
ClassSheets: Automatic Generation of Spreadsheet
Applications from Object-Oriented Specifications

Gregor Engels
∗

University of Paderborn
33095 Paderborn, Germany

engels@upb.de

Martin Erwig
†

Oregon State University
Corvallis, OR 97331, USA

erwig@eecs.oregonstate.edu

ABSTRACT
Spreadsheets are widely used in all kinds of business applica-
tions. Numerous studies have shown that they contain many
errors that sometimes have dramatic impacts. One reason
for this situation is the low-level, cell-oriented development
process of spreadsheets.

We improve this process by introducing and formaliz-
ing a higher-level object-oriented model termed ClassSheet.
While still following the tabular look-and-feel of spread-
sheets, ClassSheets allow the developer to express explic-
itly business object structures within a spreadsheet, which
is achieved by integrating concepts from the UML (Unified
Modeling Language). A stepwise automatic transformation
process generates a spreadsheet application that is consis-
tent with the ClassSheet model. Thus, by deploying the
formal underpinning of ClassSheets, a large variety of errors
can be prevented that occur in many existing spreadsheet
applications today.

The presented ClassSheet approach links spreadsheet ap-
plications to the object-oriented modeling world and advo-
cates an automatic model-driven development process for
spreadsheet applications of high quality.

Categories and subject descriptors: D.2.2 [Soft-
ware Engineering]: Design Tools and Techniques— object-
oriented design methods; H.4.1 [Information Systems Appli-
cations]: Office Automation—spreadsheets

General terms: Languages, Reliability

Key words: Spreadsheet, UML, End-user software engi-
neering

∗Work of Gregor Engels performed during a sabbatical stay
at Oregon State University. His work is partially supported
by the Heinrich Hertz Stiftung.
†Martin Erwig is partially supported by the National Science
Foundation under the grant ITR/AP-0121542 and by the
EUSES consortium (EUSESconsortium.org).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’05,November 7–11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011 ...$5.00.

1. INTRODUCTION
Spreadsheets are the most popular programming systems

used today. They are particularly popular in the domain of
business applications. Estimates say that tens of millions
of business people create hundreds of millions of spread-
sheets every year [20]. This successful and wide-spread use
of spreadsheets is due to several reasons. In addition to the
highly intuitive, two-dimensional tabular layout combined
with convenient operations for row and column insertions
and deletions, it is the fact that all kind of data aggregations,
which are ubiquitous in business applications, are directly
expressible in spreadsheets.

On the other hand, numerous studies have demonstrated
that existing spreadsheets contain errors at an alarmingly
high rate [21, 15]. This situation is even more worrying as
spreadsheets are often used in critical planning and control
systems within highly sensitive business domains, that is,
errors in spreadsheets may have a direct and significant eco-
nomic impact. In addition, due to pressures of compliance
with the Sarbanes-Oxley Act [2], US business managers are
longingly waiting for good support to reduce information
and decision risks while deploying spreadsheets.

Spreadsheet user communities as well as spreadsheet tool
vendors have been working for years on improving this situ-
ation by developing methodological guidelines, application-
specific sample spreadsheets (often called templates), as well
as numerous plug-ins and add-ons for commercial spread-
sheet tools to build, document, visualize, maintain, analyze,
and test spreadsheet applications (see, for example, [15] for
links to many of these efforts). However, a closer look at
all these initiatives reveals that accepted and well-known
software engineering principles, which have been success-
fully applied in large-scale professional software develop-
ment projects, are in general ignored during the creation
of spreadsheets. Surprisingly scientific research results on
spreadsheet design can rarely be found at relevant software
engineering conferences or in journals (see Section 7 for a
survey on related work). Nearly all mentioned efforts to
improve the development of spreadsheets stick to improve-
ments on the basis of the underlying low-level cell-oriented
programming model. What is still missing is a thorough
development process support for spreadsheet designers and
users to bridge the immanently existing semantic gap be-
tween concrete problem-domain-specific requirements and
their realization in a spreadsheet.

The need to support end user software development has
been recognized for some time now [8] and has led to sev-
eral international research initiatives. Two of them, in

which the authors are participating, are the NSF-funded
EUSES project [14] and the European Network of Excellence
EUD-Net [1] on End-User Development. Both initiatives
are addressing the same research question of understand-
ing whether and how it is possible to bring the benefits of
rigorous software engineering methodologies to end users.

Two prominent research and development trends within
software engineering during the last decade have been the
meanwhile overall accepted object-oriented approach toward
software development [10], as well as a model-driven en-
gineering (MDE) process [17]. We build our approach on
these two principles and propose to lift the development of
spreadsheet applications to the level of a spreadsheet model.
In particular, we introduce means to cluster cells within
a spreadsheet according to underlying problem domain-
related business object structures, which will reduce the se-
mantic distance between a problem domain and a spread-
sheet application and will support the spreadsheet designer
in detecting erroneous design decisions as early as possi-
ble. In pursuing this goal we are always adhering to the
well accepted spatial spreadsheet metaphor that has made
spreadsheets so popular. Based on this approach, we provide
an automatic, tool-supported transformation process from
spreadsheet models to concrete model-compatible spread-
sheet applications. In this sense, the approach presented
here will be an MDE instance of a fully automated develop-
ment process starting with a high-level, user-defined model,
which is automatically transformed into an executable pro-
gram.

In previous work, we took a first step toward introducing
an additional model level for spreadsheets by describing the
structure and evolution of spreadsheets with the help of an
abstraction called template.1 Spreadsheet templates can be
defined in this approach through an editor that is based on
a formally defined visual language Vitsl (an acronym for
visual template specification language) [5]. These spread-
sheet templates are used as input for an automatic genera-
tion tool Gencel, which produces a MS Excel spreadsheet to-
gether with customized update operations that ensure that
the spreadsheet stays within the model defined by the tem-
plate [11].

While this approach reveals substantial benefits for all
spreadsheet users, it is still limited in its scope since it fo-
cuses on structuring means that are geared toward the tab-
ular row and column structure of spreadsheets. What is
missing, are higher-level structuring means which allow to
express constraints which are related to the underlying busi-
ness logic.

Thus, the overall objectives of our approach are as follows

• introduce the concept of a high-level spreadsheet
model

• introduce higher-level modeling means which are ori-
ented toward the object-based structure of business
applications

• keep the tabular two-dimensional layout of spreadsheet
design in order to ensure user acceptance

• embed spreadsheet development into an object-
oriented model-driven process

• provide a formalization for the transformation process
as a base for its automation

1Not to be confused with the templates available in MS
Excel that represent predesigned spreadsheet samples.

• provide tool support for a definition of spreadsheet
models and their automatic transformation into a cus-
tomized spreadsheet editor

The contributions of this paper and the embedding into
a larger context are illustrated in Figure 1. The ClassSheet
spreadsheet model will be used as a high-level, object-
oriented model at the top of an automatic transformation
chain. An informal introduction into ClassSheets will be
given in Section 3. ClassSheets are automatically trans-
formed into Vitsl templates, which are summarized in Sec-
tion 2. In Sections 4 through 6 we formalize our approach.
In Section 4 we define the abstract syntax of ClassSheets,
which is extended in Section 5 by introducing typing rules for
ensuring a two-dimensional tiling structure to characterize
well-formed ClassSheets. In Section 6, the transformation of
ClassSheets into Vitsl templates is formalized, which facil-
itates the reuse of the existing Gencel spreadsheet generator
to complete the overall process in the transformation chain
on the right-hand side of Figure 1.

The transformation on the left of Figure 1 shows further
potentials of our approach, which are not explored in this
paper. Since ClassSheets can be viewed as 2-dimensional
extensions of UML class diagrams, in which derived object
attributes are defined in a visual way, ClassSheets bear the
potential to be used as an intuitive alternative to, for ex-
ample, textual OCL expressions [3] to express data aggre-
gations within an UML-based software development process
for business applications. In this paper, we restrict to infor-
mally illustrate how ClassSheets are directly projected into
standard UML class diagrams (see Section 3).

In Section 7 we discuss related work. Conclusions and
future work presented in Section 8 complete the paper.

ClassSheet
s

ViTSL Template
t

safe
MS Excel

Spreadsheet

UML Class
Diagram

Gencel

Tiling Structure
τ

|-

B,F

problem
domain

implementation
level

model level

Java
program

“semantic gap”

Figure 1: The ClassSheet approach.

2. SPREADSHEET TEMPLATES
One approach to introduce a modeling step for spread-

sheets is based on the observation that spreadsheets can be
structured into vertically and horizontally composable, pos-
sibly recurring, blocks. This structured view forms the basis
of the language Vitsl which allows the definition of spread-
sheet templates [5].

Figure 2: Budget template created with the ViTSL editor.

Figure 3: Automatically generated Gencel spreadsheet application.

A very simple example of a spreadsheet
template is shown on the right. It describes
the common structure of a one-column-sum
spreadsheet including a header, in this case
called Values. Such a template describes the
following aspects:

1. Structural information, such as the existence of a
header, of the one cell containing a SUM formula and
of a number of “data” cells

2. Layout information, such as that the header is placed
at the top and that the data cells are placed above the
SUM cell

3. Data dependencies, such as that the data cells are used
as the arguments of the SUM formula

Altogether, Vitsl offers the following visual elements for
describing templates:

• Cells, represented by rectangles and containing data
(representing labels and values) or formulas.

• References, represented by concrete cell addresses.

• Vex groups, represented by vertical dots that indicate
the possible expansion of a (group of) cell(s) in vertical
direction.

• Hex groups, represented by horizontal dots that indi-
cate the possible expansion of one or more columns in
horizontal direction (see Figure 2 for an example).

An important feature of Vitsl is that it is a visual lan-
guage with a look-and-feel very similar to standard spread-
sheets. This ensures a high acceptance of Vitsl by tradi-
tional speadsheet users. The Vitsl syntax has been for-
mally defined in [5], too. Since our formalization will be
based on the abstract Vitsl syntax, we briefly summarize
the abstract syntax of templates (see Figure 4): A template

(t) is given by a horizontal composition (|) of fixed (c) or
expandable (c→) columns, where a column is given by a ver-
tical composition (ˆ) of fixed (b) or expandable (b↓) blocks.
A block is given by a horizontal or vertical composition of
blocks or is a formula (f). Formulas consist of basic val-
ues (ϕ), references to other data cells (ρ), and expressions
that are built by applying functions to a varying number of
arguments given by formulas (ϕ(f, . . . , f)). References are
given by relative offsets to cells, that is, by pairs of integers.
In the concrete Vitsl syntax these offsets are represented
by cell addresses, which is possible since the templates are
surrounded by a global row/column frame. Since the global
row/column numbers are not available in the abstract syn-
tax, references are given by relative offsets. Therefore, ref-
erences, such as C4 and F4, in Figure 2 are represented by
pairs of integers (−2, 0) and (0,−1), respectively.

f ∈ Fml ::= ϕ | ρ | ϕ(f, . . . , f) (formulas)

b ∈ Block ::= f | b | b | bˆb (blocks)

c ∈ Col ::= b | b↓ | cˆc (columns)

t ∈ Template ::= c | c→ | t | t (templates)

Figure 4: Template syntax.

In addition to the abstract, context-free syntax definition
of Vitsl given by the BNF, a type system (representing
context-sensitive constraints) has been defined that enforces
the correct alignment of rows and columns with respect to
repeating groups. The type system also guarantees correct
references within a table and aggregation formulas as well
as a correct typing in case of formula expressions. In par-
ticular, the alignment constraints ensure that insert/delete
row/column operations are always well defined in the gen-
erated spreadsheet application.

The generated spreadsheet application consists of an MS
Excel spreadsheet and tailor-made update operations for in-
serting rows, changing values, etc. These update operations
are provided through a tool, called Gencel, which is an ex-
tension to MS Excel that restricts the definition and pos-
sible evolution of a concrete spreadsheet according to the
specification given by the template. Thus, illegal update
operations like a partial copying or moving of vertical (vex)
or horizontal (hex) recurring groups are prevented. Further-
more, formulas are updated correctly and automatically, for
example, in the case of inserting new instances of vex or hex
groups in a concrete generated spreadsheet. For details on
the type system and spreadsheet generation, see [11, 12].

Figures 2 and 3 demonstrate a somewhat more involved
example of a Vitsl template and a corresponding Gencel
spreadsheet application for a budget calculation. We will
use this application to illustrate some limitations of the
Vitsl/Gencel approach as a motivation for the proposed
ClassSheet model.

Figure 2 shows that a hex group has been defined by clus-
tering columns C, D, and E. The underlying problem domain
requirement was that for each year (and for each category)
the values Qnty, Cost and their product form a logical unit
and should occur in the spreadsheet. The only way to ex-
press this logical clustering of three cells within Vitsl is by
the omission of layout-oriented notations as the two small
vertical bars in the header row between C, D, and E. In Gen-
cel, this grouping causes the corresponding insertion and
deletion of groups of three columns as blocks.2

Now imagine that the Vitsl designer would have grouped
only the cells D and E, which would solely be visible in
Vitsl by an additional bar within the header row between
the columns C and D. This notationally minimally differ-
ent Vitsl model would have resulted in a completely differ-
ent spreadsheet application, in which the horizontal repeti-
tion would have been restricted to the two columns D and
E. This different grouping would express that the quantity
value is fixed for all years, while only the cost value might
vary yearly.

Another possible source for an error-prone spreadsheet
model is due to the indication of references in formu-
las by means of cell-oriented addresses like C4*D4. Here,
once more, the use of business logic-oriented notations like
Qnty*Cost helps to prevent the design of incorrect data com-
putations.

Therefore, since Vitsl is limited to the support of layout-
oriented clustering constraints and cannot express problem-
domain-oriented logical clustering according to business ob-
jects explicitly, the semantic gap between problem domain
requirements and a spreadsheet application still forms a ma-
jor obstacle to yield trustable spreadsheet applications.

3. CLASS SHEETS
In this section, we will introduce our approach of a high-

level, object-oriented model for spreadsheet applications. A
formalization of the approach is presented in the three sub-
sequent sections.

In order to motivate the introduction of a business
application-oriented structure on top of a layout-oriented

2Note that when merging cells in MS Excel all but the first
cell entries are lost, so that this groupwise operation is not
possible at all in MS Excel.

Vitsl template structure, we discuss in the following three
simple example spreadsheet applications. The first one (see
Figure 5, left), the so-called income sheet, consists of a list
of data values, which are summed up and the sum of which
is shown in a separate cell. From an object-oriented point of
view, one can see a summation object, which aggregrates a
list of objects bearing single data values. Looking at the lay-
out structure, the list of data values is extended by a single
header Item.3 This structure is embedded into the layout of
the summation object, consisting of a header entry Income

and a footer with the label Total and an aggregation for-
mula assigned to an attribute named total. We call such an
object-oriented extended template a ClassSheet since it de-
fines classes together with their attributes and aggregational
relationships.

1

A

Income

2

3

Item

value = 0

4 Total

5 total = SUM(Item.value)

...

total : Int

Income

value : Int = 0

Item
*

SUM(Item.value)

IncomeˆItemˆ0↓ˆTotalˆSUM((0,−2))

Figure 5: A simple one-dimensional ClassSheet.

Thus, ClassSheets consist of a list of attribute definitions
grouped by classes and are arranged on a two dimensional
grid. Additional labels are used to annotate the concrete
representation. Class names are set in boldface in contrast
to attribute names and labels, which are set in normal face.
In addition, colored borders are used to depict the different
classes within a ClassSheet.4

Class parts may be spread over header and footer en-
tries, which results in a bracket-like structure indicated by a
square-bracket-like notation of (open) class rectangles. For
example, in Figure 5, the red class Income is split into a
header and footer part that surrounds the blue class Item.
References to other entries, being expressed in Vitsl by co-
ordinates, are defined by using attribute names, as shown in
the SUM formula in the example. Summarizing, ClassSheets
subsume all the information of an equivalent Vitsl template
and can thus easily be translated into an equivalent abstract
Vitsl expression (see Figure 5, bottom5). Similarly, a UML-
like representation may be derived from a ClassSheet (see
Figure 5, right) by forgetting all layout information. Ag-
gregation formulas are added as notes to the correspond-
ing attribute definition. Those attributes, called derived
attributes in UML, are tagged by a spreadsheet symbol on
the right of the attribute definition. All other attributes the

3Note that this label is not repeated vertically because the
separating line between the row numbers 2 and 3 causes the
vertical repeating dots to apply only to row number 3. (A
repetition of multiple cells is illustrated later in Figure 7.)
4We assume in the following that through the use of PDF
this is visible to the reader.
5The downarrow is applied only to the value 0 since only the
value attribute is vertically repeated, and not the label. The
relative reference (0,−2) would be shown in the concrete
Vitsl syntax as a cell address A3.

1

2

12

A

Account

netEarnings =
Income.total - Expense.total

Income

3 Item

value = 0

7 Expense

8

9

Item

value = 0

5 Total

10 Total

6 total = SUM(Item.value)

11 total = SUM(Item.value)

4

...

...

netEarnings : Int

total: Int

Account

Income
total : Int

Expense

value : Int = 0

Item

Income.total -
Expense.total

SUM(Item.value)

*

SUM(Item.value)

{xor}

1 1

*

Figure 6: A more complex one-dimensional ClassSheet.

1

5

B C D E

Total

F

TotalCostQntyName

Year

total = qnty * cost total = SUM(total)cost = 0qnty = 0name = “abc”

2 year = 2005

total = SUM(total) total = SUM(Year.total)

Budget

Category

A

3
4

Total

...

…

Figure 7: A two-dimensional ClassSheet.

values of which are shown in a spreadsheet are tagged by a
spreadsheet symbol on the left of the attribute definition.

Within a spreadsheet design process, it is intended that
the designer works in the first place with a sophisticated
ClassSheet editor. In addition, within a fully-fledged design
environment, the UML class diagram presentation might be
offered to the (expert) designer, who is knowledgeable in
UML, to illustrate her design decisions. In the following we
use UML class diagrams as an additional documentation of
the class structure in ClassSheets.

This first example is one of the simplest ClassSheets one
can imagine. Nevertheless, it consists already of a class pat-
tern of two classes representing a one-dimensional aggrega-
tion structure. A slightly more involved example is shown
in Figure 6. Here, in addition to income values, a list of ex-
pense values together with an aggregated value is shown. In
the overall footer, the difference of the two aggregated val-
ues is computed and shown. From an object-oriented point
of view, we have an enclosing aggregating class Account with
two enclosed aggregated structures Income and Expense. This
structure is directly reflected in the UML diagram represen-
tation. Please note how the disjointness constraint xor in
the UML class diagram for Item instances is spatially rep-
resented in the ClassSheet by two different occurrences of
the Item class. In the ClassSheet, in addition to this in-
formation the layout structure is fixed, indicating that a
column-oriented style is chosen.

The budget sheet presented in Figure 2 is shown as a
ClassSheet in Figure 7. It is expressed that the budget con-
sists of a repeatable (blue) kernel, with entries for quan-
tity, cost, and their product. These entries are embedded

into a two-dimensional tabular structure with a horizontal
(red) row class Category and a vertical (red) column class
Year. The two aggregated total values for a summation over
years and categories are defined in these bracketing classes.
The overall total is defined in an enclosing (black) bracket
class Budget. The corresponding UML diagram of this well-
structured ClassSheet is shown in Figure 8.

It shows how the tabular structure of this ClassSheet is
directly reflected by an n ∗ m-ary association between the
two spanning classes Category and Year, acting as component
classes of the root class Budget.

Figure 9 shows the variant of the budget sheet as it was
discussed at the end of Section 2. The additional and maybe
unintentionally placement of the tiny bar between columns

Category
name : String = “abc”
total : Int

year : Int = 2005
total : Int

qnty : Int = 0
cost : Int = 0
total : Int

Year

total : Int

Budget

* *

* *

qnty * cost

SUM(this.CpY.total)

CpY

SUM(this.CpY.total)

SUM(Year.total)

Figure 8: UML diagram for the budget ClassSheet.

1
B C D E

Total

F

TotalCostQntyName

Year

total = SUM(total)cost = 0qnty = 0name = “abc”

2 year = 2005
Budget

Category

A

3
4 total = qnty * cost
...

…

5 total = SUM(total) total = SUM(Year.total)Total

???

Figure 9: Variation of the budget ClassSheet.

C and D would result in this completely different ClassSheet.
The semantic differences are clearly visible in the corre-
sponding UML class diagram (see Figure 10). In particu-
lar, it can be seen that the attribute qnty would be defined
within class Category, which has the effect that it cannot be
varied over the different years. In addition, the value of year
(with the default value of 2005) would be fixed, too, since
it would be defined in the overall root class Budget. Finally,
a name for the column class would be missing (indicated
by the label ???) since Year would only be viewed as a label
in the concrete layout while Budget defines the name of the
root class.

It is important to notice that during such a design pro-
cess, it is not possible to speak about “erroneous” design de-
cisions. It might indeed be correct for the current business
application that a fixed qnty value for all years is the right de-
sign decision. On the other hand, it is important that the ex-
plicit indication of class structures supports the spreadsheet
designer to become aware of these different design choices.
Using the ClassSheet approach, she will be supported to
reason about alternatives, while consequences of design de-
cisions become directly visible by the indicated, colored
structures within the ClassSheet model. The ClassSheet ap-
proach helps to reduce the semantic gap between concrete
problem domain requirements and its representation in a
spreadsheet model.

Category
name : String = “abc”
qnty : Int = 0
total : Int

total : Int

cost : Int = 0
total : Int

???

year : Int = 2005
total : Int

Budget

* *

*

Category.qnty * cost

SUM(this.CpY.total)

CpY

SUM(this.CpY.total)

SUM(???.total)

*

Figure 10: UML diagram for the variation budget
ClassSheet.

4. A FORMAL MODEL OF CLASS SHEETS
In the following, we formalize the ClassSheet approach. In

this section we define the abstract syntax. Typing rules to
ensure well-formed ClassSheets are developed in the next
section. Section 6 defines the translation of well-formed
ClassSheets into Vitsl templates, which facilitates the con-
nection of the ClassSheet approach to the existing trans-

formation chain providing ClassSheet-compatible MS Excel
applications.

A ClassSheet represents two aspects of a (spreadsheet)
application—the structure and relationships of the involved
objects and classes and the computational details of how at-
tributes are related and derived from one another. To retain
the well accepted successful table metaphor of spreadsheets,
we embed the definition of these aspects into a grid-based
layout that looks very much like a plain spreadsheet in which
additional higher-level structures are visually exposed.

Therefore, the definition of ClassSheets is based on rect-
angular blocks of cells, which may contain values (used as
labels) and attribute definitions. The latter are given by an
attribute name (a) and a formula (f) that defines the val-
ues of the attribute. In addition, cells in a block might be
left blank (t), for example, when used as a filler. The syn-
tax of formulas is essentially the same as for Vitsl, except
that references to other cells are expressed through quali-
fied attribute names instead of relative references. These
attribute names will be translated into cell references in the
translation into Vitsl templates in Section 6.

The association of blocks with classes is expressed by ex-
plicitly assigning class names (n) to blocks. The distinction
between column, row, table, and cell classes is indicated by
a horizontal and/or vertical line indicating the dimension of
the corresponding class type or by a “.” in the case of cell
classes.

To summarize, the Vitsl syntax is lifted into an abstract
syntax for ClassSheets through the following additions and
changes.

(1) References in formulas are replaced by qualified at-
tribute names (n.a).

(2) Individual cells are not simply given by formulas (f),
but either by values (ϕ), to represent (possibly blank)
labels, or by attribute definitions (a = f).

(3) Each block that is used to build a class is associated
with a label (`), which is either a row (n), a column
(n), a table (n), or a cell (.n) class label.

The syntax of ClassSheets is summarized in Figure 11.
We have deliberately overloaded the nonterminals from the
Vitsl syntax to illustrate the embedding into ClassSheets.
The distinction between horizontal and vertical class labels
has been made to facilitate the definition of well-formed
ClassSheets by the use of so-called tiling rules in Section
5.

Let us illustrate the definition with some examples. A
ClassSheet for a labeled list of numeric items can be rep-
resented by two cells, a label Item used as header and a
vertically repeated attribute definition. The block formed
from those two cells through vertical composition is labeled
with the class name Item, which is marked as a vertical class
label.

f ∈ Fml ::= ϕ | n.a | ϕ(f, . . . , f) (formulas)

b ∈ Block ::= ϕ | a = f | b | b | bˆb (blocks)

` ∈ Lab ::= h | v | .n (class labels)

h ∈ Hor ::= n | n (horizontal)

v ∈ Ver ::= n | n (vertical)

c ∈ Class ::= ` : b | ` : b↓ | cˆc (classes)

s ∈ Sheet ::= c | c→ | s | s (sheets)

Figure 11: ClassSheet syntax.

Item : Item

(value = 0)↓

For better readability, we employ the abbreviation that a
new line implies vertical composition ˆ.

Next, we build a one-dimensional aggregation structure
to represent the summation of values as, for example, used
in the income sheet that is shown in Figure 5.

Income : Income

Item : Item

(value = 0)↓

Income : Total

total = SUM(Item.value)

By renaming the Income class and changing the topmost
label we can obtain from the income ClassSheet a corre-
sponding ClassSheet for expenses. Combining the income
and expense ClassSheets in a further aggregation structure
leads to the following representation of the accounting sheet
from Figure 6. To simplify the translation of ClassSheets, we
require that attributes (qualified by the class names that la-
bel the block in which they occur) are unique in the abstract
syntax. Since the Item class is used twice in the accounting
sheet, the second occurrence has to be renamed to ensure
this constraint for the value attribute.

Account : Account

Income : Income

Item : Item

(value = 0)↓

Income : Total

total = SUM(Item.value)

Expense : Expenses

Item’ : Item

(value = 0)↓

Expense : Total

total = SUM(Item’.value)

Account : netEarnings = Income.total-Expense.total

Finally, we demonstrate in Figure 12 how the two-
dimensional budget ClassSheet can be defined.

This ClassSheet is built by horizontally composing three
blocks: The first block is two columns wide and consists of
three parts, two blocks belonging to the root class Budget

and a row aggregation class Category, whose block is verti-
cally repeated. The middle block is three columns wide and
is horizontally repeated. Like the first block it consists of two
classes, the column aggregation class Year, which, together
with Category, encloses the vertically repeated association
cell class CpY. The final one-column block is very similar to

Budget : Budget |t
t |t

Category : (Category |Name

t | name = ”abc”)↓

Budget : Total |t
|

(Year : Year |t |t
year = 2005 |t |t

.CpY : (Qnty |Cost |Total

qnty = 0 | cost = 0 | total = qnty*cost)↓

Year : t |t | total = SUM(CpY.total))→

|

Budget : t
t

Category : (Total

total = SUM(CpY.total))↓

Budget : total = SUM(Year.total)

Figure 12: Abstract syntax representation of the
budget ClassSheet.

the first block, in particular, it consists of the same classes
to complete the enclosure of the middle block and the cell
class.

5. ENFORCING CLASS SHEET STRUC-
TURE THROUGH TILINGS

The abstract syntax of ClassSheet cannot capture struc-
tural constraints resulting from the two-dimensional layout.
For example, the income sheet in Figure 5 consists of two
classes, one of which is spatially nested within the other.
The abstract syntax allows the definition of a sheet like the
following.

Income : Income

Item : Item

Income : (value = 0)↓

Item : Total

Income : total = SUM(Item.value)

The implied spatial structure suggests that Income aggre-
gates Item, which itself aggregates Income, which doesn’t
make any sense and should therefore be ruled out as a pos-
sible ClassSheet.

In general, the annotation of cells with classes has to result
in a regularly nested class structure. This condition can
be formalized through a type system that infers a spatial
structure called tiling for ClassSheets. Only ClassSheets for
which the rule system is able to infer a proper tiling are
considered to be well formed.

When we consider the previous examples, we can identify
four principal tiling structures, namely for non-aggregated
single classes, for one-dimensional, horizontally or vertically
aggregated classes, and for two-dimensional aggregations.
Aggregation tilings can be principally nested, and tilings can
also be horizontally and vertically composed. These consid-
erations lead to the definition of tilings shown in Figure 13.

Let us illustrate the tiling syntax with some examples.
The simple item sheet has tiling “ ”. The income sheet
(as well as the expense sheet) is defined as a vertical, one-
dimensional aggregation and thus has the tiling 〈 〉. We

τ ::= | θ | φ (tilings)

θ ::= [τ] | τ | θ | θ (horizontal tilings)

φ ::= 〈τ〉 | τ | φˆφ (vertical tilings)

Figure 13: Tilings.

could express the income sheet alternatively as a horizontal
aggregation, which would have the tiling []. The accounting
sheet is a vertical aggregation over two vertical aggregations,
which is reflected by the tiling 〈〈 〉ˆ〈 〉〉. Finally, the budget
sheet provides an example of a two-dimensional aggregation,
which leads to the simple table tiling . A two-dimensional
visualization of the different tiling structures is shown in
Figure 14.

〈 〉 [] 〈〈 〉ˆ〈 〉〉

Figure 14: Visualization of tiling structures.

In the following, we define a tiling judgment ` s :: τ that
expresses that the tiling of the ClassSheet s is τ . We use the
metavariable β to range over b and b↓. The inference rules
express constraints on the width and height of tilings, which
are essentially given by the nesting depth in horizontal and
vertical dimension, respectively. Formally, lτ and ←→τ are
defined as follows.

←→ = 1 l = 1
←−−→
τ1 | τ2 = ←→τ1 +←→τ2 lτ1 | τ2 = max(lτ1, lτ2)←−→
τ1ˆτ2 = max(←→τ1 ,←→τ2) lτ1ˆτ2 = lτ1 + lτ2←→
[τ] = ←→τ + 1 l[τ] = lτ
←→
〈τ〉 = ←→τ l〈τ〉 = lτ + 1
←→
τ = ←→τ + 1 l τ = lτ + 1

The tiling judgment is formalized by the rules shown in Fig-
ure 15.

The rules implicitly exploit the following equivalence re-
lationship of classes

` : βˆ` : β′ ≡ ` : βˆβ′

This equivalence says that two vertically composed blocks
with the same class name can be combined into one since it
makes no differene as far as access to field names is con-
cerned. This equivalence can be employed (from left to
right) to transform ClassSheets into a normal form that al-
lows the rule system to consider vertical compositions of
classes with different labels only.

We illustrate the rule system by deriving the tiling struc-
ture for the budget sheet. To apply rule Tab, we first
let v = Budget, β1 = Budget |tˆt |t, β2 = Total |t, and

c1 = Category : (Category |Nameˆt | name = ”abc”)↓ (recall
that | binds stronger than ˆ). Now we can directly apply
rule Base to show that ` c1 :: . Next we can apply rule

Col (with c = c1, β = β1, β′ = β2, and τ =) to con-
clude ` c′1 :: 〈 〉, which provides the first premise for rule
Tab. The premises for c′2 and c′3 are obtained in a similar
way. Finally, the rule Row* can be applied to show the last
premise since the horizontal class labels in c1 and in c3 are
the same (namely, Category).

Base
` ` : β ::

Row
` c :: τ

` h : β | c |h : β′ :: [τ]

Row*
` c :: τ

` h : β | c→ |h : β′ :: [τ]
Col

` c :: τ

` v : βˆcˆv : β′ :: 〈τ〉

Hor
` s1 :: τ1 ` s2 :: τ2 lτ1 = lτ2

` s1 | s2 :: τ1 | τ2

Ver
` c1 :: τ1 ` c2 :: τ2

←→τ1 =←→τ2

` c1ˆc2 :: τ1ˆτ2

Tab

c′1 = v : β1ˆc1ˆv : β2

c′2 = v′ : β3ˆc2ˆv′ : β4

c′3 = v : β5ˆc3ˆv : β6

` c′1 :: 〈τ〉 ` c′2 :: 〈τ〉 ` c′3 :: 〈τ〉
` c1 | c2 | c3 :: [τ]

` c′1 | c
′
2 | c
′
3 :: τ

Figure 15: Tiling inference rules.

With the formalization of the tiling structure of
ClassSheets, we can now define that a ClassSheet s is well
formed only if there exists a tiling τ such that ` s :: τ .

6. TRANSLATING CLASS SHEETS INTO
VITSL

Whereas the translation of ClassSheets into UML ignores
layout and labels that are not attribute or class names, the
translation into Vitsl templates retains exactly the block
structure with all labels. However, attribute names used as
references in formulas are translated into references based
on row/column numbers, and class and attribute names are
forgotten.

The translation from ClassSheets to Vitsl templates can
be described in two steps: First, the block structure is trans-
lated by a function B, which is defined by a rather straight-
forward traversal of the structure that simply forgets all class
annotations for blocks. After that, attribute names in for-
mulas are translated into references by a function F .

The block translation is defined as follows. The actual
work happens in the last two lines.

B(s1 | s2) = B(s1) |B(s2)

B(c→) = B(c)→

B(c1ˆc2) = B(c1)ˆB(c2)

B(` : b) = b

B(` : b↓) = b↓

The result of applying B to a ClassSheet is a kind of “hybrid”
template, that is, it is a template t according to the abstract
syntax of Vitsl that contains formulas as defined for class
sheets, which have not yet been translated.

The second step is performed by the function F , which
takes as additional arguments (a) the current position (to be
able to translate references) and (b) the original hybrid block
as returned by B (to be able to find attribute definitions
even after the attribute names have been stripped off). The
function makes use of several auxiliary functions. First, it
employs two functions for computing the width and height of
a template, which are defined similarly to the functions from
Section 5. To compress the definitions for horizontal and
vertical composition and repetition, we use the metavariable
u to range over b, c, and t.

←→
f = 1 lf = 1
←−−→
u1 |u2 = ←→u1 +←→u2 lu1 |u2 = max(lu1, lu2)←−−→
u1ˆu2 = max(←→u1 ,←→u2) lu1ˆu2 = lu1 + lu2←→
u↓ = ←→u lu↓ = lu
←→
u→ = ←→u lu→ = lu

Second, a function for determining the location of a par-
ticular attribute definition is needed. The function L tra-
verses the template in search of the definition of attribute
n.a while updating the current position (x, y). Once a class
with a matching name n is found, the search continues for
the attribute name a within the block.

L(x,y)(n.a, s | s′) = L(x,y)(n.a, s) ∪ L(x+←→s ,y)(n.a, s′)

L(x,y)(n.a, c→) = L(x,y)(n.a, c)

L(x,y)(n.a, cˆc′) = L(x,y)(n.a, c) ∪ L(x,y+lc)(n.a, c′)

L(x,y)(n.a, n : b) = L(x,y)(a, b)

L(x,y)(n.a, n : b↓) = L(x,y)(a, b)

L(x,y)(a, b | b′) = L(x,y)(a, b) ∪ L(x+
←→
b ,y)(a, b′)

L(x,y)(a, bˆb′) = L(x,y)(a, b) ∪ L(x,y+lb)(a, b′)

L(x,y)(a, a = f) = {(x, y)}
L(x,y)(a, f) = ∅

L computes a set of locations. If the resulting set does not
consist of a single address, an error situation has occurred:
If the resulting set is empty, the attribute was not found, if
the set contains more than one value, the qualified attribute
name was not unique. Although described here as part of
the translation, the resolving of all references can be added
as an additional test to the type checking phase to avoid the
generation of spreadsheet applications for ambiguous and
ill-defined ClassSheets.

With these helper functions the function F can be defined
as follows.

F (x,y)
s (u1 |u2) = F (x,y)

s (u1) |F (x+←→u1 ,y)
s (u2)

F (x,y)
s (u→) = F (x,y)

s (u)→

F (x,y)
s (u1ˆu2) = F (x,y)

s (u1)ˆF (x,y+lu1)
s (u2)

F (x,y)
s (b↓) = F (x,y)

s (b)↓

F (x,y)
s (a = f) = F (x,y)

s (f)

F (x,y)
s (ϕ) = ϕ

F (x,y)
s (ϕ(f1, . . . , fn)) = ϕ(F (x,y)

s (f1), . . . ,F (x,y)
s (fn))

F (x,y)
s (n.a) =


(i− x, j − y) if L(1,1)(n.a, s) = {(i, j)}
⊥ otherwise

Finally, the complete translation of a ClassSheet s into a

Vitsl template is given by F (1,1)
s (B(s)).

This completes the stepwise formalization of the auto-
matic transformation chain from a user-defined ClassSheet
into a running MS Excel spreadsheet application. As illus-

trated in Figure 1, ClassSheets that are well-formed accord-
ing to an underlying tiling structure are transformed into an
equivalent Vitsl expression. Such a Vitsl expression forms
the input for the Gencel tool, which controls a spreadsheet
application that is compliant with the class structure as de-
fined in the ClassSheet. In this paper, we have made use of
UML class diagrams to illustrate the underlying class struc-
ture. It is not intended to show such an abstract view of the
ClassSheet to the average spreadsheet designer. We rather
want to overlay class-structure information with the well-
accepted two-dimensional spreadsheet representation within
one single notation, ClassSheets, which we have introduced
and formally defined.

7. RELATED WORK
Any kind of system development support activities might

be distinguished into constructive and analytical activities.
Constructive activities aim at the development of high-
quality systems with the objective to avoid erroneous de-
cisions as much as possible from the beginning, while ana-
lytical activities are striving for the detection of (possibly)
erroneous situations before or during a system execution.

Previous scientific work on spreadsheets has mainly ad-
dressed questions of analyzing spreadsheet applications like
testing/debugging [23, 22] and consistency checking [13, 9,
6, 7, 4].

The “What You See Is What You Test” methodology for
testing spreadsheets [23] employs data-flow adequacy crite-
ria and coverage monitoring to provide feedback about the
“testedness” of a spreadsheet. This approach has been ex-
tended by fault localization to isolate sources of errors [22].

User-provided assertions about permissible cell ranges
have been used in [9] to identify erroneous formulas. As-
sertions are systematically propagated through the spread-
sheet formulas to generate warnings whenever assertions are
violated. A formal reasoning system for detecting spread-
sheet errors based on a classification of spreadsheet contents
into units was proposed in [13]. A related approach is re-
ported in [6], which extends the unit system by a new kind
of relationship. The described approach requires the user to
manually annotate spreadsheets with header information.
User annotations are also required in the approach of [7],
which performs unit checking based on the actual physi-
cal or monetary units of the data in the spreadsheet. We
have recently implemented an automatic unit checker, called
UCheck, that is based on the automatic inference of header
information based on different aspects of the spatial layout
of spreadsheets [4].

The FFR model presented in [24] helps to analyze visu-
alization mechanisms for spreadsheets. In this approach,
errors in spreadsheet formulas show up as anomalies in
the visualizations. A similar approach of identifying recur-
ring structure (regions) in spreadsheets and then presenting
anomalies as potential problem areas to the user is followed
by the system described in [18].

While all these approaches focus on analytical activ-
ities, the Vitsl/Gencel approach [5, 11, 12] was tar-
geted at the construction process of spreadsheets. Our
ClassSheet approach inherits all the safety/correctness fea-
tures of Vitsl/Gencel and provides an additional object-
oriented modeling layer to further reduce the semantic gap
between the application domains and the (automatically
generated) applications.

Guidelines for the construction of spreadsheets can be
found in numerous, popular business-oriented contributions
(for example, [21, 19]). Since the underlying base is the cell-
oriented tabular spreadsheet paradigm, they have to rely
on methodological guidelines and are not able to take ad-
vantage of higher-level structuring means as they have been
introduced in this paper.

8. CONCLUSIONS AND FUTURE WORK
ClassSheets present an effective combination of three suc-

cessful approaches from different areas of software develop-
ment into an automatic development approach: (1) Object-
oriented modeling, (2) Spreadsheets, and (3) Template spec-
ifications.

The formalized ClassSheet language forms the basis for
the development of corresponding spreadsheet design and
development tools. In particular, the block-oriented struc-
ture of ClassSheets will lead to a new compositional, step-
wise approach to build spreadsheet applications. Reuse is
strongly supported and encouraged by this approach of com-
posing new ClassSheets because predefined building blocks
can be single classes or ClassSheets. The underlying for-
malization will ensure that only consistent, well-formed
ClassSheets can be constructed, which are automatically
translated into model-compliant spreadsheet applications.

As part of the ongoing evaluation work within the EU-
SES project [14] end-user experiments will be performed to
obtain feedback from different types of spreadsheet users.
Diversity will be covered according to different degrees of
skills as well as gender and cultural aspects.

In this paper, we did not explore the transformation of
ClassSheets to UML class diagrams in detail. It will be the
task of future work to embed ClassSheets as UML 2.0 profile
into a UML-driven development process. In particular, we
will investigate whether the visual paradigm of ClassSheets
might serve as an alternative for textual OCL expressions
in case of defining derived attributes within classes. To this
end, the expressive power of ClassSheet formulas has to be
determined and compared to alternative visual approaches
to express OCL constraints, such as spider or constraint
diagrams [16].

9. REFERENCES
[1] EUD-Net. http://giove.cnuce.cnr.it/eud-net.htm.

[2] Sarbanes-Oxley Act. http://news.findlaw.com/hdocs/
docs/gwbush/sarbanesoxley072302.pdf.

[3] UML 2.0 OCL Specification. http://www.uml.org/.

[4] R. Abraham and M. Erwig. Header and Unit Inference
for Spreadsheets Through Spatial Analyses. IEEE Int.
Symp. on Visual Languages and Human-Centric
Computing, pp. 165–172, 2004.

[5] R. Abraham, M. Erwig, S. Kollmansberger, and
E. Seifert. Visual Specifications of Correct
Spreadsheets. IEEE Int. Symp. on Visual Languages
and Human-Centric Computing, 2005. To appear.

[6] Y. Ahmad, T. Antoniu, S. Goldwater, and
S. Krishnamurthi. A Type System for Statically
Detecting Spreadsheet Errors. 18th IEEE Int. Conf.
on Automated Software Engineering, pp. 174–183,
2003.

[7] T. Antoniu, P. A. Steckler, S. Krishnamurthi,
E. Neuwirth, and M. Felleisen. Validating the Unit

Correctness of Spreadsheet Programs. 26th IEEE Int.
Conf. on Software Engineering, pp. 439–448, 2004.

[8] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani,
K. C. Bradford, E. Horowitz, R. Madachy, D. J.
Reifer, and B. Steece, editors. Software Cost
Estimation with COCOMO II. Prentice-Hall
International, Upper Saddle River, NJ, 2000.

[9] M. M. Burnett, C. Cook, J. Summet, G. Rothermel,
and C. Wallace. End-User Software Engineering with
Assertions. 25th IEEE Int. Conf. on Software
Engineering, pp. 93–103, 2003.

[10] G. Engels and L. Groenewegen. Object-Oriented
Modeling: A Roadmap. ICSE’00: Conf. on The
Future of Software Engineering, pp. 103–116, 2000.

[11] M. Erwig, R. Abraham, I. Cooperstein, and
S. Kollmansberger. Automatic Generation and
Maintenance of Correct Spreadsheets. 27th IEEE Int.
Conf. on Software Engineering, pp. 136–145, 2005.

[12] M. Erwig, R. Abraham, I. Cooperstein, and
S. Kollmansberger. Gencel — A Program Generator
for Correct Spreadsheets. Journal of Functional
Programming, 2005. To appear.

[13] M. Erwig and M. M. Burnett. Adding Apples and
Oranges. 4th Int. Symp. on Practical Aspects of
Declarative Languages, LNCS 2257, pp. 173–191, 2002.

[14] EUSES. End Users Shaping Effective Software.
http://EUSESconsortium.org.

[15] EuSpRIG. European Spreadsheet Risks Interest
Group. http://www.eusprig.org/.

[16] J. Gil, J. Howse, and S. Kent. Formalising Spider
Diagrams. 15th IEEE Symp. on Visual Languages, pp.
130–137, 1999.

[17] A. Kleppe, J. Warmer, and W. Bast. MDA Explained:
The Model Driven Architecture Practice and Promise.
Addison-Wesley, 2003.

[18] R. Mittermeir and M. Clermont. Finding High-Level
Structures in Spreadsheet Programs. 9th Working
Conference on Reverse Engineering, pp. 221–232,
2002.

[19] P. O’Beirne. Agile Spreadsheet Development (ASD),
2003. http://www.sysmod.com/agile.htm.

[20] R. R. Panko. Spreadsheet Errors: What We Know.
What We Think We Can Do. Symp. of the European
Spreadsheet Risks Interest Group (EuSpRIG), 2000.

[21] S. G. Powell and K. R. Baker. The Art of Modeling
with Spreadsheets: Management Science, Spreadsheet
Engineering, and Modeling Craft. Wiley, 2004.

[22] S. Prabhakarao, C. Cook, J. Ruthruff, E. Creswick,
M. Main, M. Durham, and M. Burnett. Strategies and
Behaviors of End-User Programmers with Interactive
Fault Localization. Int. Symp. on Human-Centric
Computing Languages and Environments, pp.
203–210, 2003.

[23] G. Rothermel, M. M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A Methodology for Testing Spreadsheets.
ACM Transactions on Software Engineering and
Methodology, pp. 110–147, 2001.

[24] J. Sajaniemi. Modeling Spreadsheet Audit: A
Rigorous Approach to Automatic Visualization.
Journal of Visual Languages and Computing,
11:49–82, 2000.

