
Explaining Deep Adaptive Programs
via Reward Decomposition

Martin Erwig1, Alan Fern1, Magesh Murali1, Anurag Koul1
1 School of EECS

Oregon State University

Abstract
Adaptation Based Programming (ABP) allows pro-
grammers to employ “choice points" at program
locations where they are uncertain about how to
best code the program logic. Reinforcement learn-
ing (RL) is then used to automatically learn to
make choice-point decisions to optimize the reward
achieved by the program. In this paper, we consider
a new approach to explaining the learned decisions
of adaptive programs. The key idea is to include
simple program annotations that define multiple se-
mantically meaningful reward types, which com-
pose to define the overall reward signal used for
learning. Using these reward types we define the
notion of reward difference explanations (RDXs),
which aim to explain why at a choice point an al-
ternative A was selected over another alternative B.
An RDX gives the difference in the predicted fu-
ture reward of each type when selecting A versus
B and then continuing to run the adaptive program.
Significant differences can provide insight into why
A was or was not preferred to B. We describe a
SARSA-style learning algorithm for learning to op-
timize the choices at each choice point, while also
learning side information for producing RDXs. We
demonstrate this explanation approach through a
case study in a synthetic domain, which shows the
general promise of the approach and highlights fu-
ture research questions.

1 Introduction
Programmers are often faced with uncertain choices about
program logic that can significantly impact the quality of the
resulting program. Adaptation Based Programming (ABP)
[Bauer et al., 2011] is a programming paradigm in which
programmers can explicitly declare their uncertainty about
such choices via the insertion of adaptive variables into the
program. We refer to programs with such adaptive variables
as adaptive programs. In addition, adaptive programs include
reward statements that indicate quality of program executions.
The key idea of ABP is to use reinforcement learning (RL)
to optimize the decisions of adaptive variables such that the
reward acquired during program executions is optimized. In

particular, in this work we focus on deep adaptive programs
(DAP),where choice point decisions are automatically learned
via deep neural networks.

To gain confidence in learned decisions of DAPs, it is im-
portant to produce explanations for those decisions. In this
paper, we focus on explaining the reasons that one alternative
A of an adaptive variable was preferred to another alternative
B. The key questions are: (1) What form the explanations
should take? (2) How to adjust the learning algorithms so that
such explanations can be produced?

To aid in answering the first question, we allow the pro-
grammer to provide a simple form of program annotation.
The annotations specify reward types, which label each re-
ward asserted by the program by one of a fixed set of types.
For example, in a real-time strategy game, one type of reward
would be related to damage inflicted on the enemy and an-
other type would be based on damage the enemy inflicts on
us. The goal of learning is still to maximize the total reward,
accumulated across all types. However, the types can provide
significant insight into decisions. Indeed without type infor-
mation, an explanation for whyAwas selected overBmight be
the trivial explanation that it is predicted that selecting A will
lead to more future reward than B. Rather, with type informa-
tion, we open the possibility to comparing A and B in terms
of the predicted future reward of each type, which provides a
finer-grained view of the trade-offs going into the decisions
and significantly more insight.

To instantiate this idea we define the notion of reward differ-
ence explanations (RDXs), which explain why A is preferred
to B. An RDX is simply a vector that records the difference
in predicted future reward for each reward type when taking
A versus B and then following the program thereafter. We
further define the notion of a minimal sufficient explanation
for an RDX as the minimal number of reward components
needed to prove that A is preferred to B.

To address the second question, we present a SARSA-style
algorithm for learning policies to control the decisions of
adaptive variables and at the same time learning information
needed to produce RDXs for any pair of decisions. This
idea has been fully implemented within a Python-based ABP
library for deep adaptive programs. We demonstrate this
algorithm and explanation approach via a case study on a
synthetic problem designed to include decisions that are not
obvious to a human and hence require explanation. The results

show that the approach is able to provide useful explanations
and that the explanations tend to be quite compact.

2 Adaptation-Based Programming
To illustrate explanations inDAPs let us consider the following
example problem shown in Figure 1. The agent in this example
moves across a grid with the goal of collecting as many fruits
as possible within 100 steps. The locations of the fruits are
fixed. The environment also contains lightening events that
occur randomly with every step within the grid. If the agent
is struck by lightening, they die, and the game ends.

(a) (b)

Figure 1: (a) Gridworld for the fruit collection problem; red indicates
the position of the agent, and green indicates the position of the fruits.
(b) A heat map that shows the probabilities of locations of lightening
events.

The fruit collection problem can be formulated as an ABP
program as shown in Listing 1, in which the problem is rep-
resented as an OpenAI gym environment env. In addition to
state initialization, this object provides the method step for
making state transitions. The object move represents an adap-
tive variable that offers four choices for moving in different
directions, and it contains methods for making RL-informed
choices and collecting rewards.

state = env.reset()
move = Adaptive(choices = [UP, DOWN, LEFT, RIGHT])

while not done:
direction = move.choose(state)
state, reward, done = env.step(direction)
move.adapt(reward)

Listing 1: Adaptive program for the fruit collection problem

The step function performs an action provided as input and
returns the resulting state, the reward received, and a boolean
indicating whether the current episode has ended. In this
example this boolean is Truewhen the agent has collected all
the fruits, themaximumnumber steps of 100 has been reached,
or the agent is struck by lightening. The state object is a
two dimensional boolean matrix representing the position of
the agent and the location of the fruits in the environment.

In each of the 100 steps available to the agent, the method
choose first selects a direction to move, then the method
step moves the agent in that direction. After that, the re-
ward resulting from this step is accumulated with the method
adapt. The adaptive variable uses RL to choose the correct
value for the adaptive based on the current state [Bauer et al.,
2011]. We use a modified version of the SARSA RL algo-
rithm in our approach. Using standard RL terminology, the

adaptive variables are treated as decision points and the values
of adaptive variables are treated as actions that can be chosen
at those points. Each time a decision point is encountered
the “state" of the decision point is used as a basis for the ac-
tion/value selection. The library allows for the user to define
arbitrary features of decision points that can be used as the
state representation.

We note that while this example program contains only a
single adaptive variable, for illustration purposes, our library
supports programs that include an arbitrary number of adap-
tive variables. Using multiple adaptive variables allows for
modeling a wide range of agent decision-making architec-
tures such as those used in hierarchical RL [Dietterich, 2000;
Parr and Russell, 1998]. The ABP framework also general-
izes prior work on “partial programming" [Andre and Russell,
2002], where the semanticswere defined relative to an external
MDP rather than just the adaptive program.

After the initial training period, the adaptive variable is
associated with a Q-function. The Q-function Q(s, a) maps
the state s of a decision point and choice a to a numeric value.
In particular, Q(s, a) is an estimate of the expected future
reward that will be achieved if choice a is selected and then
the adaptive program is followed thereafter. Given a decision
point, an associated Q-function, the adaptive program will
select the choice that maximizes the learned Q-function. In
our current library, the Q-function for each adaptive variable
is represented via a neural network that takes the state as input
and outputs the Q-value for each possible choice. In our fruit
collection example, the neural network input is the raw map,
where a one-hot encoding is used to represent the contents of
each cell.

Figure 2: Q-values for the actions in the state shown in Figure 1(a).

Figure 2 illustrates a situation in which the agent has to
move right in order to maximize the reward. However having
a single Q-value does not give us a sufficient explanation. It
compresses the knowledge about the problem into a single
value. It is not clear why the agent made the decision: were
they struck by lightning when moving in the other directions?
Which fruit is are they trying to collect?

3 Explaining via Reward Decomposition
Our main strategy for obtaining better explanations is to no-
tice that in many RL environments the reward can be broken
down into multiple reward types, each corresponding to se-
mantically distinct ways of acquiring reward. This allows for

decomposing the overall reward function into a number of
different reward component functions, which sum up to the
total reward. Often natural reward decompositions are obvi-
ous to a programmer or environment designer, since defining
the reward function requires thinking about the distinct cir-
cumstances where reward is generated. The traditional RL
paradigm, however, does allow a developer to explicitly ex-
pose that knowledge.

In the fruit collection example we can decompose the re-
ward into 9 different reward types, one for each location of
the fruit plus one for when the traveller gets hit by lightning.
In order to support this, we have extended the ABP library to
use reward annotations. The program for the fruit collection
problem can be extended by annotations that use locations
to distinguish the different fruits and a tag for the lightening
reward.

Given a reward decomposition, we can adjust the learning
algorithm so that it learns a distinct Q-function for each reward
component, each predicting the future reward of the corre-
sponding component only, see Listing 2. It is straightforward
to see that the sum of the individual component Q-functions
is equal to the Q-function for the overall cumulative reward.
In our fruit collection problem, there will be a Q-function
for each fruit location and for lightning. As an example, the
component Q-function for the lightning reward type gives the
expected future reward (negative) due to lightning strikes af-
ter taking an a particular action in a particular state and then
following the program thereafter.

rewards = []
lightning_pos = generate_lightning()

if agent_location in fruit_locations:
rewards.append((agent_location, 2))

if agent_location in lightning_pos:
rewards.append(("Lightning Strike", -1))

Listing 2: Decomposed reward generation in each step

The part of the adaptive program that represents the core of
the example needs only aminormodification. The only change
is the replacement of the single call to adapt, which uses one
reward value, by a loop that iterates over a list of rewards and
corresponding reward types, see Listing 3. In this scenario,
this list always contains either zero or one element.

state = env.reset()
move = Adaptive(choices = [UP, DOWN, LEFT, RIGHT])

while not done:
direction = move.choose(state)
state, rewards, done = env.step(direction)
for typedReward in rewards:

move.adapt(typedReward)

Listing 3: Adaptive Program using reward decomposition

Given a set of component Q-functions for each reward type,
decisions are made by selecting the action that maximizes
the cumulative Q-function, which is equal to the sum of the
components. Thus, learning should both ensure that the cu-
mulative Q-function converges to the optimal Q-function for
the overall reward, while also ensuring that the component Q-
functions converge to their correct values. A similar learning
problem has been studied in prior work [Russell and Zimdars,

2003] on multi-agent learning. In that work, the total reward
was decomposed across multiple learning agents that were
controlled by a centralized policy. If we equate the agents
with reward types, the two formulations become identical.
Thus, we use the SARSA-style algorithm develop in that work
in the context of ABP. The algorithm uses on-policy SARSA
learning [Sutton and Barto, 1998] to update each of the com-
ponent Q-functions and drives exploration using an ε-greedy
policy based on the cumulative Q-function.

We now consider an example decision of the agent for the
state shown in Figure 1(a). This decision can be explained
much better using the decomposedQ-values and reward types.
If we take a look at the decomposedQ-values and reward types
in Figure 3, we can observe that moving right is better than
moving down becausemoving right has more positive rewards
for almost all fruits and at the same time less of a chance of
being struck by lightening than moving down. However, the
decomposition of the rewards itself does only part of the job.
For example, it is not so clear why moving right is better than
moving up.

Figure 3: The Q-values from Figure 2 decomposed by different
reward types for fruit locations and lightening.

To better compare the decomposed Q-values for different
actions, we can compute their difference and then order the
result by magnitude. In the context of decomposed Q-values,
Qπ(s, A) is a vector that returns returns the component Q-
values for each reward type for the current policy π (gener-
ally the ε-greedy policy) in state s and action A. We write
QR
π (s, A) for the Q-value component of reward type R. We

call the reward-type-indexed difference between the decom-
posed reward for two actions Aand B their Reward Difference
Explanation (RDX).

∆π(s, A, B) = Qπ(s, A) −Qπ(s, B)

A positive value in an RDX mapping for a reward type R
indicates that the adaptive variable predicts a higher reward
of type R for A than for B. Correspondingly, a negative value
indicates that action B promises higher reward of type R.

To compare moving RIGHT with moving UP for the state
shown in Figure 1(a) we compute the RDX ∆π(s, RIGHT, UP)
and visualize the resulting mapping in Figure 4(a), ordering
the RDX components by magnitude. To convince ourselves
that RIGHT is indeed the better action, we have to ensure that
the sum of the positive reward differences, representing the
advantages of RIGHT over UP is greater than the sum of the
negative ones, which represent the disadvantages.

(a) ∆π (s,RIGHT,UP) (b) ∆π (s,RIGHT,LEFT)

Figure 4: Reward Difference Explanations for two action pairs.

The four reward types with negative values sum up to -0.20,
while the sum of the first three positive reward yields 0.22,
which is enough to be sure that RIGHT is expected to be the
preferred action. In other words, moving RIGHT promises
enough reward for collecting the three fruits at the shown lo-
cations that makes up for any other expected disadvantages.
This example also shows that we don’t have to consider all
positive reward types to make this determination. This phe-
nomenon is even more salient when we compare the actions
RIGHT and LEFT. In this case, the reward for one fruit with a
value of 0.14 is sufficient to cover all expected losses, which
are about -0.12.

This observation leads to the definition of a minimal suf-
ficient explanation (MSX), which is the minimal subset of
∆π(s, A, B)whose sum of rewards exceeds sum of all negative
rewards from ∆π(s, A, B). We denote the sum of all indi-
vidual rewards of a reward decomposition mapping Q with
Σ(Q) =

∑
(r,x)∈Q x. Now with:

R−(Q) = Σ({(r, x) ∈ Q ∧ x < 0})
Sub+(Q) = {S ⊆ Q | (r, x) ∈ S ⇒ x > 0}

we can define:

µπ(s, A, B) = S ∈ Sub+(Q) : Σ(S) > R−(Q) ∧ |S | is minimal
where Q = ∆π(s, A, B)

The minimal sufficient explanations for the reward differences
from Figure 4 are shown in Figure 5. They allow the user of
an explanation to focus on a subset of reward types.

(a) µπ (s,RIGHT,UP) (b) µπ (s,RIGHT,LEFT)

Figure 5: Minimal Sufficient Explanations for two action pairs.

The concept of minimal sufficient explanations (called
MSE) was also introduced in closely related work on expla-
nations for optimal Markov Decision Process (MDP) policies
[Khan et al., 2009]. There are several key distinctions be-
tween that work and ours. First, that work assumed a perfect
model of the environment and approached the problem from
an automated planning perspective. Rather, we are in an RL
setting, which introduces challenges due to the lack of amodel.
Second, that work focused on explaining the optimal decision

of an optimal policy. In particular, the notion of MSE used
there required that theMSE proved that the optimal action was
better than all other actions. Such explanations will often be
significantly larger than our pairwise explanations, since an
optimal action may be better than other actions for orthogonal
reasons. In such cases, their MSE must include all of those
reasons. Finally, the prior work did not introduce the notion
of reward decomposition. Rather they relied on a generic, but
extremely fine grained decomposition that effectively defined
a reward component for each state. Such an approach is quite
limited to domains with small state spaces.

One question that remains is: How effective are minimal
sufficient explanations? In the fruit collection scenario we
have 9 different reward types, and so it might be possible for
any µπ(s, A, B) to vary in size from 0 to 8. (Here a size of
0 means that the RDX has no negative component and that
action A is better in every aspect.) To answer this question
we computed the frequencies of the sizes |µπ(s, A, B)| for all
action pairs for an optimal policy π. As Figure 6 shows, in
the vast majority of cases a single reward type is sufficient
to explain an action, which shows that the technique is quite
effective in focusing the attention of users on particular parts
of reward components.

Figure 6: Frequencies of |µπ (s, A, B)|

4 Conclusions
We have demonstrated an approach to explain machine-
learned decisions in the context of adaptation-based program-
ming by decomposing rewards into labeled parts. Decom-
position and reward typing together provide the opportunity
to justify decisions by comparing advantages and disadvan-
tages of decisions with respect to different reward types. This
idea is formalized though reward difference explanations. In
addition, through the concept of minimal sufficient explana-
tions we can often generate explanations that need to mention
only few of the potentially large set of different reward types.
As our analysis has shown, in the example scenario the vast
majority of explanations require mention of only one reward
type.

Acknowledgements
This work is partially supported by theNational Science Foun-
dation under the grant CCF-1717300 and by DARPA under
the grant N66001-17-2-4030.

References
[Andre and Russell, 2002] David Andre and Stuart J Russell.

State abstraction for programmable reinforcement learning
agents. In AAAI/IAAI, pages 119–125, 2002.

[Bauer et al., 2011] Tim Bauer, Martin Erwig, Alan Fern,
and Jervis Pinto. Adaptation-based programming in java.
In Proceedings of the 20th ACM SIGPLAN workshop on
Partial evaluation and program manipulation, pages 81–
90. ACM, 2011.

[Dietterich, 2000] Thomas G Dietterich. Hierarchical rein-
forcement learning with themaxq value function decompo-
sition. Journal of Artificial Intelligence Research, 13:227–
303, 2000.

[Khan et al., 2009] Omar Zia Khan, Pascal Poupart, and
James P Black. Minimal sufficient explanations for fac-
tored markov decision processes. In ICAPS, 2009.

[Parr and Russell, 1998] Ronald Parr and Stuart J Russell.
Reinforcement learning with hierarchies of machines. In
Advances in neural information processing systems, pages
1043–1049, 1998.

[Russell and Zimdars, 2003] Stuart J Russell and Andrew
Zimdars. Q-decomposition for reinforcement learning
agents. In Proceedings of the 20th International Confer-
ence on Machine Learning (ICML-03), pages 656–663,
2003.

[Sutton and Barto, 1998] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

	Introduction
	Adaptation-Based Programming
	Explaining via Reward Decomposition
	Conclusions

