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ABSTRACT
We present a formal calculus for modeling and implementing vari-
ation in software. It unifies the compositional and annotative ap-
proaches to feature implementation and supports the development
of abstractions that can be used to directly relate feature models to
their implementation. Since the compositional and annotative ap-
proaches are complementary, the calculus enables implementers to
use the best combination of tools for the job and focus on inherent
feature interactions, rather than those introduced by biases in the
representation. The calculus also supports the abstraction of recur-
ring variational patterns and provides a metaprogramming platform
for organizing variation in artifacts.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.3.2
[Programming Languages]: Language Classifications—applica-
tive (functional) languages, specialized application languages

General Terms
Design, Languages, Theory

Keywords
choice calculus, feature-oriented software development, preproces-
sors, separation of concerns, variational software

1. INTRODUCTION
In general, there are two ways to encode variability in software.

Variation can be captured in-place by annotating the parts of the
software that differ, or variable parts can be separated and later
composed into a working system [11]. The complementary nature
of these approaches, explored in Section 2, is evident when consid-
ering how to represent overlapping variability in multiple dimen-
sions, called feature interactions [19]. Compositional approaches
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excel when interactions are widespread and regular, while annota-
tive representations are best suited for a small number of irregular
interactions. Kästner, Apel, and their collaborators have explored
these trade-offs in depth [9–13] and identified the need for a way
“to combine annotation-based and composition-based approaches
in a unified and efficient framework” [10].

In this paper, we present a calculus that generalizes and unifies
the compositional and annotative approaches to representing varia-
tion. Section 3 demonstrates how we can interleave both strategies
as needed, reducing feature interactions to their inherent complex-
ity and avoiding complexity introduced by bias in the representa-
tion. The calculus is more powerful than simply adding annota-
tive variation to compositional components, however. In Section 4,
we introduce an abstraction construct that extends the calculus into
a variation metaprogramming system. The combination of anno-
tative, compositional, and metaprogramming approaches leads to
new ways of organizing variation in software and supports the def-
inition of high-level variation abstractions.

The main contributions of this paper are: (1) The compositional
choice calculus (CCC), a formal language for representing, gen-
erating, and organizing variation in tree-structured artifacts that
achieves the goals stated above. The language is developed in Sec-
tions 3 and 4, and its syntax is given in Section 5. (2) A formal
semantics for CCC, given in Section 6. The semantics is interesting
because it ensures the hygiene property [15] of variation abstrac-
tions through a novel compositional semantics definition, rather
than by the traditional renaming strategy. (3) A theoretical analysis
of the local expressiveness [7] of CCC relative to compositional and
annotative representations, given in Section 7. This demonstrates
that CCC is more locally expressive than either approach alone, and
than a simple union of the two. Throughout the paper we provide
examples that demonstrate how CCC alleviates the feature inter-
action problem, can be used to define variation abstractions, and
supports the generation and organization of variational structures.

The next section provides the necessary background to motivate
the design of the calculus. To make the discussion more con-
crete, we couch it in terms of feature-oriented software develop-
ment (FOSD), but the representation is not limited to this context.
Our long-term goals concern the study of variation in general and
the development of languages and theories that can be reused in a
range of areas where variability arises. After a discussion of related
work in Section 8, Section 9 discusses these broader goals.

2. BACKGROUND
FOSD addresses the classic problems of structured software con-

struction and reuse by decomposing a system into the individual
features it provides and by making it possible to refer to and ma-
nipulate these features directly. This strategy is useful for creat-
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class Buffer {
int buff = 0;
int get() {

return buff;
}
void set(int x) {

buff = x;
}

}

(a) Base program, b.

aspect Logging {
void Buffer.log() {

print(buff);
}
before(Buffer t) :

target(t) &&
execution(*) {

t.log();
}

}

(b) Logging feature, l.

Figure 1: A small integer buffer SPL.

refines Buffer {
int back = 0;
void set(int x) {
back = buff;
Super(int).set(x);

}
void undo() {
buff = back;

}
}

(a) Undo-one feature, uo.

refines Buffer {
Stack stack = new Stack();
void set(int x) {
stack.push(buff);
Super(int).set(x);

}
void undo() {
buff = stack.pop();

}
}

(b) Undo-many feature, um.

Figure 2: Class refinements implementing undo features.

ing massively variable software. By adding a program generation
step in which individual features can be selectively included or ex-
cluded, a software product line (SPL) of distinct but related pro-
grams can be produced [1].

Variability is expressed in FOSD at two distinct levels. Feature
modeling describes the high-level relationships between concep-
tual features in the problem domain [8]. Feature implementation
associates conceptual features with the code and other artifacts that
realize them in the solution domain. There are broadly two com-
peting approaches to feature implementation: compositional and
annotative. These will be described in the next two subsections.

2.1 Compositional Approaches
Compositional approaches are strongly motivated by traditional

software engineering pursuits like separation of concerns and step-
wise refinement [2, 18, 19]. They attempt to modularize each fea-
ture, separating its code and data from other features and from the
base program, which contains no features (or only essential, non-
variational features). To do this, they often rely on a language’s na-
tive modularization mechanisms, such as classes and subclasses in
object-oriented languages, augmented with other abstraction mech-
anisms like mixins [2, 3] or aspects [4, 18]. More generally, the
compositional view considers a feature something that can be ap-
plied to or composed with a program in order to produce a new
program incorporating the feature.

Figure 1 shows a simple SPL in the compositional style. This
running example is based on an example from Liu et al.’s 2006
ICSE paper [17]. The base program b1 is a simple integer buffer
written in Java. We add to this an optional logging feature l, imple-
mented as an aspect in the AspectJ language [14]. The aspect adds

1Underlined names indicate plain expressions, as defined in Sec-
tion 5. This distinction can be safely ignored for now.

dim Log〈yes,no〉 in
dim Undo〈one,many,none〉 in
class Buffer {

int buff = 0;
Undo〈int back = 0,Stack stack = new Stack(),◦〉;
int get() { return buff; }
int set(int x) {

Log〈print(buff+"->"+x),◦〉;
Undo〈back = buff,stack.push(buff),◦〉;
buff = x;

}
Undo〈void undo() {

Log〈print(back+"<-"+buff),◦〉;
buff = back;

},
void undo() {

Log〈print(stack),◦〉;
buff = stack.pop();

},◦〉
}

Figure 3: Buffer with annotated logging and undo features.

a log method to the Buffer class and inserts a call to this method
before the execution of every method in Buffer. Thus, our SPL
has two products, the basic buffer b and the buffer with the logging
feature added, obtained by applying l to b, which we write l •b.

In Figure 2, we implement two possible undo features as class
refinements in the Jak language of the AHEAD Tool Suite [2].2

When a refinement is applied to a class, new data members and
methods in the refinement are added to the class and existing meth-
ods are overridden, similar to traditional inheritance. The uo feature
adds the ability to undo one previous change to the buffer, while um
adds the ability to undo arbitrarily many changes. Now we can, for
example, generate the product l • uo • b, which is an integer buffer
with logging and one-step undo.

Note that the • operator is overloaded—its implementation de-
pends on the types of its arguments. In l •b, the operator represents
aspect weaving [4]; in uo • b it represents class refinement. This
makes it possible to extend the compositional approach to new lan-
guages and artifact types by simply adding new instances of the •
operator [2].

2.2 Annotative Approaches and the Choice
Calculus

Annotative approaches represent variation in-place, directly
marking code to be conditionally included if the corresponding fea-
tures are selected. In our previous work we have developed a for-
mal language for representing annotative variation called the choice
calculus [5]. We call the language introduced in this paper the com-
positional choice calculus because it adds compositional features to
this annotative core. Likewise, when the distinction is significant,
we call the original calculus the annotative choice calculus.

Figure 3 shows a version of our integer buffer SPL implemented
in the annotative style of the choice calculus. For illustrative pur-
poses, the logging feature differs from the previous subsection—it
only logs changes to the buffer’s value, and prints a unique message
for each method.

In the choice calculus a variation point is captured by a choice
D〈e1, . . . ,en〉 between n alternative expressions, associated with a

2We omit the class keyword from Jak refinements to save space.
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dimension D. Dimensions synchronize the selection of alternatives
from different choices. A dimension declaration dim D〈t1, . . . , tn〉,
declares a new dimension D with n tags. If tag ti is selected from D,
then every choice bound by D will be replaced by its ith alternative
ei, and the dimension declaration will be removed. Our example
contains two dimensions, Log and Undo. All choices bound by
the Log dimension have two alternatives, corresponding to whether
change-logging is included or not. Choices in the Undo dimension
have three alternatives, corresponding to the two possible undo fea-
tures and the case where no undo feature is included. To get an
integer buffer with no logging and one-step undo, we can select
Log.no and Undo.one.

The choice calculus respects the tree structure of the underlying
artifact it varies, ensuring the syntactic correctness of all variants.
Formally, each node in the tree is encoded by a constant value a
from the object language and a possibly empty list of subexpres-
sions, written a�e1, . . . ,en�. For example, we might formally rep-
resent the buffer’s get method as get�(),return�buff��. We
rarely show this tree structure explicitly, however, preferring to em-
bed the notation directly in the concrete syntax of the program, for
readability.

All of the choices in our example contain the empty expression
◦ as their last alternative. This is an element of the object lan-
guage, not of the choice calculus itself. This is important because
it preserves the guarantee of syntactic correctness—such a value
can only be included as an alternative where it is syntactically valid
in the object language. For example, the choice calculus expres-
sion 1+D〈2,◦〉 is invalid since ◦ is not syntactically correct at the
position of the choice in the surrounding Java expression.

The choice calculus is not intended to be used directly in soft-
ware but rather as a formal basis for theoretical research on soft-
ware variation. In our previous work, we define a set of semantics-
preserving laws for transforming choice calculus expressions, iden-
tify normal forms and show that they can be reached, and develop
quality criteria for variational artifacts [5]. Many of these results
can be reused directly in the compositional choice calculus pre-
sented in this paper.

2.3 Representing Feature Interactions
The salient problem in FOSD is detecting, resolving, and man-

aging the interactions of a huge number of conditionally included
features [13]. This is a large problem that spans all stages of the
software life cycle. Here we consider only the smaller subprob-
lem of representing intended feature interactions in a way that is
structured and manageable.

Interactions are represented quite differently in the two ap-
proaches to feature implementation. In the annotative approach
exemplified by the choice calculus, interactions appear as nested
choices. For example, the Log choices inside the Undo choice in
Figure 3 capture the interaction between the undo and logging fea-
tures. This way of representing feature interactions is simple and
explicit. It is best suited for interactions between a small number
of features, where each interaction must be handled uniquely.

However, many interactions are regular and cut across many fea-
tures. Logging is a classic example. For every feature that adds a
new method, we must also define its interaction with the logging
feature. This quickly leads to maintenance issues with even a small
number of features. The representation of the logging feature l as
an aspect in Figure 1(b) demonstrates how regular interactions can
be modularized in the compositional approach. As long as we ap-
ply l after including the undo feature, both the base program and
undo feature’s methods will be extended accordingly.

refines Buffer {
void undo() {
print(back+"<-"+buff);
Super().undo();

}
}

(a) Add logging to uo, luo .

refines Buffer {
void undo() {
print(stack);
Super().undo();

}
}

(b) Add logging to um,
lum .

Figure 4: Modularized feature interactions.

The logging feature implemented in Figure 3 is less regular, how-
ever, and its interaction with the undo feature is messy since it
prints a different message depending on which variant of the undo
feature we select. Such irregular interactions are trivial in the an-
notative approach but require special consideration in the composi-
tional approach.

A solution to the problem is described by Liu et al. [17] and
demonstrated in Figure 4. Essentially, we split the representation
of the logging feature into several smaller refinements. The refine-
ment lb (not shown) adds logging to the base program, while re-
finements luo and lum add logging to the undo-one and undo-many
features, respectively. The luo and lum refinements directly capture
the interaction of the logging and undo features. Now we can gen-
erate a program with only the logging feature by applying lb • b,
and add to this the undo-one feature by applying luo • uo • lb • b.
By spreading a feature’s implementation across several modules,
this solution mortgages some of the benefits of feature modularity
promised by the compositional approach. In the worst-case, there
can be an exponential explosion of such feature-interaction mod-
ules [17]

2.4 Toward the Compositional Choice
Calculus

The next two sections describe the development of CCC in two
steps. Section 3 integrates the compositional and annotative ap-
proaches to feature implementation by applying the choice calcu-
lus to compositional components and to the feature algebras used to
assemble these components. Section 4 introduces variation abstrac-
tions to encapsulate variation patterns and to extend the choice cal-
culus with metaprogramming capabilities. The examples in these
two subsections demonstrate how CCC addresses existing problems
in FOSD.

Combining these extensions with the basic choice calculus from
Section 2.2 produces CCC, whose syntax is given in Section 5 and
semantics in Section 6.

3. INTEGRATING THE TWO
APPROACHES

The compositional and annotative approaches to feature imple-
mentation are highly complementary. Compositional approaches
separate features at the expense of variation granularity and flexi-
bility. Annotative approaches are highly flexible and granular, but
do not separate features [9–13]. These trade-offs are evident in our
integer buffer SPL. The separated undo features uo and um in Fig-
ure 2 can be implemented without changing the base program b,
and b can be understood without knowledge of the undo features.
These qualities reflect the tenets of step-wise refinement and sep-
aration of concerns, respectively, that the compositional approach
is founded on. In contrast, the annotative implementation of undo
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dim Undo〈one,many〉 in
refines Buffer {

Undo〈int back = 0,Stack stack = new Stack()〉;
void set(int x) {

Undo〈back = buff,stack.push(buff)〉;
Super(int).set(x);

}
void undo() {

buff = Undo〈back,stack.pop()〉;
}

}

Figure 5: Undo refinement u with annotative variation.

in Figure 3 requires direct modification of the base program and
clutters its definition with code that is only sometimes relevant.3

However, the compositional undo features contain redundancy not
found in the annotative representation, complicating their mainte-
nance. For example, if we change the name of the set method in
the base program, we must also change its name in both uo and um.

Figure 5 presents an obvious compromise, where we annotate
compositional feature implementations. This allows the two ver-
sions of undo to share their common code while retaining separa-
bility with respect to the base program. This new annotated refine-
ment, u, was created by simply merging uo and um, and introducing
a new dimension Undo to capture their differences in synchronized
choices. In fact, the choice calculus makes it possible to derive
u from uo and um mechanically. By applying the transformation
laws [5], we can automatically transform the choice calculus ex-
pression dim Undo〈one,many〉 in Undo〈uo,um〉 into u. We say
that these two expressions are equivalent (≡).

Annotations are also useful in the algebra that describes the com-
position of features into products. The non-commutativity of fea-
ture composition often leads to ordering constraints between fea-
tures at the implementation level that do not exist at the conceptual
feature modeling level. For example, the decision of whether to in-
clude the logging feature l and the undo-many feature um are con-
ceptually independent, but l •um •b and um • l •b produce different
programs. In the second product, we will not log calls to methods
in the undo feature since these are added only after the logging as-
pect is woven in. This makes assembling components into products
potentially error-prone.

We can write a single expression that adheres to these constraints
and describes all of the products that can be generated using anno-
tations. For example, if we introduce a “dummy” feature id such
that id• p≡ p for any p, then we can describe all of the products in
our integer buffer SPL with the following expression.

(dim Log〈yes,no〉 in Log〈l, id〉) •
(dim Undo〈yes,no〉 in Undo〈u, id〉) • b

Note that the u component itself contains annotational variation
in a dimension named Undo. Each dimension declaration de-
fines a new statically scoped dimension of variation, so these
two Undo dimensions are different and can be selected indepen-
dently. We can now obtain all of the products in our SPL by
making selections on the above expression. For example, select-
ing [Log.no,Undo.yes,Undo.one] produces the integer buffer with
one-step undo and no logging. If we select no in the outer Undo
dimension, then we do not make a selection in the inner Undo di-

3Better user interfaces can alleviate some of the readability con-
cerns [10, 16].

mension since the inner Undo dimension in u will not be included.
This does not eliminate the ordering constraints between features
but rather captures them once-and-for-all alongside constraints im-
posed by the feature model (for example, that logging and undo are
optional). This enables a concise definition of all generable vari-
ants, properly composed.

The primary motivation for integrating the annotative and com-
positional approaches into a single representation is to provide
maximal flexibility in representing interactions between features.
For example, the interaction of the irregular logging feature and
the two alternate undo features requires two refinements luo and lum

in Figure 4. With an integrated representation, we can combine
these refinements in the same way we produced u from uo and um.
We could alternately include the interactions directly in the imple-
mentations of uo and um, using annotations. Either option would
reduce redundancy in the implementation and the specific choice
can be left up to the features’ implementors.

4. ADDING VARIATION ABSTRACTIONS
In this section we further the development of CCC by introduc-

ing an abstraction construct and by generalizing feature compo-
sition to function application. These changes support reuse, the
minimization of redundancy, and extend the choice calculus with
metaprogramming capabilities. This section motivates these exten-
sions through examples.

4.1 Reusable Optional Wrappers
A remaining bit of redundancy in our integer buffer example is

the repetition of the undo method declaration in two alternatives
of the Undo choice in Figure 3. Although the body of the method
differs, the declaration is the same, so we would like to abstract this
commonality out. We cannot just push the choice into the body of
the method, however, because the third alternative (corresponding
to Undo.none) does not declare the method.

In the annotative choice calculus we provide a static sharing con-
struct of the form share v = e′ in e.4 Using this, we can factor the
redundancy out as follows, where bo and bm refer to the body of
the undo method corresponding to the undo-one and undo-many
features, respectively.

share udecl = (share ubody = Undo〈bo,bm,◦〉
in void undo() { ubody })

in Undo〈udecl,udecl,◦〉

This solution is troublingly inelegant. The problem is related to
the optional wrapper problem encountered by Kästner et al. in the
development of their CIDE tool [13]. An optional wrapper is a
variation pattern where the goal is to conditionally wrap an expres-
sion in another construct, for example, a method declaration, condi-
tional statement, or try-catch block. Since the code shared between
variants is a subexpression of the optional wrapper, it is difficult
to mark only the wrapper as optional. CIDE handles this pattern
by designating certain constructs in the object language as wrap-
pers and treating them specially. The choice calculus’s share con-
struct is a more general solution that works well for single optional
wrappers—for example, we can optionally wrap the expression e in
a try-catch block with share v = e in D〈try{v}catch{ . . .},v〉—
but as our undo example demonstrates, it breaks down when we
want to reuse the wrapper in multiple alternatives.

In the compositional choice calculus, we split the share con-
struct into separate abstraction and application constructs, which
4We call this construct let in [5] but name it differently here to
prevent confusion since it behaves differently than traditional let-
expressions.
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we write in the style of lambda calculus as λv.e and e e′, respec-
tively. This allows us to capture the undo method declaration wrap-
per uw as λb.void undo(){b}. We can then rewrite the optional
undo method from Figure 3 more simply as Undo〈uw bo,uw bm,◦〉.

Abstractions are useful for representing all sorts of variation pat-
terns, not just optional wrappers. Unlike the annotative choice cal-
culus’s share-construct, which is expanded only after dimensions
and choices are resolved, CCC expressions are evaluated top-down,
interleaving β -reduction and dimension elimination as needed (see
the semantics definition in Section 6). Rather than just factoring
redundancy, this makes it possible to programmatically create and
manipulate the variation structure (dimensions and choices) of CCC
expressions in the language itself. The next subsection gives sev-
eral examples of variation abstractions that do this.

4.2 Variation Metaprogramming
In addition to feature implementation, CCC can also abstract and

modularize high-level relationships between features. Consider the
following higher-order function opt that accepts two arguments: f
is a function that implements a feature, and b is a base program that
f can be applied to.

λ f .λb. dim Opt〈yes,no〉 in (Opt〈 f ,λx.x〉 b) (opt)

If we select yes in the enclosed Opt dimension, f will be applied
to b, if we select no, the identity function will be applied. In other
words, this function modularizes the notion of feature optionality.
We can take any feature f ′ and make it optional by applying opt f ′.

Similarly, the following function modularizes the alternation re-
lationship between two features f1 and f2.

λ f1.λ f2.λb. dim Alt〈fst,snd〉 in (Alt〈 f1, f2〉 b) (alt)

Exactly one of the two features will be applied to b, depending on
our selection in the dimension Alt.

These examples illustrate how CCC can be used to directly relate
the implementations of features and their high-level organization in
feature models, providing a link between the problem and solution
domains. As a final demonstration of the potential of this approach,
consider the following expression arb.

λ f .λb.(λy.y y) (λ r.dim Arb〈yes,no〉 in Arb〈 f (r r),b〉) (arb)

The function accepts a feature f and a program b, and recursively
applies f to b an arbitrary number of times. Each time the yes tag
is selected from Arb, a new copy of the dimension is generated
and another decision must be made. The recursion will terminate
only when no is finally selected. Thus, arb represents a variational
fixed point combinator with an interactive terminating condition.
This variational model of computation as an interaction between
functions and decisions could have applications far beyond FOSD.

5. THE COMPOSITIONAL CHOICE
CALCULUS

The syntax of the compositional choice calculus is given in Fig-
ure 6. The first three constructs are from the annotative choice
calculus [5] described in Section 2.2. The first encodes the
tree-structure of the object language, choices introduce variation
points within that structure, and dimensions scope and synchronize
choices and organize the variation space. The next three constructs
replace the static sharing constructs of the choice calculus with the
separable, dynamic metaprogramming constructs introduced in the
previous section. These are as in the lambda calculus.

In the following discussion, it will often be useful to talk about
expressions that do not include a particular syntactic category s—

e ::= a�e, . . . ,e� Structure
| dim D〈t, . . . , t〉 in e Dimension
| D〈e, . . . ,e〉 Choice
| λv.e Abstraction
| e e Application
| v Reference

Figure 6: Syntax of the compositional choice calculus.

we say that such expressions are s free. For example, a choice-
free expression does not contain any choices (but may still contain
dimension declarations, abstractions, or any other syntactic cate-
gory). Further, we say that an expression is variation free if it is
dimension free and choice free; a sharing free expression is ab-
straction free, application free, and reference free. Finally, an ex-
pression is called plain if it is variation free and sharing free. A
plain expression therefore consists only of structure nodes, repre-
senting a plain artifact in the object language. We indicate that an
expression e is plain by underlining it. This notation is used for the
examples in Sections 2 and 3.

Note that we do not syntactically restrict the left-hand side (LHS)
of applications to function abstractions. Obviously, we want to al-
low variable references here since variables can be bound to func-
tions, but in fact we can extend application to all other syntactic
categories as well. Application can be viewed as a generalization
of the overloaded feature composition operator • from Section 2.1.
As a special case, when we apply two plain expressions e e′, we
defer to the instance of • determined by e and e′. This is the critical
link between the compositional choice calculus and the composi-
tional approach to feature implementation.

The other cases are enumerated and defined formally in the se-
mantics in Section 6, but the idea is simple. When an applica-
tion contains a dimension or choice on the LHS, the result can be
obtained by first distributing the application across the dimension
or choice, then recursively considering the subexpressions. This
suggests an extension of the semantics-preserving transformation
laws for choice calculus [5]. For distributing across dimensions
and choices in the LHS of an application, we have the following
laws.

APP-DIM-L
D /∈ FD(e′)

(dim D〈t1, . . . , tn〉 in e) e′ ≡ dim D〈t1, . . . , tn〉 in e e′

APP-CHC-L

(D〈e1, . . . ,en〉) e′ ≡ D〈e1 e′, . . . ,en e′〉

The function FD(e) returns the set of free dimensions in e, that is,
the dimensions of unbound choices. Since we change the scope of
the dimension D, the premise in APP-DIM-L prevents the capture of
choices in e′.

A symmetric law APP-CHC-R exists for distributing across
choices in the RHS of an application. However, there is no
APP-DIM-R since dimension declarations in the RHS of an applica-
tion can be duplicated during β -reduction, producing conceptually
distinct dimensions.

There is also a straightforward law for commuting abstraction
and choice constructs.

ABS-CHC

λv.D〈e1, . . . ,en〉 ≡ D〈λv.e1, . . . ,λv.en〉

There is not, however, a law for commuting abstractions and di-
mensions. The arb example in Section 4.2 demonstrates how a di-
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mension declaration within an abstraction can be applied multiple
times to produce different dimensions.

To demonstrate the evaluation of an expression, consider an in-
teger buffer SPL that optionally applies the undo-one feature uo to
the buffer b, then applies the logging feature l: l (opt uo b). If
we expand opt and perform β -reduction twice to consume its ar-
guments, we get the following expression in which the annotations
are more obvious.

l (dim Opt〈yes,no〉 in (Opt〈uo,λx.x〉 b))

Selecting Opt.yes yields a buffer with both the undo-one and log-
ging features included: l (uo b)≡ l •uo •b. Selecting Opt.no yields
a buffer with only logging: l ((λx.x) b)≡ l •b.

While the reduction process described above is rather ad hoc,
it captures the essence of the semantics. Intuitively, the meaning
of a compositional choice calculus expression is the total set of
variants it represents and the decisions that lead to those variants.
We formalize the relationship between decisions and the variants
they produce in the next section.

6. FORMAL SEMANTICS
A CCC expression encodes a decision space, where dimensions

describe the decisions that must be made, and choices and com-
putations determine the results of those decisions. We define the
semantics of a CCC expression to be a mapping from decisions to
the plain artifacts they eventually produce.

Computing this mapping is complicated by the fact that com-
putations can duplicate and remove dimension declarations, so we
cannot statically determine the decisions that must be made by sim-
ply looking at a CCC expression. Conceptually, evaluating a CCC
expression proceeds in normal order (outermost, leftmost first) and
consists of alternating between (1) reducing application nodes and
(2) eliminating dimension nodes. This leads to an interactive view
of evaluation where we reduce as far as we can, present a decision
point to the user, then proceed reducing based on their response.
For the purpose of defining a formal, denotational semantics, we
simulate this by building a (potentially infinite) mapping that rep-
resents all possible decision sequences and the plain expressions
they ultimately produce.

In the next three subsections, we consider these components of
evaluation separately. Section 6.1 describes the process of dimen-
sion elimination. This is based on our previous work on the an-
notative choice calculus [5]. The semantics of reduction is defined
compositionally. Given an expression e e′, we compute the partial
semantics of e, the partial semantics of e′, then compose the results.
Section 6.2 defines the structure of a partial semantics mapping and
how to compose them; Section 6.3 defines how to compute the par-
tial semantics of an expression. The semantics is defined in this
way for two reasons: (1) to ensure that we only ever invoke the
• operator on plain expressions, and (2) to avoid the problem of
choice capture, which is similar to the hygiene problem of tradi-
tional macro systems [15].

6.1 Dimension and Choice Elimination
Formally, a decision is a sequence of qualified tags, where a

qualified tag D.t is a tag t prefixed by its dimension D. We use
q to range over qualified tags, q̄ to indicate a sequence of qualified
tags (that is, a decision), and ε to represent the empty decision con-
taining no tags. Finally, we use concatenation qq̄ to prepend a tag
q to an existing decision q̄, and to concatenate two decisions q̄ and
q̄′, as q̄q̄′.

The order that tags are selected from an expression is determined
by the order that dimension declarations are encountered during a

normal-order evaluation strategy. For example, in the semantics of
the following expression (listed explicitly as a set of decision/plain-
expression pairs) tags in dimension A always appear before tags in
dimension B since the declaration of A occurs before the declara-
tion of B.

[[dim A〈a,b〉 in dim B〈c,d〉 in A〈B〈1,2〉,B〈3,4〉〉]] =
{((A.a,B.c),1),((A.a,B.d),2),
((A.b,B.c),3),((A.b,B.d),4)}

This ordering constraint is needed since the meaning of an expres-
sion can change if a tag is selected prematurely. For example, func-
tion application can multiply a single declaration into many inde-
pendent dimensions, as demonstrated by the arb example in Sec-
tion 4.2, but if the dimension is eliminated before the application is
reduced, the dimensions will become effectively synchronized.

Strictly ordering tag selection also reduces unnecessary selec-
tions and redundant entries in the semantics. Consider the follow-
ing, in which dimension B is sometimes eliminated by an upstream
selection in dimension A.

[[dim A〈a,b〉 in A〈1,dim B〈c,d〉 in B〈2,3〉〉]] =
{(A.a,1),((A.b,B.c),2),((A.b,B.d),3)}

When selecting tag A.a, the B dimension is eliminated, and so does
not appear in the decision. In the other cases, when A.b is chosen,
the B dimension remains, so a tag is also selected from B to pro-
duce the final variants. In this situation, we say that dimension B is
dependent on the selection of A.a.

Tag selection thus consists of (1) identifying the next dimension
declaration, (2) selecting a tag, (3) eliminating the choices bound
by that dimension, and then (4) eliminating the dimension decla-
ration itself. When computing the semantics, each of these steps
but the third is handled by the partial semantics function defined
in Section 6.3. We call the third step choice elimination and de-
fine it as follows. Given a dimension declaration dim D〈t1, . . . , tn〉
and a selected tag ti, we write becD.i to replace every free choice
D〈e1, . . . ,en〉 in e with its ith alternative, ei.

A formal definition of choice elimination is given in Figure 7(a).
Most cases just propagate the selection to their subexpressions.
There are two interesting cases: (1) Recursion ceases if another
dimension declaration named D is encountered, preserving local
dimension scoping. (2) After a matching choice is replaced by
its ith alternative, ei, we recursively apply choice elimination to
ei. This means that we can nest choices of the same name, as in
D〈D〈1,2〉,3〉, and they will both be eliminated when we make a
selection in D. This makes it impossible to select 2 from the nested
choice above, so the second alternative of the inner choice is un-
reachable and can be considered dead. In our previous work, we
provide strategies for removing dead alternatives and other kinds
of dead subexpressions [5].

6.2 Composing Partial Semantics
In Section 5 we resolved function application with stan-

dard lambda calculus β -reduction. Because β -reduction re-
lies on variable substitution, however, we can run into prob-
lems when choices are substituted across dimension scopes.
Consider the following expression, which contains an unbound
choice: (λx.dim A〈a,b〉 in x) A〈1,2〉. Applying β -reduction
brings the choice within the scope of the dimension declaration:
dim A〈a,b〉 in A〈1,2〉. We call this phenomenon choice capture,
and it is highly undesirable since it breaks the static scoping of di-
mension names. The situation is analogous to the hygiene issue in
other metaprogramming systems [15].
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ba�e1, . . . ,en�cD.i = a�be1cD.i, . . . ,bencD.i�

bdim D′〈tn〉 in ecD.i =

{
dim D′〈tn〉 in e if D = D′

dim D′〈tn〉 in becD.i otherwise

bD′〈e1, . . . ,en〉cD.i =

{
beicD.i if D = D′

D′〈be1cD.i, . . . ,bencD.i〉 otherwise

bλv.ecD.i = λv.becD.i

be e′cD.i = (becD.i) (be′cD.i)

bvcD.i = v

(a) Choice elimination (Section 6.1).

Vρ (v) = ρ(v)

Vρ (e e′) =Vρ (e) ./Vρ (e′)

Vρ (λv.e) = {(ε,(λv.e,ρ))}
Vρ (a��) = {(ε,a��)}

Vρ (a�en�) = {(q̄n,a�e′n�) | ((q̄i,e′i) ∈Vρ (ei))
i:1..n}

Vρ (dim D〈tn〉 in e) = {(D.tiq̄,e′) | i ∈ {1, . . . ,n},
(q̄,e′) ∈Vρ (becD.i)}

(b) Computing partial semantics (Section 6.3).

Figure 7: Definitions used in computing the semantics of a compositional choice calculus expression.

In order to avoid the problem of choice capture, we do not per-
form β -reduction directly. Instead, when computing the seman-
tics of an application, we compute the partial semantics (defined
below) of the left and right expressions separately, then compose
the results. For our purposes, this is better than the standard re-
naming solution to the hygiene problem, since we want to preserve
the given names of dimensions, which appear in the decisions con-
tained in the semantics.

This strategy is also crucial for the reuse of existing composi-
tional feature implementation tools (such as AHEAD) in a mixed
annotative/compositional setting. Given a feature f and a base pro-
gram b, we can evaluate f b even if f and b both contain annota-
tions. Essentially, we will compute the partial semantics of f and b
separately, and then invoke the • operator on every pairwise combi-
nation of results. This ensures that we only ever invoke • on plain
expressions, allowing us to mix annotations into our compositional
components, without modifying the existing tools.

The partial semantics, S, of an expression is a mapping from
decisions to values. A value ϕ is either a plain expression, or a clo-
sure, ϕ ::= e | (λv.e,ρ). A closure is a CCC abstraction, λv.e, paired
with its static environment, ρ . Somewhat unusually, the environ-
ment stored in a closure does not map variables to plain values, but
rather variables to partial semantics values. We use the notation
(v,S)⊕ρ to represent mapping variable v to the partial semantics S
in the environment ρ . Finally, to compute the partial semantics of
an expression e within the environment ρ , we write Vρ (e). Thus,
V has type (ρ,e)→ S. The implementation of this function will be
given in the next subsection.

Given expressions el and er, in environment ρ , with partial se-
mantics Vρ (el) = Sl and Vρ (er) = Sr, we can compute the applica-
tion of el to er by composing Sl and Sr. We write this as Sl ./ Sr.
In general, el and er can be arbitrarily large choice calculus expres-
sions, representing potentially many variants each. Conceptually,
composition corresponds to a pairwise application of every variant
from the partial semantics of el to every variant from the partial
semantics of er. Formally, composition proceeds by iterating over
entries in Sl and calling a helper function, /, as below.

Sl ./ Sr = {(q̄l ,ϕl)/Sr | (q̄l ,ϕl) ∈ Sl}

Each entry from Sl consists of a decision q̄l and a value ϕl . There
are two cases to consider: either ϕl is a plain expression or ϕl is a
closure. If ϕl is a plain expression, then every value ϕr ∈ rng(Sr)
must also be a plain expression, and we compose ϕl with each using
the object composition operator •. We also concatenate the deci-
sion that produced ϕl with the decision that produce ϕr, to create
the decision which produces the combined expression.

(q̄l ,e
′
l)/Sr = {(q̄l q̄r,e′l • e′r) | (q̄r,e′r) ∈ Sr}

Note that if ϕl is a plain expression but there is a value ϕr that is
not a plain expression, then the semantics is undefined.

Considering the second case, if ϕl is a closure (λv.e,ρ), then
we simulate β -reduction by adding the mapping (v,Sr) to the en-
vironment, and computing the partial semantics of the body of the
abstraction, e. We then iterate over the results and add each to our
composed partial semantics.

(q̄l ,(λv.e,ρ))/Sr = {(q̄l q̄
′,e′) | (q̄′,e′) ∈V(v,Sr)⊕ρ (e)}

Without the definition of Vρ (e), it is hard to verify that this does
what we expect, but we expect each occurrence of v in e to be able
to take on any possible variant in Sr.

6.3 Computing the Semantics
The final piece needed to define the semantics of CCC expres-

sions is the function Vρ (e), which computes the partial semantics
of e in the context of the environment ρ . The definition of Vρ is
given in Figure 7(b). Because of the groundwork laid in the previ-
ous subsections, there should be few surprises.

For the three lambda calculus constructs, Vρ is very straightfor-
ward: for references, it performs an environment look up; for ap-
plications, it computes the partial semantics of each subexpression
and composes the results; and for abstractions, it produces a triv-
ial mapping to a closure. If an unbound variable is encountered,
lookup will fail and the semantics is undefined.

The cases for structures are similarly straightforward despite the
dense notation. For a leaf, we return the empty decision mapped
to the leaf. For an internal node we compute the partial semantics
of each subexpression and concatenate all combinations of the re-
sults. The notation (xi)

i:1..n can be expanded to x1, . . . ,xn, and the
notation xn implies the concatenation of every xi.

For a dimension declaration, we select each tag ti in turn, com-
pute the partial semantics of becD.i, and prepend D.ti to each deci-
sion in the result. This eliminates all bound choices. If a choice is
unbound, the entire semantics is undefined.

Finally, we can use Vρ to define the semantics of CCC expres-
sions as [[e]] = V∅(e), where ∅ is the empty environment. Note
that [[e]] is also undefined whenever rng(V∅(e)) contains a closure,
since we require [[·]] to map to plain expressions.

7. RELATIVE LOCAL EXPRESSIVENESS
We have claimed that the compositional choice calculus sub-

sumes the annotative and compositional approaches to feature im-
plementation and that it is indeed more powerful than either ap-
proach on its own. We have provided example-based evidence
of these claims throughout the paper. In this section, we make
these comparisons more formally and directly, using Felleisen’s
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framework for comparing the relative local expressiveness of lan-
guages [7]. Local expressiveness is not the same as computational
expressiveness—given two Turing-complete languages L1 and L2,
it is possible for L1 to be more locally expressive than L2 if L1
contains expressions that cannot be locally transformed into op-
erationally equivalent expressions in L2, and the reverse is not
also true. Two expressions in different languages are operationally
equivalent if they have the same semantics according to the seman-
tics definitions of their respective languages [7].

We compare three languages: the compositional choice calculus
(CCC), the annotative choice calculus (ACC) to represent annotative
approaches, and a new language, the computational feature algebra
(CFA) to represent compositional approaches. We define CFA to be
the set of all variation-free (no dimensions or choices) CCC expres-
sions. Thus, CFA is a conservative extension of the AHEAD feature
algebra [2] (see Section 2.1), which consists of only the application
and structure constructs of CCC. The additional lambda calculus
constructs give CFA metaprogramming capabilities not available in
AHEAD’s feature algebra, making CFA at least a fair representation
of the compositional approach.

LEMMA 1. CCC is more locally expressive than CFA.

PROOF OF LEMMA 1. CCC is a conservative extension of CFA,
by construction. Therefore, we must show that the additional con-
structs in CCC, dimensions and choices, cannot be locally trans-
formed into operationally equivalent CFA expressions. We do this
in several steps.

(1) A CCC choice D〈e1,e2〉 must be represented in CFA by an
application of some function d to e1 and e2. Application is the
only viable choice of construct here since both e1 and e2 must be
represented, and it must be possible to reduce the choice to one of
these two subexpressions.

(2) Dimension declarations must be represented by an abstrac-
tion. In order to resolve the choice d e1 e2, some selector must
be substituted for d. Since d must be scoped and since potentially
many choices in the dimension corresponding to d must be syn-
chronized, d must be a lambda-bound variable.

(3) Following from (1) and (2), tag selection must be represented
by applying the abstraction binding d to some selector. For exam-
ple, to select e1 from the choice bound by dimension d, we can
write (λd.(d e1 e2)) (λx.λy.x).

(4) Consider the following CCC expression in which e1 and e2
are variation-free (see Section 5).

eCCC = dim D〈t1, t2〉 in D〈e1,e2〉

Assume that it is possible to locally transform eCCC into an opera-
tionally equivalent CFA expression eCFA. Then, given a context C
(which we assume without loss of generality is also variation-free),
C[eCCC] is operationally equivalent to C[eCFA]. From (1) and (2),
eCFA has the following form.

eCFA = λd.(d e1 e2)

However, C[eCCC] is not operationally equivalent to C[eCFA] since it
violates (3). Specifically, the context C prevents us from applying
the abstraction to a selector. The only way to resolve this is by
lifting the abstraction out of the context.

eCFA
′ = λd.C[(d e1 e2)]

Now eCFA
′ is operationally equivalent to C[eCCC] but the transfor-

mation is non-local, since it escapes the context C. Thus, by con-
tradiction, eCCC cannot be locally transformed into an operationally
equivalent expression in CFA.

LEMMA 2. CCC is more locally expressive than ACC.
PROOF SKETCH OF LEMMA 2. This case is harder since CCC

is not a conservative extension of ACC—the share construct ex-
ists in ACC but not in CCC. Furthermore, the ACC expression
eACC = share v = e in e′ is not operationally equivalent to the CCC
expression eCCC = (λv.e′) e, as we might expect, because of staging
differences in the languages’ semantics. Suppose a dimension D is
declared in e and that e′ contains n > 1 references to v. In ACC,
we will make just one selection in D since share-expressions are
expanded only after all dimensions have been eliminated. In CCC,
however, β -reduction and dimension elimination are interleaved,
so the declaration of D will be multiplied n times when eCCC is
reduced, requiring up to n separate selections in D.

To show that there is no loss of expressiveness from ACC to CCC,
we must provide a local transformation from eACC to an opera-
tionally equivalent CCC expression. We only describe this trans-
formation at a high level here. The individual steps, however, are
just applications of the semantics-preserving transformation laws
for ACC expressions, defined and proved correct in our previous
work [5]. (Note that we will apply the transformation laws only to
the ACC expression, prior to converting it to CCC, so these previ-
ous results can be reused in full.) We begin by observing that if
the bound expression e is dimension-free, then eACC and eCCC are
already operationally equivalent since no dimensions will be multi-
plied when eCCC is reduced. Therefore, the transformation consists
of two steps. First, we use the transformation laws to transform
eACC into a semantically equivalent ACC expression in which all di-
mension declarations have been factored out of the bound expres-
sion. Second, we replace each share-expression resulting from this
transformation with an abstraction-application pair, completing the
transformation to an operationally equivalent CCC expression.

The preconditions of the transformation laws reveal that the first
step of the above transformation is potentially complicated by the
presence of (1) dependent dimensions in e since dimensions cannot
be factored out of their enclosing choices, and (2) free choices in
e′ since they can be captured when factoring dimensions out of
e. Both problems can be resolved by first factoring the offending
choices out of the share-expression. Arbitrary choice factoring is
also supported by the transformation laws.

Because there is a local transformation of eACC into operationally
equivalent CCC, and since all other constructs are the same, then
CCC can macro express ACC [7]. Observe that the reverse is trivially
false since CCC is Turing complete (see below) and ACC is not.
Therefore, CCC is more locally expressive than ACC.

LEMMA 3. CCC is more locally expressive than ACC ∪ CFA.
PROOF OF LEMMA 3. This follows directly from Lemma 1 and

Lemma 2, combined with the observation that there are expressions
in CCC that cannot be locally transformed into either ACC or CFA.
Such an example can be constructed by combining the examples
from the previous proofs.

 

CCC

ACC CFA

In addition to the results above, we
observe that: (1) plain expressions ex-
ist in both ACC and CFA (ACC∩ CFA 6=
∅), (2) dimension declarations exist in
ACC but not CFA (ACC− CFA 6=∅), and
(3) lambda abstractions exist in CFA but
not ACC (CFA−ACC 6=∅). Putting it all together, we can construct
the Venn diagram at right, which illustrates the relative local ex-
pressiveness of the three languages. Furthermore, we can observe
that both CCC and CFA are Turing complete, since their semantics
reduce to the normal order reduction of lambda calculus terms in
the absence of structures, dimensions, and choices.
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8. RELATED WORK
Section 2 provides an overview of FOSD, the different ap-

proaches to feature implementation, and the trade-offs they present
for representing feature interactions. In this section, we focus on
other attempts at combining the benefits of compositional and an-
notative variation representations.

Kästner and Apel have suggested that their annotative CIDE
tool [11] could be integrated with the compositional AHEAD tool
suite [2], and discuss the implications of such a merger [9]. Many
of these implications we have not considered here; for example,
that an integrated model can support migrating from one implemen-
tation approach to another. Elsewhere, they propose the idea of a
“virtual separation of concerns”, which attempts to bring the main-
tenance and understandability benefits of separability to annotative
approaches through tool support for working with projections of
annotated artifacts [10]. With Kuhlemann, they have created LJAR,
a formal language for combining annotative and compositional
variation in Lightweight Java programs [12]. While our trans-
formation laws describe the commutation of annotations with and
within generic compositional components, LJAR supports refactor-
ings for moving between the two implementation approaches, but
in a way that is necessarily tied to a specific object language.

The XML Variant Configuration Language (XVCL) [20] is an-
other language-based attempt at merging the annotative and com-
positional approaches. Like CPP (but unlike the choice calcu-
lus and CIDE), its in-place variation annotations are structurally
undisciplined. Distributed variation is supported through named
“breakpoint” annotations, where code specified elsewhere can be
automatically inserted. While this provides separability, the need
to insert breakpoint annotations means that XVCL does not sup-
port stepwise refinement, a core tenet of compositional approaches.
(Though the sometimes necessary “hook” method technique [17]
violates this in purely compositional approaches as well.) This
makes separability in XVCL more similar to share-expressions in
the choice calculus than to compositional approaches.

9. CONCLUSIONS
The compositional choice calculus provides a formal basis for

the combination of the compositional and annotative approaches to
feature implementation, making it possible to utilize their strengths
while mitigating their weaknesses. The variational fixed point com-
binator arb, from Section 4.2, suggests a new model of interactive
variational computation, where computations dynamically produce
decision points that will affect the subsequent computation.

While we have motivated and introduced CCC from the perspec-
tive of FOSD, its intended scope is more general and applies to
all kinds of variation representations. The compositional choice
calculus is part of our larger goal to explore the potential of vari-
ation programming [6], which is concerned with writing programs
to generate, query, manipulate, and analyze variation structures.
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