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We present a domain-specific embedded language (DSEL) in Haskell that supports the philosoph-
ical study and practical explanation of causation. The language provides constructs for modeling
situations comprised of events and functions for reliably determining the complex causal relation-
ships that emerge between these events. It enables the creation of visual explanations of these causal
relationships and a means to systematically generate alternative, related scenarios, along with corre-
sponding outcomes and causes. The DSEL is based on neuron diagrams, a visual notation that is well
established in practice and has been successfully employed for causation explanation and research.
In addition to its immediate applicability by users of neuron diagrams, the DSEL is extensible, allow-
ing causation experts to extend the notation to introduce special-purpose causation constructs. The
DSEL also extends the notation of neuron diagrams to operate over non-boolean values, improving
its expressiveness and offering new possibilities for causation research and its applications.

1 Introduction

Cause and effect are fundamental concepts on which science and society are built. But what does it really
mean for one event to have caused another, and how can we determine when causation has happened?
Philosophers have been studying these questions for over 2000 years and it remains an active area of
research even today. In this paper we present a domain-specific language embedded in Haskell (DSEL)
for working with causation problems and to support causation research. This language allows users
to model a story or situation and then analyze that model to determine the causes of events, generate
alternative scenarios, and produce visual explanations of causal relationships.

Causation researchers have developed several notations for discussing and reasoning about causa-
tion. The most widely used of these are neuron diagrams [13], a domain-specific, visual language for
describing causal relationships between events. Our DSEL is based on an extended version of this visual
language and is in fact primarily a sophisticated metalanguage for creating, analyzing, and visualizing
programs in the object language of neuron diagrams.

Examples of very simple neuron diagrams can be seen in Figure 1. Each neuron diagram tells a story.
The stories told by these diagrams (adapted from an example in [6]) concern an army private with two
superiors, a general and a major, each of whom may shout orders which the private will then carry out.
In the case of the diagram in Figure 1(a), the general is silent and the major yells “charge!”, so the private
charges forward. In Figure 1(b), both officers issue the order to charge, and again the private charges.

A neuron diagram is a directed, acyclic graph (DAG) where each node is called a neuron. Neurons
usually correspond to events in the story and can either fire or not. A firing neuron is colored gray
and indicates the occurrence of the corresponding event, a non-firing neuron is white and indicates that
its event did not occur. In our examples, the Gen and Maj neurons represent orders to charge by the
corresponding officer. If the neuron is gray, that officer issues the order to charge, if the neuron is white
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Figure 1: Neuron diagrams for a private charging after receiving orders from superior officers. In (a) only
the major has issued an order to charge, while in (b) both officers issue the order to charge.

that officer issues no order. The Pvt1 neuron in each diagram represents the private charging (or not, had
the neuron not fired).

As source nodes in the graphs, the Gen and Maj neurons are called exogenous and their firing values
are simply set according to the story. A downstream neuron, like Pvt, is called endogenous, and its value
is determined by a function on the values of its immediate predecessors. The function that an endogenous
neuron implements is indicated visually by the shape and style of the node and the style of its incoming
edges. In each of our examples, the endogenous Pvt neuron is a standard neuron (indicated by its
oval shape and standard line thickness) connected to its predecessors by stimulating edges (indicated by
triangular arrowheads). If a standard neuron is stimulated by at least one firing neuron, it will fire. In
other words, each Pvt neuron implements a logical disjunction of its inputs.

The following code in our DSEL defines the neuron diagram in Figure 1(a) and binds it to the Haskell
identifier majorOrders.
majorOrders = diagram [pvt] ‘WithInputs‘ [False,True]

where

gen = "Gen" :# Input

maj = "Maj" :# Input

pvt = "Pvt" :# StimBy [gen,maj]

This code will be explained in depth in the next section. Here we instead offer a preview of a few
things we can do with our language once we have described a neuron diagram in this way. First, we can
determine the firing state of any neuron in the diagram by evaluating an expression like the following
(for example, in GHCi).
> "Pvt" ‘stateIn‘ majorOrders

True

The value True corresponds to a neuron firing, and we can confirm this result by noting that the Pvt
neuron is colored gray in Figure 1(a).

Second, we can generate the visual representation of the neuron diagram shown in the figure. One
way to do this is to evaluate the expression view majorOrders, which generates a GraphViz2 program
that draws the image and loads it in an appropriate viewing application. From here the image can be
exported and posted on the web, attached to an email, or included in a paper. The images in Figure 1,
and in fact all of the images used in this paper, were generated by our language in this way.

Third, we can use the definition of majorOrders to derive diagrams for alternative, related scenarios.
For example, to produce the diagram in Figure 1(b), in which both officers issue the order to charge, we
simply change the input values to our existing diagram as shown below.

1The § symbol adorning the name of this neuron and others throughout the paper will be explained in Section 4. It can be
safely ignored for now.

2http://www.graphviz.org

http://www.graphviz.org
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bothOrder = majorOrders ‘changeInputs‘ [True,True]

We bind the result to the identifier bothOrder so that we can refer to it later.
Finally and most importantly, we can analyze the causes of the terminal neurons in the diagram. In

the simple scenario depicted in Figure 1(a), it seems obvious that the major’s order caused the private to
charge. To confirm, we can evaluate the following expression and examine the result.
> causes majorOrders

Maj:True ==> Pvt:True

This output indicates that because the Maj neuron fired, the Pvt neuron also fired, confirming our intu-
ition. We can compare this to the causes identified in the diagram bound to bothOrder, shown below.
> causes bothOrder

Gen:True | Maj:True ==> Pvt:True

This result indicates that either the general’s order or the major’s order is a sufficient cause of the private’s
actions. At first this seems to agree nicely with intuition—it doesn’t matter who issues the order to
charge, as long as one of them does—but as we’ll see in Section 3, this outcome is highly dependent on
our modeling of the scenario. Many alternative models with the same outcomes produce different causes
that could also be considered correct.

The causal analyses performed above are the product of our own previous theoretical work on neuron
diagrams [2]. Although neuron diagrams have become very popular in the philosophical community, they
have become so in spite of several (perceived and actual) technical limitations. Their main advantages
over competing languages are largely related to usability: they are simple, direct, and highly extensible.
Causal relationships between events are shown explicitly as edges between nodes, whereas this infor-
mation is represented only indirectly in textual languages (including our own DSEL). Also, new types
of neurons that implement different functions can be invented on demand for use in a particular story.
While this makes the notation concise and very flexible, critics have argued that it also makes neuron
diagrams too ad hoc and difficult to reason about [8]. Our previous work addresses these concerns with a
formal description of neuron diagrams that transparently accommodates this extensibility. In this paper
we discuss the implementation of this model and its impact on the design and use of our DSEL.

Neuron diagrams differ from other causal modeling tools (such as those used in AI [15]) in that their
primary purpose is not to solve causation problems, but rather to share and explain causal situations. As
such, the language has historically been somewhat imprecise. In addition to formalizing the language,
our previous work also introduces a small extension to the language that allows neuron diagrams to more
precisely model certain causal situations, and the first cause inference algorithm for neuron diagrams.
Both of these technical improvements are summarized in Section 4 and incorporated in the DSEL. By
providing an implementation of these features, we make it possible, for the first time, to automatically
confirm that a neuron diagram encodes its intended causal relationships.

Finally, this paper introduces a new theoretical contribution to neuron diagrams, extending the lan-
guage to operate on non-boolean values. That is, neurons in our DSEL may not only fire or not fire, but
may take on any value in an arbitrary finite set. We present examples using this extension in Section 6.

We expect users to be able to use the DSEL for simple applications with only minimal knowledge of
Haskell. Such applications include creating neuron diagrams with standard components and analyzing
or drawing existing neuron diagrams; we present several examples of such applications in the next two
sections. More advanced applications of the language, such as defining new types of neurons or extending
the language to new types of values, will require increasingly deeper knowledge of both the DSEL and
the host language. We describe aspects of the language relevant to these uses in Section 5 and provide
examples of such applications in Sections 6 and 7. This is followed by a discussion of related work in
Section 8 and conclusions and future work in Section 9.
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name :: N a -> Name the name of the neuron
isInput :: N a -> Bool is the neuron an input neuron?
isExo :: N a -> Bool is the neuron exogenous?
isEndo :: N a -> Bool is the neuron endogenous?
preds :: N a -> [N a] the immediate predecessors of the neuron
upstream :: N a -> [N a] all recursive predecessors of the neuron

Figure 2: Basic querying operations on neurons.

2 Neurons, Diagrams, and Graphs
In this section we introduce the basic causal modeling constructs of our DSEL and further our introduc-
tion of the notation and associated terminology of neuron diagrams.

We begin by more closely examining the DSEL code from the previous section, in particular the
definition of majorOrders, used to generate the neuron diagram in Figure 1(a). Note that we define each
of the diagram’s three neurons individually in the definition’s where-clause—this is not strictly necessary,
of course, but leads to definitions that are easy to read and extend, and so we consider it the preferred
concrete syntax for our DSEL.

Each neuron is a value of type N a (defined below), where a represents the type of values the neuron
can take on. For example, the neurons in majorOrders can either fire or not fire, and so have type N Bool.
The DSEL provides several basic operations for querying neurons, implemented as Haskell functions.
Some of these are summarized in Figure 2.

Values of type N a are constructed with the neuron constructor :#. The left argument to this con-
structor is a uniquely identifying name (within the diagram) for the neuron, while the right argument is
a neuron description. A neuron description captures several important properties of a neuron, including
the function the neuron implements, the visual style of the neuron, and the incoming edges from the
neuron’s immediate predecessors.

The creation of neuron descriptions constitutes a sort of mini-DSL within the larger DSL for neuron
diagrams. Values in this language are captured by a type class ND. A single neuron diagram can contain
neuron descriptions of many different types, as long as they all instantiate this type class—this is crucial
to support the kind of ad hoc extension to the visual language of neuron diagrams that is common in the
philosophy research. To support this in our DSEL, we locally quantify [10] the neuron description type
parameter d in the following definition of the neuron type, N a.

type Name = String

data N a = forall d. ND d a => Name :# d a

We can observe in this definition that ND is a multi-parameter type class, that the first argument d is a
type constructor, and that the second argument a is the value type of the neuron. However, we postpone
the full definition and explanation of neuron descriptions until Section 5, after we have presented the
necessary background information. Here we focus instead on the concrete syntax of neuron descriptions.
In the example from the previous section, we describe two different kinds of neurons. First, we define
two exogenous input neurons, Gen and Maj, using the Input neuron description. Then we use the StimBy
construct to describe the Pvt neuron as a standard endogenous neuron stimulated by both of the input
neurons. We will see many other types of neuron descriptions in the following examples.

The diagram . . . ‘WithInputs‘ . . . construct, used in the example, creates a neuron diagram given a
list of terminal neurons and a list of values to assign to the input neurons. Values are assigned to input
neurons in the order that they are encountered in an in-order traversal of the diagram, starting from the
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Figure 3: The neuron graph underlying both diagrams in Figure 1.

terminal neurons. In the definition of majorOrders, False will be assigned to the Gen neuron, and True

to the Maj neuron.
The assignment of values to inputs is separated from neuron descriptions because we often want to

reuse the causal structure of a diagram while assigning different values to the input neurons. Recall that
this is how we generated the related diagram in which both officers gave orders, bothOrder, shown in
Figure 1(b). We call the underlying causal structure of a neuron diagram a neuron graph [2], and it is
captured in our DSEL by the following straightforward type.

newtype G a = Graph [N a]

As with the diagram construct, the list of neurons wrapped in this type are the terminal neurons of the
graph—other neurons in the graph can be accessed, for example, with the upstream function. In fact, the
diagram keyword is just a synonym for Graph, intended to make diagram definitions read more naturally.

A neuron diagram is then just a neuron graph combined with a list of values to assign to the input
neurons. This is captured in the DSEL by the following type.

data D a = WithInputs (G a) [a]

The constructor of this data type is designed to be readable when used as an infix operation, and forms
the second part of the diagram . . . ‘WithInputs‘ . . . construct.

We can access the underlying graph of a diagram with the function graph. Using this, we can also
implement the changeInputs operation, that replaces the input values of a neuron diagram (used to derive
the bothOrder diagram from the majorOrders diagram in the previous section).

changeInputs :: D a -> [a] -> D a

changeInputs = WithInputs . graph

A useful metaphor is to think of a neuron graph as a program, and a neuron diagram as a program
combined with its execution for a particular assignment of inputs. Because the diagrams majorOrders

and bothOrder share a common neuron graph, the following evaluates to True.

graph majorOrders == graph bothOrder

More generally, for any neuron diagram d and list of inputs i, the following predicate on d and i holds.

graph d == graph (d ‘changeInputs‘ i)

As with diagrams, we can use our DSEL to generate visual representations of neuron graphs. We
do this with the function viewG. For example, viewG (graph majorOrders) produces the neuron graph
shown in Figure 3. We visually distinguish neuron graphs from diagrams by drawing neuron borders
with dashed lines, and because neurons in a graph do not have values (they are similar to a network of
functions), they will never be filled.

There are several other useful DSEL operations (implemented as functions in Haskell) for querying
and manipulating neuron graphs and diagrams. A small sample of these are summarized in Figure 4.
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neurons :: G a -> [N a] all neurons in the graph
asFunction :: G a -> [a] -> [a] the multifunction implemented by the graph
graph :: D a -> G a the graph underlying a neuron diagram
allDiagrams :: NV a => G a -> [D a] all diagrams generable from the graph
neuronIn :: Name -> G a -> N a get a neuron in the graph by name
stateIn :: Name -> D a -> a the state of a named neuron in the diagram

Figure 4: Basic querying operations on graphs and diagrams.

The NV type class in the type of the allDiagrams operation will be defined in Section 6, but captures
the constraint that we can only generate all possible diagrams for a neuron graph if the type of the input
values are bounded and enumerable. One of the more interesting queries is the asFunction operation,
which computes the multiple-output function that a graph represents. That is, given a graph g and list
of input values as, the outputs of this function are the values of the terminal neurons in the diagram
D g as. We call this the firing semantics of the graph [2], but it is important to stress (and we do so
repeatedly throughout this paper) that the firing semantics of a graph does not uniquely determine the
causal relationships encoded in that graph. That is, the internal structure of a neuron graph is significant;
graphs do not simply reduce to multifunctions. That said, it is often useful to compare the firing semantics
of different neuron graphs, for example, to confirm that two graphs representing different causes encode
the same effects. We demonstrate this exact use in the next section, as part of a larger discussion of
modeling stories with neuron diagrams.

3 Basic Causal Modeling

In this section, we show how a single story can be modeled in different ways, and how our modeling
decisions impact the causal relationships identified in the story. An important fact about causal reasoning
and neuron diagrams (stressed above) is that two stories with the same events and the same outcomes
can represent different causes. Research on causation often revolves around the problem of finding a
particular representation of a story that fits a preconceived set of causes, and comparing that with other,
perhaps more naive representations.

Returning to our discussion from Section 1 of the causal analysis of the bothOrder neuron diagram,
recall that the cause of the private’s actions was determined to be a disjunction of the two officers’ orders
to charge. This seems to make sense since either officer’s order alone would be sufficient to make the
private charge forward. But what if charging led the private to run off a cliff and we now find ourselves
in a hearing trying to determine who is at fault for the poor private’s death? We might still argue that
either or both officers are, or we might argue that only the general, as the highest-ranking officer, is at
fault for this unfortunate outcome. After all, had the general instead ordered “retreat!”, the private would
have done so despite the major’s order to charge. In other words, the causal structure of our neuron
graph (underlying both of the diagrams) does not account for the fact that the general’s order, if given,
supersedes the major’s.

As a solution, we introduce an intermediate neuron MajE to represent the major’s “effective” order.
If the general gives no order, the major’s order becomes effective, otherwise the general’s order prevents
this from happening. To express this notion of trumping prevention, we employ an inhibitory edge
that, if the source neuron fires, prevents the target neuron from firing, regardless or whether or not it is
stimulated. This is represented visually by a round arrowhead, and represented in the DSEL code by
appending ‘InhibBy‘ and a list of potentially inhibiting neurons to the end of a neuron description. The
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Figure 5: Diagram for the scenario where both officers order the private to charge, but the general’s order
supersedes the major’s order.

code defining this new scenario is given below, and the visualized neuron diagram is shown in Figure 5.

trump = diagram [pvt] ‘WithInputs‘ [True,True]

where

gen = "Gen" :# Input

maj = "Maj" :# Input

majE = "MajE" :# StimBy [maj] ‘InhibBy‘ [gen]

pvt = "Pvt" :# StimBy [gen,majE]

We see in the visual representation that even though the Maj neuron stimulated MajE, this neuron did not
fire because it was inhibited by the firing Gen neuron. If Gen had not fired, however, then MajE would
have fired as usual.

A causal analysis of our new neuron diagram shows that we have accomplished our goal. Although
both officers gave the order to charge, the general alone is determined to be the cause of the private’s
actions.

> causes trump

Gen:True ==> Pvt:True

The approach that we have taken here, of modeling a story to fit a preconceived set of causes, is common
in causation research [6]. Our DSEL supports this process by making it easy to create, visualize, and
analyze neuron diagrams quickly. In the next section we show how our extensions to the core language
of neuron diagrams also directly supports this research strategy.

Comparing the remodeled story trump to the original story bothOrder, we can see that while the
causal semantics of the two diagrams differ, their underlying graphs are functionally equivalent. That
is, the private will charge or not in either model (neuron graph) given the same combination of inputs.
As mentioned above, we call the mapping from inputs to terminal neuron values the firing semantics of
the neuron graph, and this can be represented as a multifunction from input values to the values of the
terminal neurons of the graph. This multifunction can be easily acquired in the DSL with the asFunction
operation, but often it is useful to have a more explicit representation of the firing semantics, for example,
so that it can be printed out or compared directly to the firing semantics of other graphs. For this, the
DSL provides the effects operation, which returns a value of type Effects a. This name was chosen
to reflect that the values of terminal neurons in a neuron diagram are the subject of causal analysis, that
is, they are the effects of the causes we want to identify. We show the effects of our new diagram’s
underlying graph below.

> effects (graph trump)

[Gen:False,Maj:False] -> [Pvt:False]

[Gen:False,Maj:True] -> [Pvt:True]

[Gen:True,Maj:False] -> [Pvt:True]

[Gen:True,Maj:True] -> [Pvt:True]
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effects :: NV a => G a -> Effects a the firing semantics of a graph
causes :: NV a => D a -> Causes a the causal semantics of a diagram

Figure 6: Operations for acquiring explicit representations of the two different semantics.

We can confirm that this is identical to the firing semantics of our original graph by confirming that the
following expression evaluates to True.

effects (graph trump) == effects (graph bothOrder)

That the firing semantics of these two graphs are equivalent, while the causal semantics of their corre-
sponding diagrams differ, illustrates an important result in causation research: that causal relationships
cannot be identified by simply changing the inputs to a function and observing its outputs.3 This is the
more general form of the point we stressed above. In terms of neuron diagrams, the multifunction view
of a neuron graph is not sufficient to determine the causal relationships in a story—causation depends
critically not only on the function a graph implements, but also on its internal structure.

Finally, we provide the types of the causes and the effects operations for reference in Figure 6. Note
that firing semantics are a property of neuron graphs, while causal semantics are tied to an instantiation
of a graph with particular input values, that is, a neuron diagram. These types again refer to the type
class NV, which will be defined in Section 6. Similar to the Effects a type, Causes a is an explicit
representation of a causal semantics that can be pretty printed and compared to other causal semantics.

In this section we focused on remodeling a problem in order to alter its inferred causes. Throughout
the discussion we have treated the causes operation like an oracle. In the next section we demystify
it by describing our cause inference algorithm. We also introduce our first extension to the language
of neuron diagrams, used to distinguish neurons that are potential causes from those that are not. The
formal definition of our cause inference algorithm can be found in our previous work [2].

4 Inferring Causes

At the heart of many modern theories of causation is the concept of counterfactual reasoning [12]. The
essence of this idea is captured in the question: what would have happened if things had been different?
Given a multifunction, if we change an input and an output also changes, we say that the output is
counterfactually dependent on the input, and so the input is a cause of the output.

However, as we saw in the previous section, two equivalent multifunctions do not necessarily produce
the same causes. It is easy to construct scenarios that foil direct counterfactual reasoning. Consider again
the diagram in Figure 5, where intuition (and our causes “oracle”) tells us that the firing of the Gen
neuron caused the firing of the Pvt neuron. But this cause is not detected by counterfactual reasoning—if
we change Gen to not fire (as shown in Figure 7), the value of Pvt does not change! The firing of Maj
acts as backup and causes Pvt to fire anyway. This is an example of a classic problem in the philosophy
literature known as preemption [17].

Our cause inference algorithm overcomes this problem, and others that cause direct counterfactual
reasoning to fail, by borrowing from several sources. The basic idea is to perform counterfactual rea-
soning locally, overriding the values of a neuron’s immediate predecessors, to determine which neurons
form part of a causal chain [11] back to the ultimate cause of a neuron’s state; then to recursively analyze
these neurons. We will step through an example of this process here. Consider again the neuron diagram

3This is called “counterfactual reasoning” in the philosophy literature. See Section 4.
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Figure 7: Diagram for a variant of the trumping scenario where the general gives no order.

in Figure 7, described above and generated by changing the inputs to the trump neuron diagram with the
following DSEL code.

notTrumped = trump ‘changeInputs‘ [False,True]

We begin at the terminal Pvt neuron and examine its two immediate predecessors, Gen and MajE. First
we hold all neurons besides Gen and Pvt fixed and flip the value of Gen. We observe that the value of Pvt
does not change, so Gen is not recursively analyzed. We perform the same test on MajE and observe that,
in this case, after changing the value of MajE the value of Pvt does change, so Pvt is counterfactually
dependent on MajE. The MajE neuron is therefore part of a causal chain and so its predecessors will be
recursively analyzed. If we then test each predecessor of MajE, neurons Gen and Maj, we will find that
MajE is counterfactually dependent on both of these neurons. This implies that both the major’s order
and the general’s non-order are responsible for the private charging. We can confirm this outcome by
consulting our causes oracle.

> causes notTrumped

Gen:False & Maj:True ==> Pvt:True

At first this may seem counterintuitive. Why isn’t the major alone the cause of the private’s actions?
To see the reason for this, suppose we reassign “real world” meanings to the neurons in the diagram.
That is, we leave the structure of the scenario unchanged, but consider some of the individual neurons
to represent different events. We will leave the meanings of the Maj and MajE unchanged—they still
represent the major’s order to charge and the major’s effective order—but now we will consider the
Gen neuron to represent the general’s order to retreat (rather than charge) and we will consider the Pvt
neuron to represent carrying out whichever order it receives. Now when we ask why the private charged,
it makes sense to say that the private charged because the major ordered a charge and the general did not
order a retreat. Had the general ordered a retreat, the Pvt neuron would still have fired, but the reason it
fired would have been different, and so the private’s action would be to retreat instead of to charge. This
is just one example of how the causes encoded in a neuron diagram are often not obvious at first glance
or from an informal description of the scenario it represents. This demonstrates the value of a formal
definition of the causal semantics of neuron diagrams and an implementation for quickly and accurately
extracting the causal relationships in a diagram.

So far, we have considered counterfactual dependencies between only (causal chains of) individual
neurons. In fact, the situation is much more complicated. Often we need to counterfactually reason about
arbitrary boolean expressions of preceding neurons, and the recursive expansion of these becomes quite
tricky. The necessity for this more complicated view can be easily seen by prepending neurons to the
above diagram notTrumped. Originally, we identified a conjunction of neurons as the ultimate cause of
the private’s action. If these neurons have predecessors, however, than this conjunction may not be the
ultimate cause but instead just another step in the causal chain requiring further expansion. The details
of this reasoning process can be found in [2].
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Dead§Boulder
Duck

Figure 8: Diagram for the scenario in which a hiker avoids a falling boulder by ducking.

Another potential problem with the causal-chain approach is that we can recurse too far. As the
algorithm has been described, the implicit base case is an exogenous neuron. But we can almost always
arbitrarily prepend neurons without significantly altering the story. For example, we could add a neuron
Wake that stimulates the Gen neuron in the diagram in Figure 5 and represents the general waking up
that morning. After all, the general cannot order the private to charge if asleep! Now we will identify
the firing of Wake as the cause of the private charging, which seems odd. While this example is kind
of silly, the underlying question of the transitivity (or not) of causation is a hotly debated topic among
philosophers [14, 4, 7].

In fact, assuming that causation is strictly transitive can lead to paradoxes. This is demonstrated by
the example in Figure 8, in which a boulder falls down a hill toward a hiker who subsequently ducks and
therefore does not die. If we perform our naively recursive causal chain analysis, we identify Duck as
the first link in the chain, followed by Boulder. So the very boulder which threatened the hiker’s life is
identified as the cause of the hiker’s survival!

In [2] we adapt a pragmatic solution to this problem originally developed in another language [6].
We simply explicitly distinguish neurons that are potential causes, called actions, from those that are
not, called laws. We then modify our algorithm to stop recursing whenever an action is encountered.
In the visual representation of neuron diagrams, we annotate laws with a “§” symbol and leave actions
unadorned. Intuitively, actions represent points in a story where things could have gone differently (for
example, decision points by the actors in the scenario), whereas laws represent hard-wired relationships
or parts of the story that are simply accepted as given. This is an essential causal modeling feature
previously absent from neuron diagrams.

When creating neuron diagrams in our DSEL, by default, input neurons are actions and all other neu-
rons are laws. This works most of the time, and is nearly equivalent to the naively recursive algorithm.4

When we need to override this behavior, however, we can extend a neuron description with an explicit
IsKind annotation. This is demonstrated in the definition of the Duck neuron in the following definition
of the boulder problem.

boulder = diagram [dead] ‘WithInputs‘ [True]

where

boulder = "Boulder" :# Input

duck = "Duck" :# StimBy [boulder] ‘IsKind‘ Action

dead = "Dead" :# StimBy [boulder] ‘InhibBy‘ [duck]

Because Duck is identified as an action, the algorithm will halt and return Duck as the cause of the
hiker’s survival rather than recursively analyzing its predecessors. We show the result of the causal
analysis below.

> causes boulder

Duck:True ==> Dead:False

4The only exceptions to this equivalence are exogenous, non-input, law neurons, such as the constant-valued neurons intro-
duced in Section 5.2.
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We have now seen several basic applications of our DSEL. Before we move on to more advanced
applications, including defining our own types of neurons and creating diagrams that operate on non-
boolean values, we return to the topic of neuron representation from Section 2.

5 Neuron Descriptions
So far, we have considered only the concrete syntax of neuron descriptions. This has included the
definition of input neurons, standard neurons with stimulating and inhibiting edges, and annotations for
overriding the default kind of a neuron. As mentioned in Section 2, this notation for describing neurons
can be considered a mini-DSL within the larger DSL for creating neuron diagrams. Because users of
neuron diagrams often invent new types of neurons on-demand, this mini-DSL must be very extensible.
In this section we show how our design directly supports this requirement.

One of the major advantages of DSELs is that their concrete syntax is inherently extensible; one can
always add new constructs to the language by simply defining new functions. Extensibility can still be
limited, however, by the underlying representation of the semantics and abstract syntax of the language,
which are usually captured in types. For example, we could represent the entire syntax of our neuron
description mini-DSL so far in a single data type, but this is not very extensible—new constructs would
be limited to mere syntactic sugar and adding new types of neurons would be impossible.

Instead, we represent neuron descriptions as an open class of types. Through local quantification of
the description type parameter in the type N a (repeated below), we enable the use of different description
types in a single neuron diagram. This is a highly extensible representation, that allows users to define
their own neuron description types and use them interchangeably with those provided by the DSEL.

In Section 5.1 we present the neuron description type class ND and its related types. We show how
to define basic neuron descriptions in Section 5.2, and more complex instances that modify or compose
existing descriptions in Section 5.3. Finally, we briefly consider an alternative representation of neu-
ron descriptions in Section 5.4, and argue that the chosen approach best supports the design goals of
simplicity and extensibility.

5.1 The Neuron Description Type Class
A neuron description must provide several pieces of information: (1) the kind of the neuron (action or
law); (2) the function that the neuron implements, called its firing function; (3) the visual style of the
neuron; and (4) the incoming edges from preceding neurons, which each have their own visual style. We
will consider the representation of each of these components separately, but first, we repeat the definition
of the neuron type N a below for reference.

data N a = forall d. ND d a => Name :# d a

Again note that from this definition, we see that ND is a multi-parameter type class on a type constructor
d, representing the description type, and the neuron value type a.

First, we represent the kind of a neuron, motivated in the previous section, with the following straight-
forward data type Kind.

data Kind = Action | Law

Second, the firing function of a neuron is a function from a list of input values (the values of its
predecessor nodes) to a result value, that is, [a] -> a. However, the input neurons of a diagram do not
have a firing function, and we represent this optionality with a Maybe type.

type Fire a = Maybe ([a] -> a)
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data Input a = Input

instance ND Input a where

kind _ = Action

fire _ = Nothing

data Const a = Const a

instance ND Const a where

fire (Const a) = Just (const a)

Figure 9: Neuron descriptions for basic exogenous neurons.

Therefore, an input neuron, such as Gen in the previous examples, has a firing function of Nothing. The
implementation of a non-input neuron’s firing function usually depends on the type of values processed
by the neuron. For example, a standard boolean neuron with only stimulating edges, such as the Pvt
neuron in our examples, would have a firing function of Just or, where or is the standard Haskell
function for disjunction of a boolean list. It is this dependency of the firing function on the value type
that motivates the definition of ND as a multi-parameter type class. Often we will want to define neurons
that are stylistically and structurally identical, but which operate on different value types. This type of
extensibility is easily supported by this construction, and we will see an example of redefining standard
neurons with a new value type in Section 6.

Third, the visual style of a neuron—essential for determining the function a neuron implements in
the visual representation—is represented by a list of GraphViz attributes (name-value pairs of strings),
and captured in the type Style. A suite of functions is provided for creating the most commonly used
attributes and styles. This not introduces a layer of abstraction that increases modularity and minimizes
the dependency on GraphViz. By hiding the definition of the Style type and exposing only the functional
interface we can add new visualization back-ends without breaking existing DSEL code.

Finally, each incoming edge to a neuron also has its own style, which is also significant to determining
the firing function of a neuron from its visual representation. For example, we indicate stimulating edges
with triangular arrowheads and inhibiting edges with circular arrowheads. We thus represent an edge as
a pair of a source neuron and a style.

type Edge a = (N a, Style)

Note that the destination neuron of an edge is implicitly the neuron containing the description that con-
tains that edge, and so is not represented explicitly in the edge type.

Taking all of the above, we can define the neuron description type class, ND as follows.

class ND d a where

kind :: d a -> Kind

fire :: d a -> Fire a

style :: d a -> Style

edges :: d a -> [Edge a]

kind _ = Law

style _ = []

edges _ = []

Useful defaults are provided for all of the methods in the type class except for fire, so it is possible for
some definitions to be quite small, as we will see in the next subsection.

5.2 Basic Neuron Descriptions

In this subsection we show the definitions of four basic neuron description types. We begin with the
definition of two descriptions for exogenous neurons, shown in Figure 9. On the left is the Input neuron
description that is used throughout the paper. This description is represented by just a nullary constructor,
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data StimBy a = StimBy [N a]

instance ND StimBy Bool where

fire _ = Just or

edges (StimBy ns) = plain ns

data Thick a = Thick Int [N a]

instance ND Thick Bool where

fire (Thick k _) = Just ((>=k) . count)

style _ = penwidth 3

edges (Thick _ ns) = plain ns

Figure 10: Neuron descriptions for basic boolean endogenous neurons.

but note that we must make Input a type constructor to satisfy the constraints of the ND type class.5 Input
neurons are usually actions, so in the type class instance we override the default kind method. Input
neurons also have no firing functions, so we set fire Input to Nothing. On the right, we define a simple
description for constant-valued neurons. While these neurons are exogenous like inputs, they are not
actions by default, so we rely on the default kind method in the instance declaration.

In Figure 10 we define a couple of basic descriptions for endogenous, boolean neurons. While we
left the value type parameter unfixed in the instance declarations for Input and Const (enabling these
descriptions for use with all value types), in these descriptions we fix the type in the instances to Bool

since the firing functions are specific to boolean values. The plain function used in these definitions
takes a list of predecessor neurons and returns a list of edges with “plain” styles, that is, with standard line
thickness and triangular arrowheads. On the left, we define the StimBy neuron description that has been
used throughout the paper. Its firing function is just a disjunction of its inputs. On the right, we define
thick-bordered neurons that, given a parameter k, fire if they are stimulated by at least k predecessors.
The expression penwidth 3 produces a thick-bordered style while count is a function that returns the
number of True values in a list. Example uses of thick neurons will be given in Section 7.

The DSEL provides several other neuron descriptions for standard neurons types used in the philos-
ophy literature. These include diamond-shaped XOR neurons, that fire if they are stimulated by exactly
one predecessor, and neurons with unstimulating edges that fire if at least one of their predecessors did
not fire. The definition of this latter neuron description type, UnstimBy, is similar to the definition of
StimBy, except that unstimulating edges are represented visually by a hollow arrowhead. This neuron
description will be used in Section 7.1. In the next section we provide examples of more complex neuron
descriptions that modify and combine other descriptions.

5.3 Description Decorators and Composition
In addition to the core neuron descriptions described above, we have also seen two examples of
annotation-like constructs in the mini-DSL for neuron descriptions. The first, ‘InhibBy‘, is used to
add inhibiting edges to a neuron, while the second, ‘IsKind‘, is used to set the kind of a neuron ex-
plicitly. Knowledge of Haskell syntax and typing reveals that these annotations are implemented as data
constructors applied as infix operators, and that the resulting data type value must be an instance of the
neuron description type class. These description constructors take another neuron description as their
first argument, “wrapping” them and extending or tweaking their functionality. The implementation of
these descriptions is very similar to a well-known idiom in the object-oriented programming community
called the decorator design pattern [3].

First, we examine the ‘IsKind‘ annotation, the simpler of the two built-in decorators seen so far.
We define the data type for this construct as follows; its constructor (the IsKind keyword in the DSL)
accepts a neuron description and a Kind value as arguments.

data IsKind d a = IsKind (d a) Kind

5An unreferenced type parameter like a is sometimes called a phantom type http://www.haskell.org/haskellwiki/
Phantom_type. This type information could be used, for example, to alter the style of input neurons of different types.

http://www.haskell.org/haskellwiki/Phantom_type
http://www.haskell.org/haskellwiki/Phantom_type
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The ND instance for this type requires that the wrapped description d also instantiates the type class for
the given value type a. It then simply defers to the wrapped description in all cases except for the kind

method, which is overridden to the argument value.

instance ND d a => ND (IsKind d) a where

kind (IsKind _ k) = k

fire (IsKind d _) = fire d

style (IsKind d _) = style d

edges (IsKind d _) = edges d

This demonstrates a very flexible and powerful way to extend the syntax and functionality of neuron
descriptions. The IsKind decorator can now be applied to any neuron description to set its kind explicitly.

Although slightly more complicated than the above, the decorator pattern can also be used to add new
types of edges to the existing language of neuron descriptions. We demonstrate this by implementing the
‘InhibBy‘ construct for adding inhibiting edges to any neuron description. First we define the data type
representing this construct, as before. The first argument is a neuron description to wrap, and the second
is a list of inhibiting predecessor neurons.

data InhibBy d a = InhibBy (d a) [N a]

In the ND instance for this construct, we will defer to the wrapped description’s kind and style methods
and extend the wrapped description’s fire and edges methods as described below.

instance ND d Bool => ND (InhibBy d) Bool where

kind (InhibBy d _) = kind d

style (InhibBy d _) = style d

fire (InhibBy d ns) = extend d (&&) (all not)

edges (InhibBy d ns) = edges d ++ styled (arrowhead "dot") ns

Extending the list of edges is straightforward—we just concatenate the new edges to the end of the
wrapped description’s edges, adding a Style value to each that will draw the new edges with a circular
arrowhead. The arrowhead function produces this style, and the styled function applies a style to every
neuron in a list, producing a list of edges. To extend the firing function, we rely on a helper function
extend. The type of this function is given below.

extend :: ND d a => d a -> (a -> b -> a) -> ([a] -> b) -> Fire a

This function extends the wrapped description’s firing function by evaluating the original firing function
on the original predecessors, applying the function passed as the third argument to the new predecessors,
and combining these results with the function passed as the second argument. In this example, we apply
all not to the inhibiting predecessors and combine the result with the original firing function with the
(&&) function. That is, the resulting neuron will fire if the wrapped description indicates that it should
fire, and none of the inhibiting neurons fire.

Note that while the IsKind decorator can be applied to any description regardless of the value type a,
the InhibBy decorator is limited to operating within boolean valued neuron diagrams. This is because the
firing function is defined in terms of boolean functions (not and (&&)), and the meaning of an inhibiting
edge is not clear in arbitrary non-boolean domains. One of the strengths of this language representa-
tion, however, is that existing neuron descriptions on specific value types can be easily extended to new
value types by simply re-instantiating the ND type class with a different second type argument. This is
demonstrated on the InhibBy type in Section 6.

The decorator pattern described above is easy to follow and provides a flexible form of extensibility.
However, it also enforces a hierarchy on neuron descriptions that is sometimes arbitrary. Some descrip-
tions are “cores”, like StimBy, while others are decorators, like InhibBy. In the case of stimulating and
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inhibiting edges, this hierarchy follows convention—inhibiting edges are added to all sorts of boolean
neurons (including, for example, the XOR and thick neurons described as the end of the previous sub-
section), while stimulating edges that implement logical disjunction are not. When a natural hierarchy
does not exist, however, or when we want to break with convention, the design also supports more ad hoc
and symmetric forms of composition. We provide two such composition constructs for boolean neuron
descriptions below. The :&&: construct combines two descriptions by merging their styles, concatenating
their edges, and combining their firing functions with the Haskell (&&) function. The :||: construct is
similar, except that it combines its arguments’ firing functions with (||).

data And l r a = l a :&&: r a

data Or l r a = l a :||: r a

We show the ND instance for the :||: construct below. The :&&: instance is identical, except that it uses
(&&) as the second argument to extend.

instance (ND l Bool, ND r Bool) => ND (Or l r) Bool where

kind (_ :||: r) = kind r

style (l :||: r) = style l ++ style r

edges (l :||: r) = edges l ++ edges r

fire (l :||: r) = extend l (||) (fromJust (fire r))

Note that this definition is not purely symmetric—the kind of the right argument is explicitly preferred
and the style of the right argument will also be preferred in the case of clashes, though this is an implicit
property of the Style type.

These constructs provide another example of how the chosen representation fulfills our design goals
of extensibility and flexibility, essential qualities for supporting neuron diagram use in practice. However,
the type class-based approach is not the only way to achieve these design goals, and is arguably heavier
weight than some of the alternatives. In the next section we compare our approach with a more explicit
representation of neuron descriptions, and argue in favor of our choice of representation.

5.4 Comparison to a Direct Data Type Representation

An alternative to the type class-based implementation of neuron descriptions, is a more direct represen-
tation where the ND type class is replaced by a data type that contains values corresponding to each of the
four methods in ND. We will call this data type ND’ to distinguish it from the ND type class.

data ND’ a = ND’ Kind (Fire a) Style [Edge a]

This representation is nearly as extensible as the type class-based approach and depends only on unex-
tended Haskell 98 [16]. Core neuron descriptions can be defined as functions that produce values of
type ND’ and decorators can be defined simply as functions that accept values of this type as arguments
and produce them as results. We can do all of this in a way that changes the concrete syntax of neu-
ron descriptions very little, simply replacing the capitalized names of Haskell data constructors with the
lowercase names of functions. The neuron description definitions are also often terser in the direct rep-
resentation since we do not have the extra syntactic overhead of declaring a data type and instantiating a
type class. So, if the representations are nearly equivalent, why do we use the more verbose alternative?

We choose the current approach over the data type representation for three reasons: (1) it funda-
mentally supports the extension of existing neuron descriptions to new value types by instantiating the
multi-parameter ND type class with new value types, promoting reuse of the syntax and structure of exist-
ing neurons; (2) it allows us to explicitly manipulate descriptions and encode constraints between neuron
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descriptions in the type system; and (3) the type class approach seamlessly integrates the data type ap-
proach, but not vice versa. The first point is illustrated in the next section, where we extend the StimBy

and InhibBy descriptions to a non-boolean domain. We briefly demonstrate the other two points below.
The abilities to explicitly manipulate neuron descriptions and to use Haskell types to encode syntactic

constraints in the neuron description DSL are both demonstrated by the following syntactic extension to
the description DSL that adds a single stimulating neuron to an existing StimBy description.

addStim :: StimBy a -> N a -> StimBy a

addStim (StimBy ns) n = StimBy (ns ++ [n])

With this extension, we can write, for example, a description of a neuron stimulated by predecessors
a, b, and c as StimBy [a,b] ‘addStim‘ c. An important fact about this new construct is that it can
only be applied to a StimBy description. It is impossible to define an extension with the same constraint
in the data type representation since the StimBy description is never represented explicitly—it would
instead be implemented as a function that produces a generic value of type ND’. While this example is
somewhat contrived, it demonstrates a fundamental advantage in expressiveness for the type class-based
representation, and one that is likely to become increasingly useful as extensions to the language grow
more complex.

The third reason that we prefer the type class-based representation is that it seamlessly integrates
the direct data type representation, while the converse is not true. This means that users preferring the
direct representation can use it freely, even using both representations together in the same diagram.
To integrate the direct representation into the type class-based approach, we add the following trivial
instance of the ND type class for the ND’ data type.

instance ND ND’ a where

{ kind (ND’ k _ _ _) = k ; style (ND’ _ _ s _) = s ;

fire (ND’ _ f _ _) = f ; edges (ND’ _ _ _ e) = e }

It is also easy to convert a type class-based neuron description into an explicit neuron description, for
example, using the following function toND’.

toND’ :: ND d a => d a -> ND’ a

toND’ d = ND’ (kind d) (fire d) (style d) (edges d)

However, the interoperability is not as seamless in this direction since it requires applications of toND’
to be sprinkled throughout DSEL code.

6 Beyond Boolean Causation
Although we have considered only boolean neuron values so far, an important contribution of this work is
the extension of neuron diagrams to non-boolean values. In order to perform counterfactual reasoning on
non-boolean values, we must be able to enumerate all possible values that a neuron can take on. We thus
require that a neuron value type is bounded and enumerable. We also must be able to distinguish different
values visually, and we capture these visual properties in the Style type described in Section 5.1. We
express all of these requirements in the following type class NV for neuron values.

class (Bounded a, Enum a, Eq a) => NV a where

valStyle :: a -> Style

We instantiate this type class for boolean values as follows, where fillWith returns a style that fills the
node with the argument color.
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instance NV Bool where

valStyle True = fillWith "gray"

valStyle False = []

In the rest of this section we extend our running general-major-private example to non-boolean val-
ues. Recall the diagram trump, shown in Figure 5, where the general’s order to charge trumps the major’s.
In Section 4 we briefly considered a variation of this story in which the general orders a retreat. What if
instead we allowed both officers in this scenario to order either a charge or a retreat, or to issue no order
at all? We capture these three possibilities in the following bounded, enumerable data type.

data Order = None | Charge | Retreat

To use this data type in visualized neuron diagrams, we also instantiate the NV type class, setting Charge

and Retreat to be colored green and red, respectively, and leaving neurons with None values unfilled.6

instance NV Order where

valStyle None = []

valStyle Charge = fillWith "palegreen"

valStyle Retreat = fillWith "orangered"

Now, we would expect that if the general gives an order, the private will carry out that order, otherwise
the private will carry out the order (or non-order) given by the major. There are at least two ways to
encode these firing semantics in a neuron graph. The first is to extend the notion of stimulating and
inhibiting edges to the Order data type, then reuse the neuron graph from the diagrams in Figure 5 and
Figure 7. The second is to invent a new type of neuron that interprets orders from multiple officers,
taking into account the officers’ ranks, thereby encapsulating all of the logic in this new neuron’s firing
function. We demonstrate both approaches here, and show that each can be used to create graphs with
the same firing semantics, and corresponding diagrams with the same causal semantics.

We first consider the approach of extending the existing neuron descriptions, for adding stimulating
and inhibiting edges, to work with Order values. We must begin by asking what it means to extend the
concepts of stimulating and inhibiting edges to this new data type. In this case, it seems that a None

value corresponds to a non-firing neuron in the boolean representation, while Charge and Retreat values
correspond to firing neurons. Therefore, if a neuron n is stimulated only by predecessors ps with None

values, then n should also have a value of None; if at least one of ps has a Charge or Retreat value,
however, then n should have the same value. It is not immediately clear what to do if some neurons in
ps have Charge values and some have Retreat values. One possibility is to simply default to None in
this case, while another is to set n to the value that is higher represented in ps (and to None if Charge
and Retreat are represented equally); that is, if two neurons in ps have the value Charge and one has the
value Retreat, we set n to Charge. We choose the second approach here, and this logic is captured in the
following helper function resolve.

resolve :: [Order] -> Order

resolve os | c > r = Charge

| r > c = Retreat

| otherwise = None

where [c,r] = [length (filter (==o) os) | o <- [Charge,Retreat]]

Using this function, we can instantiate the ND type class for stimulated neurons with Order values by
simply copying the corresponding instance for Bool (from Section 5.2) and replacing or in the firing
function with resolve.

6Color names use the X11 naming scheme http://www.graphviz.org/doc/info/colors.html#x11.

http://www.graphviz.org/doc/info/colors.html#x11
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instance ND StimBy Order where

fire _ = Just resolve

edges (StimBy ns) = plain ns

With this extension, we can create a non-boolean variant of the stories represented by the neuron dia-
grams in Figure 1. In this variant, the private carries out the order given to him by either officer, but gets
confused if the officers give conflicting orders, and responds by doing nothing.

The case for inhibiting edges is similar in that we separate orders into cases corresponding to boolean
firing neurons (Charge and Retreat) and non-firing neurons (None). That is, if any inhibiting predecessor
of a neuron n has a non-None value, we override the value of n to be None. We implement this again by
copying and modifying the corresponding ND instance for InhibBy on boolean values (from Section 5.3).
Only the firing function is different from the boolean case, so we present only the fire method below,
replacing the rest with an ellipsis.

instance ND d Order => ND (InhibBy d) Order where

fire (InhibBy d ns) = extend d (\o b -> if b then None else o) (any (/=None))

...

As in the boolean case, we rely on the extend helper function for extending the decorated neuron de-
scription’s firing function. On the inhibiting predecessors (those bound by the InhibBy decorator), we
apply the function any (/=None), which returns True if the neuron’s return value should be overridden
with None. The function passed as the second argument to extend combines with boolean value with the
order returned by the decorated description’s firing function, implementing the overriding behavior.

One of the major advantages of the type class-based representation of neuron descriptions, discussed
in Section 5, is that we can easily extend existing neuron description types to work with new value types,
as we have done here with StimBy and InhibBy. This means that we can reuse the graph of the boolean
version of the trump neuron diagram directly in both boolean and non-boolean versions of the story. To
do this, we define the graph independently as follows. Note that this is exactly the same graph structure
as in the definition of the trump diagram.

trumpG = Graph [pvt]

where

gen = "Gen" :# Input

maj = "Maj" :# Input

majE = "MajE" :# StimBy [maj] ‘InhibBy‘ [gen]

pvt = "Pvt" :# StimBy [gen,majE]

We can then create both boolean and non-boolean diagrams from this graph by simply instantiating it
with different inputs, as shown below.

trumpBool = trumpG ‘WithInputs‘ [True,True]

trumpOrder = trumpG ‘WithInputs‘ [Charge,Retreat]

The trumpBool diagram is exactly equivalent to trump, shown in Figure 5, where both officers give the
order to charge but it is the general’s order that is carried out. The trumping aspect of this graph is made
more explicit in the non-boolean case. In the trumpOrder diagram, shown in Figure 11(a), the general
orders a charge (colored green, or light gray in black and white) while the major orders a retreat (red,
darker gray). We can see clearly in the diagram that it is the general’s order that takes precedence since
the Pvt neuron is colored green, indicating that the private charged. If the general does not issue an order,
then the private carries out the major’s order, as shown in Figure 11(b), which was created with the DSEL
code trumpG ‘WithInputs‘ [None,Retreat].
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Figure 11: Neuron diagrams for a private reacting to orders from two officers. In (a) the general orders
the private to charge while the major orders a retreat, so the private charges. In (b) the major
orders the private to retreat and the general is silent, so the private retreats.

Next we consider the second approach to extending the general-major-private example to the non-
boolean Order type. This time we will extend the syntax with a new neuron description that resolves
orders according to the rank of the issuing officers. We call our new neuron description ByRank, and we
assume that the officers that are its predecessors are sorted in decreasing order of rank. We can represent
this neuron description with the following simple data type.

data ByRank a = ByRank [N a]

To make ByRank a neuron description, we must instantiate the ND type class. We give the neuron a unique
shape in order to visually distinguish it from other neurons, and define the firing function to simply return
the first non-None order received by one of its predecessors (or None if no such order is found). This will
be the order by the highest ranking officer since the predecessors of a ByRank neuron are sorted.

instance ND ByRank Order where

fire _ = Just (maybe None id . find (/=None))

style _ = shape "pentagon"

edges (ByRank ns) = plain ns

Now we can redefine the story represented by the trumpOrder diagram in terms of our new neuron
description as follows.

byRank = diagram [pvt] ‘WithInputs‘ [Charge,Retreat]

where

gen = "Gen" :# Input

maj = "Maj" :# Input

pvt = "Pvt" :# ByRank [gen,maj]

This diagram is shown in Figure 12, along with the variant diagram in which the major issues no order,
created with the DSEL code byRank ‘changeInputs‘ [None,Retreat].

An interesting feature of the graphs we have created with these two different approaches is that, not
only do they have the same firing semantics, they also encode the same causes. We can easily check
this claim with the DSEL. First, we check that the firing semantics of the two graphs are the same by
comparing their effects.

> effects trumpG == effects (graph byRank)

True

Next, we want to confirm that the graphs also encode the same causal relationships. Since the causal
semantics are defined in terms of neuron diagrams and not neuron graphs, we first extend the syntax of
the DSEL with a new operation for computing the causal semantics of all diagrams that can be generated
from a graph, and returning these as a list.
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Figure 12: Neuron diagrams for a private processing orders from two officers. In (a) the general orders
the private to charge while the major orders a retreat, so the private charges. In (b) the major
orders the private to retreat and the general is silent, so the private retreats.

allCauses :: NV a => G a -> [Causes a]

allCauses = map causes . allDiagrams

Now we can use this new operation to confirm that every corresonding diagram generated from each
graph has the same causal semantics.
> allCauses trumpG == allCauses (graph byRank)

True

To reiterate the point from Section 3, the equivalence of the causal semantics does not follow from the
equivalence of the firing semantics (the graphs of majorOrders and trump serve as counterexamples).
Rather, this was simply a feature designed into the particular representations presented here. Often
it is difficult to determine the causal semantics of a diagram just by looking at it, especially in the
presence of non-standard neurons like the ByRank neuron used above. With the direct language support
provided by our DSEL for viewing and comparing a neuron diagram’s causes, we were able to quickly
and reliably confirm the equivalence of the two representations above, something that would have been
time-consuming and error-prone otherwise.

Support for non-boolean values is a straightforward but significant extension to the language of neu-
ron diagrams. Our causal reasoning algorithm easily accommodates this extension, and our DSEL en-
ables causation researchers to either adapt existing neuron types to non-boolean domains or create new
types of neurons that operate on these new values. Other languages for causal reasoning also support
non-boolean values [6], but these scenarios have been simulated in neuron diagrams only awkwardly,
for example, by using several boolean neurons to represent a single non-boolean event [8]. One of the
main strengths of neuron diagrams is their explanatory power compared to other representations, but this
strength is diminished by the modeling contortions imposed by the constraints of boolean-only values.
With the extensions described in this paper and supported by this DSEL, we can lift these constraints,
promoting the creation of direct and readable neuron diagrams.

7 Neuron Diagrams as Explanations
Throughout this paper we have presented only very small neuron diagrams. These are toy examples
in the sense that they have been chosen to demonstrate particular aspects of the DSEL. However, they
are also highly representative of the size and nature of neuron diagrams actually used in the philosophy
literature. Neuron diagrams are not used for identifying causes in complex networks of events, but rather
for presenting and explaining simple structures that illustrate some tricky aspect of causation or make a
particular point. In other words, neuron diagrams are a language for toy examples!

In this section we will introduce two (slightly) more substantial examples to demonstrate the utility
of neuron diagrams as explanations and to discuss the role of neuron diagrams in causation research.
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if_ n = StimBy [n]

ifNot n = UnstimBy [n]

ifAny ns = StimBy ns

ifAll ns = Thick (length ns) ns

Figure 13: Neuron descriptions for conditional and quantified conditional logic operators.

Matt§John
Sue§ Brian§
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Matt§John
Sue§ Brian§

Karen§

Figure 14: Diagrams for the two scenarios encoded in the party logic puzzle.

7.1 Explanations of Logic Puzzles
We begin by illustrating the explanatory value of representing causal relationships directly, as edges
between nodes. As a motivating example, consider the following boolean logic puzzle.7

Matt will go to the party if John and Brian go. Brian will go if Karen goes or Sue doesn’t go.
Sue will go if John doesn’t. Karen will go if Sue does. When does Matt go to the party?

All causal relationships in the story are encoded concisely and unambiguously in the above description,
but the solution is not obvious and so this representation’s explanatory value is low.

In order to represent this problem as a neuron diagram, we first define a mini-DSL for encoding
encoding conditional logic statements in neuron diagrams, given in Figure 13. The if_ and ifAny con-
structs produce basic neuron descriptions with stimulating edges. The ifNot construct produces a neuron
that will fire only if its predecessor does not fire, represented by an unstimulating edge (hollow arrow-
head). Finally, the ifAll construct produces a neuron that fires only if all of its predecessors also fire,
using a thick neuron. Thick neurons and unstimulating edges were described in Section 5.2.

Using this mini-DSL, plus the :||: operator from Section 5.3, we can almost directly translate the
above description of the puzzle into the following neuron graph.

party = Graph [matt]

where

matt = "Matt" :# ifAll [john,brian]

brian = "Brian" :# if_ karen :||: ifNot sue

sue = "Sue" :# ifNot john

karen = "Karen" :# if_ sue

john = "John" :# Input

The neuron representing John is encoded as an input neuron since it has no predecessors.
Using this graph we can generate the two diagrams shown in Figure 14. From these diagrams it is

immediately clear that whether or not Matt goes to the party depends counterfactually only on whether
John goes to the party, and we can confirm this by examining the causes of the diagrams.

7From http://www.cs.princeton.edu/courses/archive/spr06/cos116/COS_116_HW_3.pdf

http://www.cs.princeton.edu/courses/archive/spr06/cos116/COS_116_HW_3.pdf
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Dead§Shot
Remove Saved§

Washed

(a)

Dead§Shot
Remove Infect§

Washed

(b)

Figure 15: Neuron diagrams describing the death of James A. Garfield. In (a) the doctors’ attempts to
remove the bullet could have saved Garfield’s life. In (b) their attempts were futile.

> allCauses party

[John:False ==> Matt:False,John:True ==> Matt:True]

Additionally, by showing the causal relationships directly, determining which events affect and are af-
fected by other events is a local operation. For example, by looking only at the neuron representing Brian
and its neighbors, we can see that Brian is influenced in his decision to attend by Sue and Karen, and that
his decision influences Matt’s. In either textual representation, the indirection created by naming forces
us to scan the entire model in order to get the same information, making the operation more difficult.

Finally, by looking at the diagrams we can see at a glance who will attend the party in either scenario.
This requires much more effort when looking at either the original description or the DSEL representa-
tion, since these representations abstract away from particular instances of the story.

In this example, the mapping from story to neuron diagram was unambiguous. In real scenarios
things are messier. The value of neuron diagrams then is not in identifying the correct causes in a story,
but rather in comparing different ways of modeling the story and the different causes they produce.

7.2 The Assassination of James A. Garfield
In 1881, U.S. President James A. Garfield was shot in the back by a rejected office-seeker named Charles
J. Guiteau.8 The bullet lodged in Garfield’s spine, critically wounding him. Doctors believed his recovery
depended on removing the bullet but were unsuccessful in several attempts. Garfield never recovered,
dying 11 weeks later from infections contracted from doctors probing for the bullet with unwashed hands.
During his trial, Guiteau famously argued, “the doctors killed Garfield, I just shot him”.

The question, of course, is who caused Garfield’s death? The answer is that it depends on how we
model the story! We can construct convincing neuron diagrams where the doctors are the only cause,
where Guiteau is the only cause, and several variants where both are causes. This demonstrates the fun-
damental unsuitability of neuron diagrams for objectively identifying causes in real-world situations—
modeling a story essentially amounts to encoding a preconceived set of causes into a diagram. Rather
than being a weakness, however, this is exactly the point. Neuron diagrams are a tool for representing
these (preconceived) causal relationships succinctly so that they can be shared, explained, and justified.
Our DSEL supports this process by providing a programmatic way to generate diagrams and to confirm
that the encoded causes are actually those that the creator intended.

Here we will consider a subtle distinction between two cases in which both Guiteau and the doctors
are identified as causes of Garfield’s death. The neuron diagrams for these cases are shown in Figure 15.
In both diagrams, the Shot neuron represents Guiteau shooting the president, Remove represents the
doctors attempting to remove the bullet, Washed represents whether the doctors washed their hands, and
Dead represents the death of Garfield. Shot and Washed are typical input neurons which we assume are

8http://en.wikipedia.org/wiki/Assassination_of_James_A._Garfield

http://en.wikipedia.org/wiki/Assassination_of_James_A._Garfield
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bound to the Haskell identifiers shot and washed. The doctors will only attempt to remove the bullet if
Garfield has been shot, so we represent the Remove neuron in our DSEL as follows.

remove = "Remove" :# if_ shot ‘IsKind‘ Action

We mark this neuron as an action in order to prevent the benefits of this action from being credited to the
shot itself, similar to the hiker-boulder example from Section 4.

In Figure 15(a), the Saved neuron represents the possibility that the doctors could have saved
Garfield. In order to be saved, the doctors must attempt to extract the bullet with clean hands; if saved,
Garfield’s death will be prevented. We define this diagram in the DSEL as follows, where unless deco-
rates a neuron description with a single inhibitory edge (unless d n = InhibBy d [n]).

savable = diagram [dead] ‘WithInputs‘ [True,False]

where

dead = "Dead" :# if_ shot ‘unless‘ saved

saved = "Saved" :# ifAll [remove,washed]

If the doctors do not wash their hands, Garfield will not be saved since he will die from infection.
In Figure 15(b) we represent the risk of infection more explicitly, by a neuron that will fire if the

doctors attempt to remove the bullet but do not wash their hands. This model also suggests that the wound
itself was fatal, that removing the bullet would not have saved Garfield (as some historians believe).

fatal = diagram [dead] ‘WithInputs‘ [True,False]

where

dead = "Dead" :# ifAny [shot,infect]

infect = "Infect" :# if_ remove ‘unless‘ washed

These diagrams represent different but equally valid interpretations of the death of Garfield, but as we
can see through cause inference, the causes they encode are very different.

> causes savable

Shot:True&Washed:False ==> Dead:True

> causes fatal

Shot:True | Removed:True&Washed:False ==> Dead:True

If we believe that Garfield was savable, then his death was caused by the combination of Guiteau’s shot
and the doctors’ unwashed hands. However, if we think that Garfield’s wound was already fatal, then
Garfield’s death is overdetermined. In this case, the shot alone is a sufficient cause of Garfield’s death,
as is the attempt to remove the bullet with unwashed hands.

These diagrams represent just two of many ways that Garfield’s death could be modeled. The causes
produced by any single account are merely a reflection of the assumptions that went into the construction
of that model, but by exploring the space of causal models we can reflect on those assumptions and
their impact on the inferred causes, leading to a deeper understanding of the situation and the nature
of causation itself. The DSEL presented in this paper is a tool for rapidly generating, visualizing, and
analyzing causal models, and therefore supports this process directly.

8 Related Work

While the focus of our DSEL and of neuron diagrams are on reasoning about deterministic causation,
reasoning about causation under uncertainty has been an important topic in AI research. For an overview
of the vast literature in this area, see the recently updated version of Judea Pearl’s monograph [15].



166 A DSEL for Studying and Explaining Causation

Since the introduction of the visual language of neuron diagrams by David Lewis [13], neuron di-
agrams have been used extensively to investigate and explain causation in particular situations and to
study the nature of causation itself. One of the attractive features of neuron diagrams is that they provide
an immediate visual representation for counterfactual reasoning. The relationship of counterfactuals to
causation was first expressed by 18th century philosopher David Hume [9], but the first fully developed
theory of causation in terms of counterfactuals was introduced by Lewis [11]. In the same work, Lewis
also develops the notion of causal chains, central to our causal reasoning algorithm.

Most research on counterfactually determined causation has focused on “token” causation [7], which
in neuron diagrams corresponds to causes involving only a single neuron. An exception to this is the
work of computer scientists Halpern and Pearl [6], who developed the structural equations model, a more
expressive but mostly non-visual language for describing and reasoning about causality. Their idea of
“general” causation, where sets of events can act as causes, has since propagated back into philosophical
analyses by, for example, Hitchcock [7], Hall [5], and Woodward [18]. Interestingly, none of these
approaches distinguishes between conjunctions and disjunctions of events in causes, which provides a
more accurate description of causes in certain situations, as we have shown in [2].

Although structural equations have their own impoverished graphical notation called “causal graphs”,
it is much less expressive than neuron diagrams [15]. Causal graphs are equivalent to a neuron graph in
which all neurons and edges are the same shape and style. This notation is also peripheral to the lan-
guage of structural equations—causal graphs document the relationships encoded in a structural equa-
tions model, but it is entirely possible to use structural equations without ever considering causal graphs.

Despite their wide-spread use and popularity, neuron diagrams have come under criticism. In particu-
lar, Hitchcock [8] details several perceived limitations of the language. The most critical of these are that
the language’s inherent extensibility makes neuron diagrams difficult to reason about and not enumer-
able. Enumerability is important, he argues, to compare a neuron diagram to possible alternatives. Our
formalization of neuron diagrams and their semantics resolves both of these concerns [2]. Furthermore,
our extension of the language to distinguish between action and law neurons has allowed us to develop
a cause inference algorithm that produces more accurate results than any previous approach. The work
presented here provides an implementation of these theoretical developments, supporting practical work
with neuron diagrams. It allows philosophers and other causation researchers to easily generate dia-
grams, systematically enumerate all cases for a class of causal situations given by a neuron graph, and
most importantly, to automatically and accurately infer the causes encoded in a diagram.

In other previous work, we have developed a DSEL for creating explanations of probabilistic rea-
soning problems [1]. This language relies fundamentally on the principle of causation and provides
constructs to combine events into stories. Unlike neuron diagrams, however, these stories have a mostly
linear form. Moreover, no operations exist in the language to infer the causes of events.

9 Conclusions and Future Work

In this paper we have presented a DSEL to support causation research. The specific contributions of this
work include: (1) an implementation of our formal model of neuron diagrams and our cause inference
algorithm, making this previously theoretical work practically accessible and applicable for causation
researchers; (2) an extension of the neuron diagram language to operate on non-boolean values; (3) a
domain-specific language that supports the easy creation of neuron diagrams that is easily extended by
new types of neurons and values; and (4) a supporting library of operations for manipulating, querying,
and altering neuron graphs and diagrams.

In addition to the applications described in this paper, we can imagine several more advanced appli-
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cations of our language. For example, the language can be used as a platform for testing and comparing
alternative cause inference algorithms, or as a platform for research on explanations by comparing which
equivalent neuron diagrams are easier for people to understand. The extension of neuron diagrams to
arbitrary bounded and enumerable data types could also lead to many unexpected applications.

For our own future work, we intend to extend this DSEL with a query language for neuron diagrams.
Such a language would provide, at least, generators for neurons, neuron graphs, and neuron diagrams,
and filters for identifying graphs with certain effects or diagrams that encode particular causes. Such a
language would be a boon to causation research, allowing one to easily compare all causal structures that
share important properties, and to rigorously test an idea against a battery of relevant test cases.
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