b = 0}
with indeg b = indeg b — 1
indeg | = count.pred

The impact of the condition modifier {PUT} is to fix the condition on the specified part/action
of the exploration cycle, here, the put operation. Modifiers such as {GET} or {MAP} are also
conceivable. In combination with an exploreM operator for expressing Moore’s shortest path
algorithm, a {PUT} modifier is also useful to insert nodes into a queue only if not already
present.

Another language feature under consideration is the use of default names for generators,
for example, curr for the current graph element generated by data structures and next for the
expanded graph elements. On the one hand, this may lead to an even more compact notation
for explorations, on the other hand this facilitates “inheritance” of (optional) slots”, that is,
we can attach additional slots or mappings to applications of an exploration (for which those
slots are not defined), for example:

shortest_path v w = (v..w).tree.dijkstra v until curr = w
bfs" v = bfs v
with levelv =0
level next = level curr + 1

As far as implementation is concerned, we note that mappings defined in explorations can
be realized by arrays in the following way: First we can determine the types of the domain
(for example, N) and range, and thus we can allocate memory accordingly. Then from the
iterative style of explorations we observe that updates (induced by the mapping specification)
are strongly serialized and thus can be performed in place. Assuming decent implementations
of the data structures we conclude that programs in GEL can be almost as efficient as in
imperative languages (disregarding union/find operations which are, in general, necessary to
enforce tree constraints).

Moreover, there is potential for optimizations of applied explorations. For example, se-
lecting a path from a tree computed by an exploration can be used to infer an additional,
inherited until condition, for example,

(v..w).tree.dijkstra v
can be transformed to
(v..w).tree.dijkstra v until curr = w.

Of course, this would be of great use only for a version of GEL with eager evaluation.

"Slots are those parts of explorations which are introduced by a keyword.
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