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Abstract

Information visualization construction tools generally tend to fall
in one of two disparate categories. Either they offer simple but
inflexible visualization templates, or else they offer low-level graph-
ical primitives which need to be assembled manually. Those that
do offer flexible, domain-specific abstractions rarely focus on in-
crementally building and transforming visualizations, which could
reduce limitations on the style of workflows supported. We present
a Haskell-embedded DSL for data visualization that is designed to
provide such abstractions and transformations. This DSL achieves
additional expressiveness and flexibility through common functional
programming idioms and the Haskell type class hierarchy.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

Keywords Embedded DSL, Information Visualization, Visualiza-
tion Transformations

1. Introduction

Data collection and storage requirements are growing at an exponen-
tial rate [21]. As the data analysis process has evolved to keep up
with this increasing demand, information visualization has emerged
as an important component [17].

For further motivation, consider the following anecdote. In 2010,
economists Reinhart and Rogoff published a now infamous paper
[25] in which an Excel1 error caused them to inaccurately report the
relationships between debt and economic growth [16]. This incorrect
work was then cited internationally in debates surrounding austerity
measures and likely influenced economic policy. One of their
primary errors was failing to select the correct number of data rows
(of the 20 countries represented in the data only 15 were selected).
Now consider a hypothetical situation in which these researchers had
been using a visualization tool that encouraged quick, incremental
visual data exploration. Figure 1 demonstrates a chart that such a
tool could create quickly which might have immediately exposed
that error. We have taken the liberty of numbering the bars to make
the effect more obvious, but even without the numbers we can
still observe that no countries in the A–E range are included or

1 http://office.microsoft.com/en-us/excel/
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simply that there appear to be fewer than twenty bars by estimation.
We claim that a powerful, incremental visualization tool could
encourage scientists and data analysts to use these kinds of charts
to perform a sanity check of their work, perhaps preventing a great
deal of trouble in the process.

Creating effective visualizations is difficult, however, even for
experienced data analysts. Despite the general prevalence of visual-
ization construction tools and libraries, most are either too inflexible
for custom problem domains or else require extensive low-level
graphics expertise to construct even simple visualizations. For exam-
ple, while Excel provides a diverse set of representations (bar charts,
scatterplots, pie charts, etc.) there is limited ability to customize
them, and they do not support incremental changes and transforma-
tions. Conversely, lower-level graphics libraries and languages such
as Cairo2 generally do offer increased flexibility, but typically lack
visualization-specific abstractions completely.

Between these two extremes lies a continuum of domain-specific
visualization software (see Section 7 for examples). Still, these
options tend to treat visualizations as individual, finished products
with little attention being paid to identifying abstractions which
are reusable and support systematic analysis and transformation.
Visualization and data analysis is an iterative process [30], which
suggests that being able to generate new visualizations without
having to start over could lead to a more suitable workflow. Because
visualization transformations allow for incremental changes, they
offer a way of achieving this.

As a possible solution, we present a Haskell-embedded domain-
specific language (DSL) designed to provide a concise but expressive
way to construct, compose, and transform data visualizations. Our
implementation (built on Cairo) was used to generate all included
figures. The design of this DSL is informed by a number of more
specific goals. First, we provide multiple layers of abstractions
in order to support multiple use cases. Sometimes a quick one-
liner is all that is necessary to get an overview of data, while more
customization and detail may be desirable for a figure designed to
be shared. We also intentionally keep the number of core language
constructs small, which is intended to simplify systematic analysis
and ease the process of defining new, custom transformations. This
can also allow the user to create custom abstraction layers to match
particular requirements.

The embedded nature of the DSL also means that orthogonal
problems such as data handling and rendering can be handled by
the host language and treated separately. Additionally, the use of
Haskell as a host language gives us access to its rich type class
hierarchy which, in turn, can provide powerful operations using a
style that is already familiar to many Haskell programmers. Finally,
to further separate ourselves from low-level graphics programming
tools, we provide an infinite, entirely scalable, unitless, and relative
environment for sizing and layout. Large, complex visualizations

2 http://cairographics.org/
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1. US

2. UK

3. Sweden

4. Spain

5. Portugal

6. Norway

7. New Zealand

8. Netherlands

9. Japan

10. Italy

11. Ireland

12. Greece

13. Germany

14. France

15. Finland

Figure 1. A chart showing some of the infamous Reinhart-Rogoff
data with five missing values, as in the original work.

can be created without ever seeing pixel dimensions or dealing with
raw geometric shapes.

We make the following specific contributions:

• A small set of core visualization construction components.

• Combinators and abstraction layers to hide low-level details.

• A set of transformations to systematically generate new visual-
izations from old ones.

• Haskell type class instantiations for functor and monad to
support additional visualization operations and transformations.

The remainder of this paper is organized as follows. We begin
in Section 2 by describing the core components that make up
visualizations, how they are used, and how they can be transformed.
In Section 3 we describe how visualizations can be merged and
composed together. Sections 4 and 5 describe the use of Haskell’s
functor and monad type classes, respectively, in a visualization
context. Section 6 offers evaluation based on a set of general-purpose
visualization tasks. Finally, we outline related work in Section 7 and
conclude in Section 8.

2. Visualization Components

Instead of a single, canonical way to build a given visualization,
we provide a number of layered abstractions from which to choose
the most appropriate for the situation. All of them, however, funda-
mentally produce a structure of type Vis. At the lowest level, the
user can create an individual mark. A mark is a single graphical
element consisting of a particular primitive shape and a set of visual
parameters. Visual parameters are any components of a mark which
can be bound to data, such as height, width, color, and orientation.
All of these data types are then collected together in a Vis.

The following code snippet shows definitions for the data types
corresponding to these ideas. While Vis is parameterized by a
polymorphic type variable, in practice this is always instantiated
with Mark. This will become useful in later, more complicated
examples and, in theory, also presents an opportunity for later
extensions to other types of visualizations. Note that the definitions
reproduced here, and in many of the following examples, are
incomplete. They are only intended to be illustrative.

data Vis a = Fill a | NextTo [Vis a] | Above [Vis a]

data Mark a = Mark Primitive [VisualParameter] a

data Primitive = R Rectangle | S Sector

data VisualParameter = Height Double | Width Double
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Figure 2. Two simple visualizations showing (left) the basic bar
chart with only default values and (right) a basic bar chart with a
few simple aesthetic customizations.

While it is possible to construct all visualizations by manually
building structures out of these basic data types, it is rarely necessary
to do so. For simple use cases, such as those covered by typical
visualization templates, we offer a set of high-level functions which
rely on simple defaults to construct basic charts. Examples of such
combinators are shown in the following type signature.

barchart, piechart :: [Double] -> Vis (Mark Double)

Note that these functions and their peers all produce something
of type Vis (Mark Double). This type signature indicates that the
visualization was constructed with a single floating point value for
each mark. More complex visualizations may be parameterized dif-
ferently. Also, these functions take only raw data lists as parameters,
but we will demonstrate more flexible alternatives in later examples.

For intermediate cases where the defaults are insufficient, a num-
ber of mid-level abstractions are available. Marks and visualizations
can be composed and transformed using any of a large set of combi-
nators and smart constructors. The rest of this paper will demonstrate
practical examples of these and how they can be used to visualize
data.

2.1 Creating Simple Charts

Bar charts are one of the simplest and most common visualization
types, making them a good way to demonstrate the practical use of
this DSL. As mentioned in the previous section, a high-level function
barchart is appropriate for the most straightforward use cases. It
works by choosing a set of default options without prompting the
user. In the following example, the barchart is used to construct the
example chart already shown in Figure 1. For the sake of simplicity,
we have extracted the data in lists of floating point values which
are not reproduced here. Specifically, rrData contains data showing
GDP growth by country for low debt/GDP ratios.

myBars = barchart rrData

The output of this simple visualization is shown on the left
of Figure 2. In some cases this chart might already be sufficient to
answer questions about the data, but the lack of color, missing labels,
and dense marks could make it difficult to read. Fortunately, chart
appearance can be customized via a number of aesthetic properties,
thereby allowing for the creation of something that is not only more
aesthetically pleasing but also more readable.

rrNumbers = map show [1..]

blueBars = myBars ‘color‘ blue ‘space‘ 0.1
‘label‘ rrNumbers

Starting with the previously defined myBars visualization, three
functions are applied to it. The color function simply assigns the
given color to every mark in the visualization. Any RGB triple can
be specified, as well as any of the X11 color names. In this case we
color the bars blue.

Next we apply the space function, which intersperses whitespace
between the bars. Since the environment is unitless, the amount of
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space is specified with respect to the width of the bars. The use of
the literal 0.1 means to use 10% of the bar width. The details of
relative spacing are discussed later, in Section 3.

Finally, the label function is used to apply simple numeric labels
to the bars showing their row number from the original data set.
Any text strings can be used to create labels. The rendered result,
including these customizations, can be seen on the right side of
Figure 2. While probably adequate, this chart would be stronger if it
included the country names as labels. Additionally, since names can
be long, we want to rotate the chart so that the bars are horizontal to
make them easier to read. We do that as follows.

rotRight :: Vis (Mark a) -> Vis (Mark a)

rrBars = rotRight $ blueBars ‘label‘ rrCountries

After adding new labels and performing a 90◦ rotation, the output
produced is the same as seen originally in Figure 1. This chart
emphasizes the error in the data set more directly, since both the
numbering scheme and the country names indicate it.

Note that the change of the visualization could be expressed
by applying a transformation to the existing visualization; it is not
required to edit or rewrite the original visualization.

It is also worth noting that this process may still seem somewhat
involved, but visualization customizations can be saved for later
reuse. For example, we could write and keep the following function.

faveBars = rotRight . (‘color‘ blue) . (‘space‘ 0.1)
. barchart

We could then use this just like the barchart function and it
would automatically apply our customizations for color, spacing,
and rotation.

2.2 Visualization Transformations

Bar charts are often an effective way to compare individual data
points, but they are not ideal for every situation. However, knowing
exactly which type of visualization to use for a given task requires
an unrealistic amount of foresight. Fortunately, the use of visualiza-
tion transformations allows switching between visualization types
without losing customizations.

Our next example uses a data set of passenger information from
the RMS Titanic, the ship which famously sank in 1912. We are
specifically interested in examining the number of passengers in
each of the travel classes, i.e., first class, second class, and third
class. Additionally, we want to compare these with the number of
crew members.

Imagine that we begin by creating a bar chart showing this
information, as in the previous example.

classSize = map length $ group classDat
classLabels = map show classSize

classBars = barchart ‘color‘ forestgreen
‘label‘ classLabels

After analyzing the output (which is not shown), we realize
that a bar chart does not emphasize these data as ratios of all the
passengers, making it difficult to see, for example, how big the crew
was compared to the number of passengers. To fix this, we decide
to create a pie chart1 instead of a bar chart. We could start over and
use the piechart function, which was briefly shown earlier, but that
would require re-applying all of the previous customizations, too.

1 The use of pie charts is sometimes considered poor practice because it
requires readers to perform area estimates, which can be inaccurate [9].
However, pie charts remain popular and widespread, and thus we support
them.

Instead, an alternative solution is to generate a new pie chart by
transforming our existing bar chart, which will then automatically
inherit all of the customizations applied previously. To transform
a bar chart into a pie chart we will need to make use of two
transformation functions.

circular, reorient :: Vis (Mark a) -> Vis (Mark a)

To fully understand how these functions work, it is helpful to
introduce some additional details. First, let us look more closely at
the partial definition for the Vis data type that was reproduced in
Section 2.

The Fill constructor is just a wrapper which serves as a base
case for more complicated visualizations. The NextTo and Above

hold lists of visualizations and compose them either next to or above
one another. It is important to note that while NextTo places marks
beside one another, that does not necessarily imply a rectangular
coordinate system in which the list elements are aligned along a
horizontal axis. An analogous point can also be made about Above.
Some cases do behave that way, such as when creating bar charts,
but NextTo and Above are actually more general. A pie chart, for
instance, can also be constructed with NextTo by using pie wedges
anchored around a single point rather than bars.

We call these pie wedges sectors, because they do not necessarily
make actual wedge shapes. Notice that Sector is a constructor of
type Mark. When NextTo is used with sectors, it assigns space by
angle around a point, much like the theta angle measurement in
a polar coordinate system. The sectors can still be understood
to be “next to” one another in sequence, just with a nonlinear
orientation. By convention we consider the zero angle to extend
to the right from the center point, and an increase in the angle moves
counterclockwise. Similarly, Above can be applied to sectors but
rather than aligning them along a vertical access, it divides the space
into sequential, concentric rings around the center point. Outer rings
are understood to be “above” inner rings.

Given these definitions, similarities between bar charts and
pie charts become more apparent. In fact, they are constructed in
exactly the same way save two small differences: the use of sectors
rather than rectangles and an angle-based orientation rather than a
rectangular one.

We can now return to the aforementioned transformation func-
tions and better understand how they work. The circular function
will traverse a visualization and essentially convert every rectangle
into a sector. It also inserts some bookkeeping information which
is not relevant to the example. The actual parameters such as the
embedded data, width, height, color, and label are not changed at
all. Instead, the width of the original bar is used to determine the
angle allocated to the sector, and the height of the original rectangle
is used to determine the inner and outer radii of the sector.

It may intuitively seem as if applying circular is the only step
necessary to convert between a bar chart and a pie chart. It does
create a valid visualization, just not the one we want. By itself, as in
the following code snippet, it actually transforms our bar chart into
a rose chart, shown on the left in Figure 3.

rose = circular classBars

The reason for this is that, in addition to other parameters,
our sectors have inherited an orientation. A mark’s orientation
determines which visual parameter the data is bound to. As we
have seen, default bar charts have a vertical bar orientation, meaning
that the data are bound to the bars’ height parameter rather than
width. When transformed into circular space, the radius of each
new sectors will inherit the height of the corresponding bar and the
angles will all be constant, as the bar widths were all constant.

If we had produced a horizontally-oriented bar chart in the first
place then we would have immediately obtained a pie chart upon
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Figure 3. Two charts created by transforming an earlier bar chart.
On the left is a rose chart in which the data is driving the radii of
the wedges, and on the right is the same visualization recolored,
relabeled, and reoriented so data drives the sector angles instead of
the radii.

applying the circular function. Since that is not the case, the
orientation of the sectors needs to be flipped. This is exactly the
purpose of the reorient function. By itself, reorient will switch
between vertical and horizontal bar charts or between rose charts
and pie charts. Composed with the circular function, however, it
will transform a vertical bar chart directly into a pie chart. Note that
reorient could have been used in place of rotRight in the example
from Section 2.

The complete code for the pie chart is shown below, and the
output can be seen on the right in Figure 3. In order to produce a
more readable visualization, the pie wedges are also recolored and
relabeled.

classNames = ["First", "Second", "Third", "Crew"]

myPie = reorient . circular . autocolor $
classBars ‘label‘ classNames

The autocolor function simply applies a list of infinitely re-
peated colors to the visualization, which is useful when you want to
distinguish between marks more easily but are not concerned with
the specific color choices. This can be configured rather easily, but
the details of doing so are omitted for space.

This final pie chart provides insight into the proportion of people
on board in each travel class to the number on the the entire ship.
For instance, we can see that the crew made up approximately forty
percent of passengers and that third class was larger than both first
and second combined.

3. Chart Composition and Layout

Visualizations can also be composed together in a number of ways,
allowing for the construction of more complex examples using
simpler building blocks. Most fundamentally, visualizations can
be composed spatially by dividing the canvas into parts, allowing
multiple visualizations to be shown at once. There are a number
of ways to accomplish this, but the simplest spatial composition
functions are listed below.

above, nextTo :: Vis (Mark a) -> Vis (Mark a)
-> Vis (Mark a)

These functions divide the canvas in half either vertically or
horizontally, respectively, and allocate each of the halves to one
of the two visualizations, which is then scaled to fit. These can
be nested arbitrarily deeply to produce hierarchical layouts. An
attentive reader might wonder whether these functions simply wrap
visualizations in Above and NextTo constructors. Aside from some
bookkeeping related to scaling and framing, this is indeed the case.

It is often useful to compose charts in more meaningful ways than
simply placing them near one another, however. Built-in functions
are provided for a number of rich merging operations and, by virtue
of keeping core data types simple, savvy users can create and save
their own. Two of the built-in examples are listed below.

stacked, grouped :: Vis (Mark a) -> Vis (Mark a)
-> Vis (Mark a)

As the name implies, stacked takes two visualizations and
composes pairs of marks above one another, such as for stacked bar
charts. Similarly, the grouped function zips pairs of marks from two
visualizations together horizontally, useful for visualizations such
as grouped bar charts.

To demonstrate the practical use of these operations, we return
to our RMS Titanic data set. By now we have a high level under-
standing of the passenger breakdown by travel class, and we may
want to examine the mortality rates, but broken down in a similar
manner by travel class. The following example starts by building
two distinct bar charts, one showing the survivors in each travel class
and the other showing the deceased. We then compose them using
both of the previous mentioned functions to construct a single, more
complex visualization. To save space, the details of the original bar
charts are omitted.

survived :: Vis (Mark Double)
deceased :: Vis (Mark Double)

groupedBars = grouped survived deceased
stackedBars = stacked survived deceased

composedVis = groupedBars ‘nextTo‘ stackedBars
‘space‘ 0.3

The output of this code can be seen in Figure 4. This exam-
ple demonstrates both kinds of composition mentioned. The first
composes simple bar charts into more complex visualizations, specif-
ically stacked and grouped charts. The second type is the spatial
composing of these more complex visualizations into a single canvas
using the nextTo function.

3.1 Whitespace

The output also provides further insight into the relative nature of
the layout and scaling strategy in use. A previous example applied
the space function to a single bar chart, which introduced space
between the bars. The size was measured relative to the width of the
bars. This example uses space again, but this time it is applied to
the composition of two visualizations, and so it inserts whitespace
between them relative in size to the entire visualization rather than
between individual pairs of marks. The grouped bars have some
space automatically inserted, but this is simply the default behavior
for grouped.

Sizing determinations, especially those for whitespace, can be
best understood by looking at visualizations as trees. Visualization
trees are constructed according to user specification and are made
up primarily of NextTo and Above nodes, each of which can have
arbitrarily many children. In a well-defined tree, the leaf nodes are
always Fill wrappers around individual Marks. A simplified tree
partially representing the last example might look as follows.

NextTo

NextTo

Above. . .Above

SpaceNextTo

. . .NextToSpaceNextTo
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Figure 4. A single visualization showing two different representa-
tions of the same information. The blue bars show the number of
survivors for the given travel class aboard the RMS Titanic and the
orange show the number of deceased. This example demonstrates
three types of composition: composing marks horizontally to con-
struct bar charts, composing bar charts by stacking and grouping,
and composing complete visualizations by dividing the canvas.

From this tree we can see how whitespace is captured internally.
The space function always intersperses whitespace among the chil-
dren of the node to which it was applied. Since we applied it to the
root node (to the composition of the groupedBars and stackedBars),
it interspersed whitespace between those two subtrees. The space
sizing is also calculated relative to those sibling nodes, so in this
case the specification of 0.3 produced whitespace equal in width
to 30% of the width of the entire individual bar charts. Note that
whitespace nodes were also automatically inserted in the left subtree,
which represents the grouped bar chart, by the grouped function.
These nodes create the spaces between each pair of bars.

Since the leaves in this tree are always Fill nodes, it may become
evident that whitespace is actually represented internally using
invisible marks. Not only has previous research [23] demonstrated
that users often prefer to place whitespace as an actual visualization
element rather than to describe it as negative space, but this also
provides a great deal more flexibility in using whitespace to assist
in layout tasks. Users can create their own whitespace marks and
intersperse them throughout visualizations as desired, allowing them
to use spaces to affect the layout of visualizations, or even to create
unequal spaces to emphasize certain marks.

4. Visualization Functor

By virtue of being embedded in Haskell, we can make use of the
type class hierarchy to provide additional mechanisms for building
and transforming visualizations.

The foremost use of type classes is the visualization Functor in-
stance. Implementing visualizations as functors provides a structure-
preserving way of applying functions to individual parts of a visual-
ization. In this case those individual parts are the graphical marks.
Instantiating the visualization functor requires an implementation of
the fmap function, which is reproduced below for the parts of Vis
we have looked at.

instance Functor Vis where
fmap f (Fill m) = Fill (f m)
fmap f (NextTo vs) = NextTo $ map (fmap f) vs
fmap f (Above vs) = NextTo $ map (fmap f) vs

This definition recursively applies fmap through each kind of
visualization until it reaches the base case Fill, at which point
the function being mapped is applied to the Mark. With this it is
possible to apply any function of type a -> b (which typically
means Mark a -> Mark b in practice) to any visualization. This can
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Figure 5. Conditional visualization formatting applied using fmap

from the Haskell Functor type class. Bars with a height above 0.75
are colored red, bars with heights between 0.5 and 0.75 are colored
orange, and the rest are colored green.

help simplify some routine visualization tasks, such as conditional
formatting and scaling. The following example shows how it can
be used to highlight particular values according to one or more
thresholds by recoloring them. Suppose we have data in the range
0..1, where higher values indicate some increased risk, and we want
to accentuate these high values to make them stand out from the rest
of the data.

redHigh m = let h = mGetHeight m
c | h > 0.75 = red

| h > 0.5 = orange
| otherwise = green

conditionalBars = fmap redHigh $ barchart myData

This example begins with the definition of a custom function
redHigh which queries the height of a Mark and then applies a color
depending on that value. We make all values above 0.75 red, all
values from 0.5..0.75 orange, and the rest green. Next, redHigh
is mapped across a newly created barchart. The result is shown
in Figure 5. Remember that, by default, this barchart would have
colored the bars black.

For the sake of comparison, accomplishing something similar in
Excel typically requires the use of at least two spreadsheet equations
to split the data into two columns, and then manually applying
separate formatting to each column. If, at a later point, one wishes
to change the threshold value, then that process needs to be repeated
completely. While defining a custom formatting function as we have
done is also nontrivial, one of the advantages of this approach is that
such functions actually extend the language and can easily be saved
for later use. The redHigh function is likely to be useful again later
if similar data are regularly visualized. We could also continue to
abstract the function by parameterizing the threshold values, which
would increase reusability even further.

The visualization functor is useful for more than just coloring
marks, though. We could, for example, use it to apply a mathematical
operation to the visualization without modifying the original dataset.
A common operation in data analysis is taking the logarithm of
every value, which we demonstrate next. We assume a data set
expData which we have reason to suspect might show an exponential
trend and use the visualization functor to transform the initial
visualization.

markLog :: Mark a -> Mark a
markLog m = mSetHeight m $ log $ mGetHeight m

expBars = barchart expData ‘label‘ myLabels
‘color‘ blue

logBars = fmap markLog $ expBars ‘color‘ orange

The rendered output of both expBars and logBars can be seen
on the left and right sides, respectively, of Figure 6. From this we

57



Figure 6. On the left is a simple barchart of data that appear to
show an exponential trend. On the right is the same barchart after
log-transforming each of the bars, showing what appears to be a
linear trend.

can see that, indeed, the log transform appears to give the data a
linear trend rather than an exponential one.

This may not seem like an interesting result since the data itself
could always be log-transformed independently of the visualization
creation process. Using a visualization functor has two advantages,
in this case. First, it assumes no foresight and does not require a new
visualization to be created, instead relying on the transformation of
an existing one. A more traditional tool would require creating an
additional data column and a complete new visualization. Second,
the bars are only changed visually and the original data values are
still accessible, allowing for further incremental exploration in case
a log-transform turns out to be insufficient.

5. Visualization Monad

In addition to the Functor type class, we also make use of Haskell’s
Monad type class. This allows functions to be written that can take
individual marks from a visualization as input, construct entirely
new visualizations from them, and automatically stitch those parts
back together. Monads are particularly under-explored in the context
of visualization despite a number of compelling, intuitive use cases.

The relevant part of the Monad instance definition is reproduced
below. It is abstracted out into two extra functions which each
traverse the entire visualization. This improves clarity at the cost of
performance, but could easily be changed for extremely complex
visualizations.

instance Monad Vis where
return = Fill
(Fill m) >>= f = f m
v >>= f = norm $ fmap f v

norm (Fill v) = v
norm (NextTo vs) = prune $ NextTo (map norm vs)
norm (Above vs) = prune $ Above (map norm vs)

prune (Fill m) = Fill m
prune (NextTo vs) = NextTo $ map prune

(filter nEmpty vs)
prune (Above vs) = Above $ map prune

(filter nEmpty vs)

The definition for the bind (>>=) function is similar to the
definition for fmap. The function that is passed as a parameter is
applied directly to a mark contained in a Fill node, and is mapped
across the nested visualizations for other node types. The main
difference from the fmap definition lies in the norm and prune

functions. The prune function removes any visualization nodes
which are empty, such as NextTo/Above nodes with no children. The
norm function performs the flattening of visualizations from type
Vis (Vis a) to type Vis a.

The visualization monad has a number of practical uses. We can,
for example, use it to produce a more interesting version of the log-
transform example in Section 4, which will show both the original
and log-transformed bars at the same time. This is demonstrated in

Figure 7. Another example of a log-transformed visualization, as
in Figure 6, except this time using the visualization Monad instance
to generate new bars in place beside their counterparts.

the following code, which assumes the definitions from that example
are still available.

logBeside m = Fill ‘color‘ blue ‘nextTo‘
(Fill (markLog m) ‘color‘ orange)

logExpBars = rotRight $ expBars >>= logBeside

The previous definition of logMark is conveniently reused here.
Instead of just modifying each mark, however, this example gener-
ates completely new visualizations from them. This is made pos-
sible by the additional power monads offer over functors, and is
also apparent when comparing the type signatures of logBeside and
markLog, i.e., Mark a -> Vis (Mark a) versus Mark a -> Mark a.
The markLog function is still applied to each mark, but now that
result is composed beside the original mark. Fill constructors are
used to wrap the marks, although more complex examples might
use other Vis constructors. We also color each of the bars to match
the colors from the previous example.

The rendered result is shown in Figure 7. It shows the log-
transformed bars immediately beside the corresponding untrans-
formed bars, as expected. This combination allows us to see both the
exponential and linear trend at the same time in the same visualiza-
tion. When the log-transformed bars are shown on the same scale as
the full-length bars, they are quite small. This could be addressed by
unzipping the visualization, and separating the bars into two distinct
visualizations again so that each is scaled independently. The code
for this is below, but the output is not shown since it is so similar to
the output in Figure 6.

let (ex,ln) = vUnzip logExpbars
in ex ‘nextTo‘ ln ‘space‘ 0.1

Achieving an effect like this in another tool would require the
same data manipulation steps described previously in Section 4, but
also another operation to somehow zip together and merge the two
data columns. This is true even for tools such as ggplot2 [33], which
includes coordinate transformations but does not allow separate
transforms for different parts of the same visualization.

Another use case for the visualization monad is in implementing
drill-down or roll-up operations, which increase and decrease the
granularity of a visualization, respectively. Switching between an
overview and a more detailed, granular view is a crucial component
in visual data analysis [26]. While this kind of operation can
theoretically be accomplished in most flexible visualization tools, it
often requires a great deal of work and foresight on the part of the
visualization creator. This difficulty is sometimes compounded by
trying to drill-down or roll-up multiple data sets at once, which then
requires complex, manual layout specification.

Leveraging the Monad instance allows us to achieve this affect by
just defining a single function which generates the new visualiza-
tions of different granularity from the existing marks. As a lead-in
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to the full example, the following code defines a bar chart with no
drill-down or roll-up functionality.

barsFrom :: (a -> Double) -> [a] -> Vis (Mark a)

dat :: [[Double]]
dat = [dat2010, dat2011, dat2012, dat2013]

colorNegative :: Mark a -> Mark a

drilledBars = fmap colorNegative $ barsFrom (!! 2) dat

We have used a different function here for creating bar charts
than in any of the previous examples, called barsFrom. The reason
for this is that this example uses a more interesting data format than
the previous examples. Unlike barchart, barsFrom takes data of
a completely polymorphic type with the caveat that the user also
supply a function for extracting floating point values from it.

A data set of profit and loss information for a business, called
simply dat, is given. This data set contains information for each
month for four years, structured as a nested list. For business reasons,
we first want to compare the data associated with the month of
March for each of the four years. To accomplish this, we pass
(!! 2) to the barsFrom function, which is zero-indexed and will
extract the value for the third month for each year. Finally, we make
use of a function colorNegative (the definition of which is not
shown) to color negative values and positive values differently. The
corresponding bar chart can be seen on the left side of Figure 8.

After seeing this subset of data we decide that we also want to
see context. That is, we want to see additional months to see how
the March data fits in. To see this we effectively must perform a
roll-up of the visualization. We can make use of monadic functions
to accomplish this in the following way.

colorN :: Int -> Color -> Vis (Mark a) -> Vis (Mark a)

rollup = rotRight . colorN 2 lightorange .
fmap colorNegative . barchart . mGetData

rolledBars = drilledBars >>= rollup

The first thing we have done is to define the custom rollup func-
tion. Written in point-free style, this function does five things. First,
it extracts the original data set from the mark. In this particular case
that means extracting the list of values for the entire corresponding
year. That data is then passed to the familiar barchart function. We
then map colorNegative to recolor this new visualization. Apply-
ing the colorN function will index into a visualization and recolor a
particular element. We use this to highlight the original bars in our
rolled-up view by coloring the March bars light orange. Finally we
rotate the visualization to better make use of the vertical space.

With this function, we can transform the initial March-only chart
that we created previously by using >>=. The output is shown on the
right of Figure 8.

It is worth noting that Haskell’s type system provides a practical
safety guarantee here that the data extracted by mGetData are
appropriate for creating the new visualization. The type of the data
can be extracted from the type of the original visualization.

This way of extracting and manipulating data from marks is not
intended to be an ideal data storage and lookup mechanism. Instead,
it acts more as a lightweight alternative to querying a full database.
It is worth noting, however, that this problem of data management
is orthogonal to the visualization monad and what it offers. Just as
we use mGetData, we could also query another data source based on
a unique identifier of some sort.
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Figure 8. On the left is a simple chart showing some income
data for a particular month across four years. On the right is a
visualization of the data for every month across four years, obtained
by transforming the visualization on the left using a custom monadic
function. The original bars in the left visualization are highlighted
on the right by coloring them distinctively.

5.1 Visualization Comprehensions

By using the GHC1 extension for monad comprehensions, which
provides syntactic sugar for Haskell’s “do” notation, we can also
allow users to create interesting, monadic visualizations using the
same syntax used for list comprehensions. Visualization comprehen-
sions are particularly useful in situations where we are interested in
analyzing the Cartesian product of two data sets, or some filtered
subset thereof, resembling a join operation in a database.

Here again, the strength of the visualization monad approach is
that the actual data source need not be manipulated. If visualizations
for each of the two data sets have already been generated, we can
use a visualization comprehension with two generators to extract
and join the marks from each with the existing data.

As an example, consider the situation where we want to analyze
data related to employee performance in an office. There are
two variables. The first is a (possibly negative) value for each
employee in the office reflecting their performance relative to
some standard measure. That is, a high value in the first data
set represents an overachieving employee and a negative value
represents an underachieving employee. There are 30 employees.
The second data set contains values for five possible training courses.
The actual data values show the estimated employee performance
improvement associated with attending that particular training
course. For bureaucratic reasons, the goal is to ensure as many
employees as possible meet the standard by sending underachievers
to training courses. Naturally, the optimal solution would seem to
be sending all under-performing employees to the course with the
highest estimated improvement value. However, the courses all have
different costs and so we want to be able to select the most cost-
efficient way of achieving our goal. To support this process, we want
to see all possible, relevant combinations at once.

employees = barchart emplData ‘color‘ orange
courses = barchart courseData ‘color‘ blue
ecBars = employees ‘above‘ courses

We begin by charting the two data sets separately to get an
overview. The output is not shown since it is similar to previous
examples. This visualization is insufficient to easily meet our goal,
however, since it shows two separate charts and we still need to man-
ually estimate the effect of each course on each employee. Instead,
we want to visualize the actual estimated end result of each possible
combination. For this, we can use a visualization comprehension
with two generators, a filter, and functions to combine bars together
and give them an appropriate color.

1 http://haskell.org/ghc
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Figure 9. Estimated employee performance data created using a
visualization comprehension to combine two existing bar charts.
Labels identifying employees are omitted because of formatting
limitations.

courseColor :: Mark a -> Mark a -> Mark a

addBars m1 m2 = let h = mGetHeight m1 + mGetHeight m2
in mSetHeight m1 h

empCombo = clean [courseColor c (addBars e c)
| e <- employees
, c <- courses
, mGetHeight e < 0] ‘space‘ 0.6

We begin by defining the courseColor function. This is not
shown because it is boilerplate code similar to the redHigh function
from Section 4. Its purpose is to color each mark according to the
training course it represents, i.e., it colors our final bars using one
of five distinct colors corresponding to the data points in courses.
Next we define addBars which combines two bars into a single one
by adding their respective heights. This will allow us to merge one
bar from each of the two existing visualizations together, giving the
estimated final performance value for that employee and training
course. Now we are ready to use a visualization comprehension to
generate the new chart. The comprehension extracts all marks from
employees and courses, filters out those employees who are already
overachieving, and then combines all remaining pairs of bars. We
also apply the clean function to the entire visualization to remove
any leaves which are not Fill nodes, which may be introduced
by filtering the marks. This could be done automatically before
rendering, but we avoid doing so in case of unforeseen uses. Finally
we add space between each group of bars to visually separate them.
Note that we would ideally keep labels for the bars to identify which
employee is being represented. Here we omit them only because
making them legible would require too much space. The rendered
output is shown on the right side of Figure 9.

The chart shows five bars—one per training course—for each of
the underperforming employees. Each bar represents the estimated
final performance value after having taken the course. Negative
bars show cases where the improvement is not enough to cross the
threshold. From this result we can select the least expensive course
for each employee that will bring him or her above the standard
measure, i.e., produces a positive value.

This kind of operation can be tedious in other visualization tools.
They would typically require the user perform some kind of join
between the two data sets, while filtering and sorting the values
ahead of time. Our approach, by contrast, allows these operations to
be performed on the visualization itself by transformations, leaving
the data source alone. Perhaps more importantly, all the functions
are reusable. Should another manager be interested in applying the
same techniques, we could simply share the functions leaving only
the simple task of plugging in the relevant employee data set.

6. Evaluation

Evaluating visualization tools is inherently difficult [24]. Common
HCI evaluation techniques and user studies are challenging to apply

because visualization tools often intentionally sacrifice accessibility
or usability for gains in expressiveness or performance. Given such
a sacrifice, a typical usability evaluation may offer only limited
value. Additionally, a prototype tool such as presented here, almost
certainly lacks some features that data analysts would find helpful or
necessary, which precludes long-term case studies and deployments
since users would not be able to use it for their full-time work.

Some popular visualization tools (e.g., [6]) have used Cognitive
Dimensions [13] as an evaluation framework, although this is also
problematic since it includes no objective measure of what is
considered good or bad. Others have opted to measure success
based on real-world user adoption rates [7, 31]. The most common
option is to forego typical evaluation criteria completely and to
instead demonstrate functionality equivalent with, or superior to,
established tools [10, 12, 28, 32, 33].

Some work has proposed visualization-specific evaluation tech-
niques and criteria, or proposed task-based taxonomies that could
be used to extract functional requirements [1, 2, 8, 18, 27]. Many
of these are still designed for interactive, graphical tools and are
difficult to apply to a language-based solution, however.

6.1 Applicable Evaluation Schema

In this work, we turn to Brehmer and Munzner’s typology of
visualization tasks [8] to provide a set of requirements adequate
for evaluating this work as a general-purpose visualization tool.
That work is intended to classify “empirically observable events”
and to (among other things) serve as an evaluation framework.

However, we make one important distinction. Our DSL need not
necessarily serve as a complete, user-facing product in itself. As is
the case with Tableau/Polaris [28], the DSL could hypothetically
be used as the underlying representation for a tool which adds new
types of interactivity and functionality. This means that the tasks
in the “why?” and “what?” categories put forth by Brehmer and
Munzner are actually orthogonal to our goals, as they are focused on
visualization reading rather than visualization specification and im-
plementation. Therefore, we focus exclusively on tasks in the “how?”
category. These provide a set of functional requirements appropriate
for evaluating the effectiveness of a visualization construction tool.
Each is discussed here in turn.

Select This task involves selecting individual marks in a visualiza-
tion, such as by clicking with the mouse. The actual interactions and
input handling necessary to support this are orthogonal to our work,
and can be achieved by embedding this work in a larger tool with an
industrial-strength event-handling library. Of greater interest, then,
is how the general concept of selection can be handled in our DSL.
One possibility is illustrated by the following code snippet, where
we assume that each mark contains a selection flag.

selectWhere f = fmap (\m -> if f m
then doSelect m
else m)

By defining a higher-order selection function in this manner,
interactive events can be made to generate functions of type Mark

a -> Bool automatically and then apply selectWhere accordingly.
We could, for example, generate a function which selects marks in a
certain geometric range selected by the users, or a function which
selects marks according to a unique ID to support brushing across
linked views. When combined with event-handling, this is sufficient
to implement essentially any type of selection operation.

Navigate Navigation tasks are defined as methods that alter a
user’s viewpoint, which also includes showing data at different
granularities. We have demonstrated this functionality directly in
the roll-up example in Section 5. Additionally, we allow the spatial
composition of arbitrarily many visualizations into a single canvas,
which directly allows for multiple views of data to be shown at once.
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Arrange Allowing visualization elements to be rearranged is one
of the core strengths of our approach. It is possible to break any
visualization down into its core components and then reconstruct
them as desired. Furthermore, mechanisms are provided for indexing
into visualizations (as shown by the highlighted bars in the roll-up
example in Section 5), for sorting visualizations (via vSort, not
demonstrated), for grouping and merging (as in Section 3), and for
unzipping (via vUnzip, described in Section 5 but not shown). The
swapping of axes is also mentioned specifically, which is available
via the built-in reorient function.

Change This category discusses specific tasks including altering
the size and color of marks, transforming scales and axes, and
transforming between grouped and stacked bar charts. All of these
are demonstrated here. Altering size and color can be achieved using
the visualization functor as described in Section 4, transformation
of scales is shown in Sections 4 and 5, and the transformation and
composition of bar charts is shown in Section 3. We also support
changing visualization types completely in Section 3.

Filter This group of tasks is concerned with filtering visualization
elements based on user criteria. We support this in several ways.
First, we can rely on the host language to provide rich filtering
operations that operate on the data directly. More importantly,
the visualization monad and visualization comprehensions allow
filtering with arbitrary predicates. This is demonstrated in the
example from Section 5.1 where negative values are filtered out.

Aggregate Aggregation (or changing the granularity) of visualiza-
tion elements is another task that we support in two different ways.
We can rely on Haskell to aggregate values in our data directly,
such as by grouping, but the more idiomatic approach is to use the
visualization monad again. We show an example of how drill-down
and roll-up operations can be implemented in Section 5.

Annotate It is not immediately obvious how well we are able
to support the annotation task. We certainly allow marks to be
labeled, as demonstrated repeatedly. We also embed this label in the
actual mark structure, as specifically suggested. We do not, however,
currently support adding annotations in any empty spaces. While
this case is not mentioned specifically, it may be intended to be
implicit in the description. Because of that, we only claim to support
annotation tasks partially. However, a GUI wrapper for our work
could conceivably introduce additional annotation support without
needing to modify the language itself.

Import This task type involves adding new visualization elements
to existing ones. We demonstrate and discuss a number of ways
this can be done in Section 3. We offer an array of techniques for
combining visualizations, both spatially and in more interesting
ways. This allows new data points to be added at any time without
losing existing work. While scatterplots are not discussed here,
adding new elements to a scatterplot could be achieved through the
user of an overlay operation, which we support.

Derive This task is focused on creating new data elements from
existing ones. This is one of the primary strengths of our approach
and focus on transformation. Scaling is mentioned specifically, one
form of which we have shown in Section 4 when log-transforming
our visualization. We could also rely on support from the host
language for this task, if desired.

Record Saving visualization elements is something we gain auto-
matically via the embedded nature of our work. Visualizations (as
well as marks and transformations) can be bound to Haskell identi-
fiers, as shown in all examples. These persist indefinitely and can
be used to reproduce and recall earlier work. Creating screen shots
is also supported, witnessed by the figures shown throughout this

work, which were all generated using the prototype. The specific
graphical history mentioned could be implemented as a layer on top
of our work by capturing each incremental visualization.

Encode Data encoding is not thoroughly discussed in Brehmer
and Munzner due to space limitations. We adopt the technique of
binding data directly to visual parameters, which is also standard
in successful visualization tools such as Tableau/Polaris [28] and
ggplot2 [33].

6.2 Evaluation Conclusions

According to this set of criteria, our work meets nearly all criteria
for the implementation of a visualization tool. The only real failure
is in supporting particular kinds of global annotations.

This is not meant to suggest that it is already a complete
visualization tool ready for public distribution, but rather that the
technical foundations are strong and, with further extensions, it
could serve as a complete specification and transformation language.
Reaching that goal would involve adding additional mark types,
additional text handling for things like legends, support for guides
and axes, and more.

7. Related Work

Much of the vocabulary used in this work as well as the idea of
binding data to visual variables were first developed by Bertin [3, 4].
We make use of these ideas directly, with the exception of preferring
the term visual parameter to visual variable.

Perhaps the most widely used visualization tools are D3 [7] and
its now unmaintained predecessor Protovis [6]. Both are popular
Javascript libraries for creating and manipulating data-driven graph-
ics. Protovis, in particular, took a DSL-based approach based on
the design described in earlier work by the same authors [14]. In
addition to making some higher-level abstractions available than
those provided by D3 and Protovis, our work is distinguished from
this through the use of functional programming idioms and type
classes, particularly the use of functors and monads.

The decision to approach this problem with a domain-specific
language is partially motivated by Mackinlay [19], who introduced
the idea that information visualizations are inherently sentences of a
graphical language. This approach has been used before, however.
Haskell DSLs have been developed for astrophysics visualization
[11] and scientific visualization [5] for example. The Haskell
community has also produced Diagrams [35], and its predecessor
Chalkboard [22] designed for image and figure creation. Like our
own, this work makes use of some functional programming idioms
and part of the Haskell type class hierarchy. That work has also
greatly influenced the scalable and unitless layout used here. Our
work, however, focuses on incremental, data-driven visualizations
rather than figures.

Some Haskell DSLs exist for information visualization, most no-
tably the Chart package1. These are primarily focused on statistical
plotting, however, and do not support transformation comprehen-
sively.

Outside of the functional programming community, ggplot2
also used a DSL approach for visualization [33]. Serving as an
implementation of a complete, object-oriented schema for statistical
plotting [34], it influences the work on visualization transformations
presented here. We extend what is available in ggplot2 by allowing
users to change and create transformations, thereby allowing for
custom and reusable abstractions.

Stencil [10] provides a Java-based DSL for creating information
visualizations which shares the use of data-bound visual parameters
with our work. The choice of Haskell as a host language in our work

1 https://github.com/timbod7/haskell-chart/wiki
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allows us to leverage the type system more than Stencil, especially
when using functors and monads.

A number of tools offer a substantially higher-level abstraction
than our work. Tableau [20], for instance, allows users to attach data
to visual parameters via a drag-and-drop interface. Even higher-
level tools, such as Excel, provide a set of templates for one-
click solutions to simple use cases. By design, these tools offer a
fixed number of representations, providing less flexibility than both
domain-specific languages and lower-level programming libraries.

Finally, there are tools which are neither DSLs nor highly ab-
stracted. These are too numerous to describe here, but relevant exam-
ples include Matlab1, Improvise [32], Prefuse [15], and Mondrian
[29].

8. Conclusion

We have presented a Haskell-embedded domain-specific language
for creating and transforming data visualizations. Further, by lever-
aging Haskell’s type hierarchy, we have demonstrated that functional
programming idioms and type classes are useful in practical visu-
alization scenarios. We have also shown that using visualization
transformations to modify and generate visualizations can often
supplant the creation of entirely new visualizations, offering the
possibility of a more iterative and incremental workflow. Finally, an
evaluation based on a set of typical visualization tasks has shown
that we offer ample support in meeting the requirements of a com-
plete visualization tool.
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