
Explaining Spreadsheets with Spreadsheets∗

Jácome Cunha

University of Minho & NOVA LINCS

jacome@di.uminho.pt

Mihai Dan

Oregon State University

danm@oregonstate.edu

Martin Erwig

Oregon State University

erwig@oregonstate.edu

Danila Fedorin

Oregon State University

fedorind@oregonstate.edu

Alex Grejuc

Oregon State University

grejuca@oregonstate.edu

Abstract
Spreadsheets often change owners and have to be used by

people who haven’t created the spreadsheet. This flux often

contributes to a lack of understanding, which is a major rea-

son for mistakes in the use and maintenance of spreadsheets.

Based on the concept of explanation sheets, we present

an approach to make spreadsheets easier to understand and

thus easier to use and maintain. We identify the notion of

explanation soundness and show that explanation sheets

which conform to simple rules of formula coverage provide

sound explanations. We also present a practical evaluation

of explanation sheets based on samples drawn from widely

used spreadsheet corpora and based on a small user study.

In addition to supporting spreadsheet understanding and

maintenance, our work on explanation sheets has also un-

covered several general principles of explanation languages

that can help guide the design of explanations for other pro-

gramming and domain-specific languages.

CCS Concepts • Software and its engineering → Do-
main specific languages; Software maintenance tools;

Keywords Software Understanding, Explanation Principles

ACM Reference Format:
Jácome Cunha, Mihai Dan, Martin Erwig, Danila Fedorin, and Alex

Grejuc. 2018. Explaining Spreadsheets with Spreadsheets. In Pro-
ceedings of the 17th ACM SIGPLAN International Conference on

∗
This work is partially supported by the National Science Foundation under

the grant CCF-1717300. Work financed by European Regional Development

Fund through the Operational Programme for Competitiveness and Interna-

tionalization COMPETE 2020 Programme and by National Funds through

the Portuguese funding agency FCT project POCI-01-0145-FEDER-016718

and NOVA LINCS UID/CEC/04516/2013, and by FLAD project 233/2014.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

GPCE ’18, November 5–6, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6045-6/18/11. . . $15.00

https://doi.org/10.1145/3278122.3278136

Generative Programming: Concepts and Experiences (GPCE ’18), No-
vember 5–6, 2018, Boston, MA, USA. ACM, New York, NY, USA,

7 pages. https://doi.org/10.1145/3278122.3278136

1 Introduction
Studies estimate that software maintenance costs make up

60% [32] to 80% [33] of the total cost of software over its

life cycle. Changing a program or even just using it requires

a user to understand it [30], and that takes time and effort.

Research has shown that software developers spend most of

their time understanding source code [34].

Program understanding gets even more complicated when

a piece of software changes its owner frequently. Studies of

spreadsheet usage found that 85% of the study participants

did not create the spreadsheets they had to work on them-

selves but received them from their colleagues [25]. The

same paper reports that 70% of those users have difficulties

understanding them and spend hours browsing them.

To address some of these challenges, Kankuzi extensively

studied the mental models of spreadsheets users [27]. He ad-

vocates techniques and tools that reflect these mental models

such as abstracting implementation details by replacing cell

references in formulas through user-defined names. Other

approaches in this regard have tried to support the main-

tenance of spreadsheets by systematizing their evolution

[16–18]. However, these techniques face an uphill battle,

since they depend on the widespread adoption of new lan-

guages and tools to be effective. Moreover, it is difficult to

support legacy spreadsheets in this way.

Therefore, we propose to augment spreadsheets with ex-
planations, which can help users better understand and thus

use and maintain spreadsheets. This approach allows users

to continue to work with their current spreadsheet system,

and it can be retroactively applied to existing spreadsheets.

In the following, we illustrate our approach with an example.

When people try to understand a spreadsheet, they com-

monly face the time-consuming and error-prone task of re-

solving cell references to make sense of what formulas in

a spreadsheet do. This task is often exacerbated in spread-

sheets which contain a distracting and overwhelming volume

of data and by the fact that referenced cells often contain

formulas that reference other cells in different parts of the

spreadsheet.

https://doi.org/10.1145/3278122.3278136
https://doi.org/10.1145/3278122.3278136

GPCE ’18, November 5–6, 2018, Boston, MA, USA J. Cunha, M. Dan, M. Erwig, D. Fedorin, and A. Grejuc

Figure 1. Payroll Spreadsheet

This process of “reference chasing” in spreadsheets is nec-

essary, since references are specified using row and column

indexes, which do not provide any information about the

value or meaning of the referenced cell. Therefore, to make

sense of what a reference represents, the user has to scan the

spreadsheet for the indicated row and column. This may re-

quire a user to scroll a long distance and in many cases jump

across multiple cells to make sense of the initial reference.

We address this problem through the use of label abstrac-
tion in our spreadsheet explanation model where possible

labeling information is used to replace raw index references

with the values of cells that label them. In doing so, formulas

that use references become more clear.

Consider Figure 1, which shows the formula view of a

spreadsheet with payroll information for employees within

a company. The spreadsheet was adapted from a study on

spreadsheet error detection and correction [8] and is a sim-

plified version of a real world scenario.

Applying label abstraction to the payroll spreadsheet re-

sults in the spreadsheet shown in Figure 2. Label abstraction

increases readability by giving context to computation, es-

pecially as formula complexity increases.

We can observe that while the values in rows 3-6 differ,

the formulas with labels are all identical. Such a pattern

occurs quite frequently. The redundancy that results from

the repetition is rather distracting. On the other hand, the

different values in the different rows do not contribute much

to the understanding of the represented computation.

Therefore, we apply another transformation to obtain an

explanation of the original spreadsheet that represents re-

peated (groups of) rows by a single (group of) row(s). The

result of this compression, which we call a zoom, can be seen

in Figure 2 where rows 3-6 from the original spreadsheet

have been compressed into one row. Such compressed rows

contain two kinds of information. First, columns (such as E-

G) that contain in the uncompressed sheet a single repeated

formula contain just that single formula. Second, columns

(such as A-D) with different values in different rows contain

a range that captures all values found in the respective col-

umn. The same zoom compression technique can, of course,

be applied to repeated columns.

Note that both transformations preserve the essential

structure and the key computing elements of the original

spreadsheet. We call a spreadsheet that is the result of label

abstraction and zoom compression an explanation sheet.

In the remainder of this paper, we first present some gen-

eral design principles for explanations in Section 2. Based on

these principles, we have developed our spreadsheet expla-

nation model, which is formalized in Section 3. In Section 4

we present a preliminary artifact evaluation, followed by a

small user study in Section 5. We discuss related work in

Section 6 and present some conclusions in Section 7.

2 Explanation Principles
Informed in part by previous work on explanations [20, 35],

but also by the experience during the creation of spreadsheet

explanations (see Section 4) we have identified a number of

general principles that we believe should guide the develop-

ment of explanations. We present these principles here in a

separate section, so that they can also inform the design of

explanations for other languages.

In general, explanations can take on many different forms.

Taking a programming language perspective, we have found

it useful to conceptualize an explanation system as consisting

of two languages: (A) the language whose programs are to

be explained and (B) the language in which explanations

are expressed. We call the former the subject language and
the latter the explanation language. Correspondingly, we
call programs of the subject language subject programs (or
programs for short), and we call programs of the explanation

language explanation programs (or explanations for short). In
the context of spreadsheet explanations, this means that we

refer to spreadsheets sometimes as subject (spread)sheets and

that we call their explanations explanation (spread)sheets.

The following four principles have emerged as guidelines

for the design of spreadsheet (and other) explanations.

(1) Structure Preservation. An explanation language
should retain key subject language structures. Subject lan-
guage structures can provide easy access to an explana-

tion, since users are already familiar with these structures.

Moreover, reused structures facilitate the alignment of

explanations with subject programs.

(2) Abstraction. An explanation language should aim at
high-level descriptions that abstract from details of the
subject language. Abstraction makes explanations faster

to absorb. It also allows explanations to provide sum-

maries of subject programs.

(3) Partiality. An explanation language should support par-
tial explanations. In other words, an explanation should

not be required to cover all of a subject program. Par-

tiality supports a gentle slope approach to explanations,

since it allows the incremental construction of more and

more complete explanations. Moreover, partiality allows

one to ignore parts that cannot be explained (because

they are not understood) or are trivial or unimportant.

(4) Compositionality. An explanation language should sup-
port constructing bigger explanations from smaller ones.
This requires composition operators for explanations.

Explaining Spreadsheets with Spreadsheets GPCE ’18, November 5–6, 2018, Boston, MA, USA

Figure 2. Top: Payroll Spreadsheet with Label Abstraction; Bottom: Explanation Sheet for the Payroll Spreadsheet

Compositionality supports the systematic construction

of explanations and the reuse of explanations. Together

with partiality, compositionality supports the distributed

creation of explanations by different people who under-

stand different parts of the subject program.

Note that the first two principles are sometimes in conflict

with each other because abstraction calls for ignoring struc-

tures in the subject language. Moreover, there is a trade-off

between the benefits that can be gained from abstraction

and the explicitness and simplicity offered by a detailed and

concrete description of a computation. As illustrated in [20],

this problem can be addressed by providing for one subject

program a set of explanations that are related and can be

explored in a systematic way.

3 An Explanation Language for
Spreadsheets

In Sections 3.1 and 3.2 we define spreadsheets and expla-

nation sheets, respectively. In Section 3.3 we introduce a

relationship between the two languages that captures the

notion of explainability.

3.1 Spreadsheets
A spreadsheet is a rectangular grid of cells that contain for-

mulas and values. We can represent spreadsheets s ∈ S as

partial mappings from addresses A = N × N to formulas.

Formulas are either plain values (v ∈ Val), application of op-

erations (ω) to other formulas, and references to cells (a ∈ A).
The set of values includes an empty value ⊔, which allows us

to distinguish undefined cells that are part of the spreadsheet

from undefined cells on the outside.

f ∈ Fml ::= v | ω (f , . . . , f) | a

Abstracting from the contents of cells, we use the type con-

structor ⊞α = A → α to represent sheets indexed by ad-

dresses and storing values of type α . A spreadsheet ⊞Fml
is then simply a sheet of formulas. Formulas are evaluated

to values Val, and we call the result of the evaluation of a

spreadsheet a value sheet, which is a sheet of values ⊞Val. The
semantics of a spreadsheet language are given by a function

J·K : ⊞Fml → ⊞Val that maps spreadsheets to value sheets.

3.2 Explanation Sheets
Following the structure preservation principle from Section

2, we design an explanation of a spreadsheet to be itself a

kind of spreadsheet, a so-called explanation sheet that stores
formula explanations in cells. Following the abstraction prin-

ciple, an explanation sheet should abstract from some of the

details of the spreadsheet and should thus be smaller in size.

We therefore need a definition that allows one cell in an

explanation sheet to explain many cells in a spreadsheet.

To explain formulas, we need explanations for values,

references, and expressions built by operations applied to

other formulas. Since the values in a spreadsheet are either

numbers or strings, which are both ordered domains, we

can summarize a set of values from different cells by a value
range (v̄ ∈ Val = Val × Val). Similarly, a set of references can

be summarized by an address range (ā ∈ A = A × A). The
two addresses of a range represent opposing corners of a

rectangular area, and the region denoted by a range is given

by the function ρ : A→ A, which is defined as follows (↓/↑

compute the minimum/maximum of two numbers).

ρ (((x1,y1), (x2,y2)) = {(x ,y) | x1↓x2 ≤ x ≤ x1↑x2

∧ y1↓y2 ≤ y ≤ y1↑y2}

Since labels have been successfully employed in the past for

annotating and explaining cells [4, 19, 26, 29], we use labels to

explain a set of references by one or two (row and/or column)

labels ℓ ∈ Lab = Val ∪ Val × Val. More precisely, based on

a relationship L ⊆ A × A where (a,a′) ∈ L whenever the

value S (a) in cell a is considered to be a label for cell a′, we
can define a partial labeling function L : A → Lab, which

GPCE ’18, November 5–6, 2018, Boston, MA, USA J. Cunha, M. Dan, M. Erwig, D. Fedorin, and A. Grejuc

Value

v 2v

Value Range

v1 ≤ v ≤ v2

(v1,v2) 2v

Address Range

a1 ≤ a ≤ a2

(a1,a2) 2 a

Formula

x1 2 f1 . . . xn 2 fn

ω (x1, . . . ,xn) 2 ω (f1, . . . , fn)

Label

L(a) = ℓ

ℓ 2 a

Empty Value

(v1,v2) 2 ⊔
Empty Formula

ω (x1, . . . ,xn) 2 ⊔
Unexplained

⊥2 f

Figure 3. Formula Explanations

identifies values as labels for cells.

L(a′) =
{
S (a) if L−1 (a′) = {a}
(S (a1), S (a2)) if L−1 (a′) = {a1,a2}

L(a′) is undefined whenever L−1 (a′) = ∅.
We explain sets of formulas that share a common structure

and differ only in their references by a formula with labels

abstracting the references. Finally, we represent unexplained

areas using the special value⊥ (“unexplained”), which allows

us to reduce potentially large chunks of a spreadsheet by a

single row, column, or cell.

Thus we obtain the following definition of explanation

formulas and the derived notion of explanation sheets ⊞Xpl .

x ∈ Xpl ::= v | v̄ | a | ā | ℓ | ω (x , . . . ,x) | ⊥

The structure preservation embraced by⊞Xpl aligns the struc-
ture and composition of an explanation sheet with that of

the explained spreadsheet.

3.3 Explaining Spreadsheets with Explanation
Sheets

A spreadsheet explanation is captured by a so-called zoom
X

η
2S , which consists of an explanation sheetX , a spreadsheet

S , a total function η that embeds the spreadsheet into the

explanation, that is, dom(η) = dom(S) ∧ rng(η) = dom(X),
and whose explanation formulas explain the formulas of

the spreadsheet. The totality of η ensures that every cell in

S is covered by a cell in X . We don’t require zooms to be

surjective to allow for “filler cells” in the explanation sheets

that serve no other purpose than to turn explanation sheets

into rectangular areas.

The purpose of zooms is to explain a number of similar

cells by one cell. Specifically, when η−1 (a) = {a1, . . . ,ak }, we
use cell a to summarize, or explain, all the cells a1, . . . ,ak .
We can formalize this idea through the notion of formula
explanation, which is defined as a binary relationship x 2 f
that says an explanation formula x explains a spreadsheet

formula f , see Figure 3.

JvKX = (v,v) Jv̄KX = v̄ JaKX = JX (a)KX

JāKX = ↕{JX (a)KX | a ∈ ρ (ā)} JℓKX = ↕L−1 (ℓ)

JxiKX = (v1

i ,v
2

i) v1

i ≤ vi ≤ v2

i

Jω (x1, . . . ,xn)KX = ↕{Jω (v1, . . . ,vn)KX }
J⊥KX = ⊥

Figure 4. Explanation Semantics

The cases for plain value, value range, and address range

should be obvious. Rule Formula requires that the explana-

tion and explained formulas have the same structure, and

the premise in the rule Label ensures that a label exists. The

rules Empty Value and Empty Formula allow empty values

to be explained by ranges and formulas, respectively, and the

rule Unexplained allows any formula to be left unexplained.

For a zoom X
η
2S we require that every formula in X ex-

plain all formulas in S that are mapped to it, that is:

∀a′ ∈ dom(X),∀(a,a′) ∈ η : X (a′) 2 S (a)

Based on the semantics of spreadsheets, we can define the se-

mantics for explanation sheets as follows. Since explanation

formulas include ranges of values and addresses, they will

generally evaluate to ranges of values.
1
To resolve references

the semantics needs access to the explanation sheet. Since

we also have to account for ⊥ formulas, the semantics of ex-

planation formulas is of type J·K : Xpl → ⊞Xpl → Val∪{⊥}.
The definition is shown in Figure 4. We use the function

↕V = (↓V ,↑V) to compute the minimally enclosing range

for a set of values V . (We also use it for addresses.)

The semantics of explanation sheets is then given by the

following function J·K : ⊞Xpl → ⊞Val∪{⊥} .

JX K = {(a, v̄⊥) | (a,x) ∈ X ∧ JxKX = v̄⊥}

Note that the semantics also depends on the underlying

subject sheet S and a labeling relationshipL to resolve labels

(ℓ) in explanation formulas.

Next we introduce the notion of zoom soundness. This is
essentially the 2 relationship for value ranges and values

applied to whole sheets that are connected via a function η.
We say that an explanation X is sound for a spreadsheet S
under η if JX K

η
2JSK. This relationship captures the notion

that an explanation sheet X covers all cases of the explained

spreadsheet S and that the evaluation of S holds no surprises.

Now we can present our main result, which says that

zooms are sound.

Theorem 3.1 (Soundness). X η
2S =⇒ JX K

η
2JSK

Note that for any spreadsheet S we always can find a trivial

explanation through the zoom S
id2S ,2 which means that any

1
A single value v can always be represented by a trivial range (v, v).

2
Here id denotes the identity function.

Explaining Spreadsheets with Spreadsheets GPCE ’18, November 5–6, 2018, Boston, MA, USA

spreadsheet trivially explains itself. However, such a zoom

is not really useful, since it does not achieve any abstraction.

Employing a straightforward ordering on zooms based on

the size of the explanation sheet, we can define that a zoom

X1

η
12S achieves a higher explanatory reduction than a zoom

X2

η
22S if |dom(X1) | < |dom(X2) |. Note that this relationship

defines a partial order, and there isn’t necessarily a single

smallest explanation.

We can identify a number of interesting relationships for

explanations, including notions such as explanatory cover-

age and based on that also an explanation refinement rela-

tionship. We leave that for future work.

4 Artifact Evaluation
We employed real-world spreadsheets from two spreadsheet

corpora in the design and evaluation of our approach.

4.1 Guiding the Design of Explanations
The design of our spreadsheet explanations was guided in

part by real-world example spreadsheets. With a preliminary

definition of explanation formulas and zooms we set out to

explain existing spreadsheets from two repositories.

Specifically, we analyzed 20 randomly selected spread-

sheets from [31], which are generally well-designed spread-

sheets created by experts, plus 20 randomly selected spread-

sheets from the Enron spreadsheets corpus [22], which in-

cludes more than 15,000 spreadsheets.

We manually created an explanation spreadsheet for each

of the 40 spreadsheets. The main purpose of this exercise

was to see whether explanation formulas are general enough

or maybe even unnecessarily too general and whether our

definition of zooms worked as anticipated.

During this testing phase, the explanation model was re-

vised several times. Specifically, we removed a number of

explanation formulas that we originally thought to be useful

because the anticipated situations did either not occur at all

or only once or twice and thus were not justifying a more

elaborate notion of explanation formulas. We also simplified

the definition of zooms, which originally were defined re-

cursively allowing for nested zooms to explain nested loop

structures in spreadsheets. But since such a nested loop struc-

ture occurred only in one of the selected examples, we traded

the more general definition for a simpler one.

4.2 Applicability and Impact
We randomly selected a new set of spreadsheets from the

two sources and then used 41 worksheets from 36 differ-

ent spreadsheets to analyze the applicability and effect of

spreadsheet explanations.

We observed that 78% (32/41) of worksheets contained

areas that could be compressed and explained by zooms

(20/10/2 worksheets contained row/column/row and column

zooms). Ignoring three huge spreadsheets that were basically

used as databases and that would lead to a misleadingly high

average, the average (min/max) size compression achieved

by zooms was 64% (25%/99%).

To verify that the generated explanations were correct,

we developed an explanation checker that implements the

definitions from Section 3.3, specifically Figure 3. This expla-

nation checker was applied to all explanations and helped to

correct at least one error in 24 of the 41 explanation sheets.

Most of the errors were due to simple typos, but the checker

also found several incorrect range mappings in zooms and

other reference errors. A summary of the kinds of errors that

were detected is shown in Figure 5.

5 User Evaluation
In this section we describe a preliminary user study we per-

formed to assess the usefulness of explanation spreadsheets.

Spreadsheets. For this study, we have semi-randomly se-

lected 4 spreadsheets (labeled A through D) from 3 different

sources. The selection process was semi-random in the sense

that we had to randomly re-select a new spreadsheet if the

previous one was not suited (for example, when it lacked

formulas). We selected two spreadsheets from the EUSES cor-

pus [21], one from [31], and one from the Enron corpus [22].

Participants. We recruited ten participants from two uni-

versities who were either computer science graduate stu-

dents or had already finished their graduate degree. Most

of the participants are quite experienced spreadsheet users,

some of them having created over 100 spreadsheets. Two

of the participants were females and eight were males with

ages ranging from 23 to 45.

Procedure. For each spreadsheet we created the correspond-

ing explanation. We then created two sets of artifacts, each

consisting of two spreadsheets and two explanation sheets.

The first set contained the spreadsheets for A and C and the

explanation sheets for B and D, and the second set contained

the spreadsheets for B and D and the explanation sheets

for A and C. We then randomly assigned each participant

one of the sets. This way each participant had to work with

spreadsheets as well as explanation sheets, in different or-

ders, thus reducing learning effects. We had the participants

go over a one-page tutorial about spreadsheet explanations

before answering the actual questions. For each of the four

spreadsheets we asked two questions:

N Error Type
4 Value (value in S is mapped to a different value in X)

7 Range (value in S is not covered by the range in X)

4 Reference (undefined references in mappings)

1 Label A (value of the label does not match the value in S)
8 Label B (labeling does not correctly abstract reference)

Figure 5. Errors found by the Explanation Checker

GPCE ’18, November 5–6, 2018, Boston, MA, USA J. Cunha, M. Dan, M. Erwig, D. Fedorin, and A. Grejuc

average time average score

subject explanation subject explanation

A

Q1 1.3 2.1 2.2 2.4

Q2 1.1 2.2 3.0 2.8

B

Q1 3.1 2.9 2.0 2.6

Q2 2.5 3.7 2.0 1.8

C

Q1 2.1 1.8 3.0 1.0

Q2 1.0 2.9 2.4 1.4

D

Q1 3.6 5.4 1.2 1.4

Q2 6.8 3.3 1.8 2.0

Table 1. Average times and scores in the empirical study

Q1 What is being calculated in row/column/cell X?

Q2 How are the values in row/column/cell X calculated?

Results. We present the results of the study in Table 1. For

each spreadsheet and its explanation we show the average

time (in minutes) participants took to answer each question

and the average score of the answers. We scored each answer

with a value from 0 (wrong answer) to 3 (entirely correct).

Discussion. The user evaluation produced mixed results.

Explanation sheets led to higher scores in 3 out of the 4 sce-

narios, with the exception of C, which produced significantly

lower results. Here we note that the explanation sheet for

C employed a column header (S) as a label where none was

provided by the subject spreadsheet. As the participants had

no prior knowledge of explanations, this could have made

it hard to infer the meaning of the column reference, thus

impacting understandability.

There is no significant difference between the average

times it took participants to answer the questions. With the

exception of D, participants were able to determine how a

computation was performed faster using the explanation.

However, explanations were only faster at explaining what
a computation calculated in cases B and C.

Interestingly, participants took longer to answer questions

for simple spreadsheets using explanations. This can possi-

bly be attributed to the fact that the participants have had

extensive experience with spreadsheets, while none with

explanations. This also seems to indicate that explanation

sheets are probably more useful for complex spreadsheets.

These results indicate the potential of explanation sheets

for providing a better understanding of spreadsheets. In their

answers to a post-study survey eight out of ten participants

said that they found explanation sheets somewhat or very

helpful. (For the two other participants they didn’t make a

difference.) Also, eight of the participants would want to use

explanation sheets in the future.

6 Related Work
Amalfitano et al. have developed a tool to help end users to

comprehend VBA-based Excel applications [6]. This tool is

designed to work with Excel programs that heavily depend

on VBA macros, explaining the relation between the macros

and the cells, and cannot be used to understand the data or

cell computations in a spreadsheet as we propose.

Kankuzi and Sajaniemi have investigated spreadsheet au-

thors’ mental models [27]. Based on that, they proposed a

tool that translates cell references into domain/real-world

terms using the labels in the spreadsheet. However, their

focus is on error detection, while ours in on understanding

the content of a spreadsheet.

Several authors have proposed techniques to identify

structural information in spreadsheets [2, 5, 7, 11–15, 23].

Although identified structures may help understand spread-

sheets, there is no direct evidence for this, and none of the

mentioned approaches was meant to help understanding

spreadsheets, but instead to give some kind of support to

manipulate spreadsheet content.

The use of spreadsheets labels is not new [19]. In fact,

several approaches have been proposed for the inference of

cell labels [1], to reason about spreadsheets [10] using their

labels, and to use them for error checking [3]. And while

sometimes labels are used to explain spreadsheet errors [4],

none of this work was intended to explain spreadsheets

purpose. Some tools provide named ranges for defining a

name for a range of cells, which can then be used instead of

regular references. Although this feature has been shown to

make debugging less effective [28], there is no evidence of

its impact in understanding spreadsheets.

Hermans has proposed techniques to understand the de-

pendencies between different worksheets [24, 25]. In con-

trast, our work improves the understandability of each work-

sheet. Thus, these two approaches are complementary.

Some researchers have proposed tools to support users

in documenting their spreadsheets [9]. However, such tools

require users to write documentation, which they usually do

not do. While our approach also relies on an additional arti-

fact, this has a familiar structure and can be added incremen-

tally. Most importantly, the formal structure of explanation

sheets and their relationship to spreadsheets offers oppor-

tunities for the automatic inference of explanation sheets,

which is something we plan to work on in the future.

7 Conclusions
We have presented the concept of explanation sheets to sup-

port the understanding of spreadsheets. The design of ex-

planation sheets has some appealing properties: First, they

facilitate the gradual and incremental construction of spread-

sheet explanations. Second, their formalization supports the

definition of tools for checking, for example, the correctness

of explanation, which we have already exploited. There are

many other support tools that can be envisioned and that we

will investigate in future work, such as checking the cover-

age of explanations, checking the compatibility of alternative

explanations, and the inference of explanation sheets.

Explaining Spreadsheets with Spreadsheets GPCE ’18, November 5–6, 2018, Boston, MA, USA

References
[1] R. Abraham and M. Erwig. 2004. Header and Unit Inference for Spread-

sheets Through Spatial Analyses. In IEEE Int. Symp. on Visual Lan-
guages and Human-Centric Computing. 165–172.

[2] R. Abraham and M. Erwig. 2006. Inferring Templates from Spread-

sheets. In 28th IEEE Int. Conf. on Software Engineering. 182–191.
[3] R. Abraham and M. Erwig. 2007. UCheck: A Spreadsheet Unit Checker

for End Users. Journal of Visual Languages and Computing 18, 1 (2007),
71–95.

[4] R. Abraham, M. Erwig, and S. Andrew. 2007. A Type System Based

on End-User Vocabulary. In IEEE Int. Symp. on Visual Languages and
Human-Centric Computing. 215–222.

[5] Sorin Adam and Ulrik Pagh Schultz. 2015. Towards Tool Support for

Spreadsheet-based Domain-specific Languages. SIGPLAN Not. 51, 3
(Oct. 2015), 95–98.

[6] Domenico Amalfitano, Vincenzo De Simone, Anna Rita Fasolino, and

Porfirio Tramontana. 2016. EXACT: A tool for comprehending VBA-

based Excel spreadsheet applications. Journal of Software: Evolution
and Process 28, 6 (2016), 483–505.

[7] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Vin-

cenzo De Simone, Giancarlo Di Mare, and Stefano Scala. 2015. A Re-

verse Engineering Process for Inferring Data Models from Spreadsheet-

based Information Systems: An Automotive Industrial Experience. In

Data Management Technologies and Applications. 136–153.
[8] Brian Bishop and Kevin McDaid. 2008. An Empirical Study of End-

User Behaviour in Spreadsheet Error Detection & Correction. CoRR
abs/0802.3479 (2008).

[9] Diogo Canteiro and Jácome Cunha. 2015. SpreadsheetDoc: An Ex-

cel Add-in for Documenting Spreadsheets. In Proceedings of the 6th
National Symposium of Informatics.

[10] C. Chambers and M. Erwig. 2010. Reasoning about Spreadsheets with

Labels and Dimensions. Journal of Visual Languages and Computing
21, 5 (2010), 249–262.

[11] Zhe Chen and Michael Cafarella. 2013. Automatic Web Spreadsheet

Data Extraction. In 3rd International Workshop on Semantic Search Over
the Web. Article 1, 8 pages.

[12] J. Cuna, M. Erwig, and J. Saraiva. 2010. Automatically Inferring

ClassSheet Models from Spreadsheets. In IEEE Int. Symp. on Visual
Languages and Human-Centric Computing. 93–100.

[13] Jácome Cunha, Martin Erwig, Jorge Mendes, and João Saraiva. 2016.

Model inference for spreadsheets. Automated Software Engineering 23,

3 (2016), 361–392.

[14] Jácome Cunha, João Saraiva, and Joost Visser. 2009. From Spreadsheets

to Relational Databases and Back. In 2009 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-based Program Manipulation. 179–
188.

[15] Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang, and JunWei. 2018.

Expandable Group Identification in Spreadsheets. In 33rd ACM/IEEE
Int. Conf. on Automated Software Engineering. 498–508.

[16] G. Engels and M. Erwig. 2005. ClassSheets: Automatic Generation of

Spreadsheet Applications from Object-Oriented Specifications. In 20th
IEEE/ACM Int. Conf. on Automated Software Engineering. 124–133.

[17] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmansberger. 2005.

Automatic Generation and Maintenance of Correct Spreadsheets. In

27th IEEE Int. Conf. on Software Engineering. 136–145.
[18] M. Erwig, R. Abraham, S. Kollmansberger, and I. Cooperstein. 2006.

Gencel – A Program Generator for Correct Spreadsheets. Journal of
Functional Programming 16, 3 (2006), 293–325.

[19] M. Erwig and M. M. Burnett. 2002. Adding Apples and Oranges. In 4th
Int. Symp. on Practical Aspects of Declarative Languages (LNCS 2257).
173–191.

[20] M. Erwig and E. Walkingshaw. 2013. A Visual Language for Explaining

Probabilistic Reasoning. Journal of Visual Languages and Computing
24, 2 (2013), 88–109.

[21] Marc Fisher and Gregg Rothermel. 2005. The EUSES Spreadsheet

Corpus: A Shared Resource for Supporting Experimentation with

Spreadsheet Dependability Mechanisms. SIGSOFT Softw. Eng. Notes
30, 4 (May 2005), 1–5.

[22] Felienne Hermans and Emerson Murphy-Hill. 2015. Enron’s Spread-

sheets and Related Emails: A Dataset and Analysis. In 37th Int. Conf.
on Software Engineering. 7–16.

[23] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2010. Auto-

matically Extracting Class Diagrams from Spreadsheets. In European
Conference on Object-Oriented Programming 2010. 52–75.

[24] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2011.

Breviz: Visualizing Spreadsheets using Dataflow Diagrams. CoRR
abs/1111.6895 (2011).

[25] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2011.

Supporting Professional Spreadsheet Users by Generating Leveled

Dataflow Diagrams. In 33rd Int. Conf. on Software Engineering. 451–
460.

[26] B. Kankuzi and J. Sajaniemi. 2014. Visualizing the problem domain

for spreadsheet users: A mental model perspective. In IEEE Symp. on
Visual Languages and Human-Centric Computing. 157–160.

[27] Bennett Kankuzi and Jorma Sajaniemi. 2016. A mental model per-

spective for tool development and paradigm shift in spreadsheets.

International Journal of Human-Computer Studies 86 (2016), 149 – 163.

[28] RuthMcKeever, KevinMcDaid, and Brian Bishop. 2009. An Exploratory

Analysis of the Impact of Named Ranges on the Debugging Perfor-

mance of Novice Users. CoRR abs/0908.0935 (2009).

[29] B. A. Nardi and J. R. Miller. 1991. Int. Journal of Man-Machine Studies.

(1991), 161–184.

[30] Santanu Paul, Atul Prakash, Erich Buss, and John Henshaw. 1991.

Theories and Techniques of Program Understanding. In Conf. of the
Centre for Advanced Studies on Collaborative Research. 37–53.

[31] Stephen G. Powell and Kenneth R. Baker. 2003. The Art of Modeling
with Spreadsheets. John Wiley & Sons, Inc., New York, NY, USA.

[32] R. Pressman. 2001. Software Engineering: A Practitioner’s Approach
(5th ed.). McGraw-Hill, New York, NY.

[33] C. Verhoef. 2000. How to Implement the Future. In 26th Euromicro
Conference. 32–47.

[34] A. von Mayrhauser, M. Vans, and A. Howe. 1997. Understanding

Behaviour During Enhancement of Large-scale Software. Journal on
Software Maintenance: Research and Practice 9, 5 (1997), 299–327.

[35] E. Walkingshaw and M. Erwig. 2011. A DSEL for Studying and Ex-

plaining Causation. In IFIP Working Conference on Domain-Specific
Languages. 143–167.

	Abstract
	1 Introduction
	2 Explanation Principles
	3 An Explanation Language for Spreadsheets
	3.1 Spreadsheets
	3.2 Explanation Sheets
	3.3 Explaining Spreadsheets with Explanation Sheets

	4 Artifact Evaluation
	4.1 Guiding the Design of Explanations
	4.2 Applicability and Impact

	5 User Evaluation
	6 Related Work
	7 Conclusions
	References

