
Toward the Automatic Derivation of XML

Transformations

Martin Erwig

Oregon State University
School of EECS

erwig@cs.orst.edu

Abstract. Existing solutions to data and schema integration require
user interaction/input to generate a data transformation between two
different schemas. These approaches are not appropriate in situations
where many data transformations are needed or where data transforma-
tions have to be generated frequently.
We describe an approach to an automatic XML-transformation generator
that is based on a theory of information-preserving and -approximating
XML operations. Our approach builds on a formal semantics for XML
operations and their associated DTD transformation and on an axiomatic
theory of information preservation and approximation. This combination
enables the inference of a sequence of XML transformations by a search
algorithm based on the operations’ DTD transformations.

1 Introduction

XML is rapidly developing into the standard format for data exchange on the
Internet, however, the combination of an ever growing number of XML data
resources on the one hand, and a constantly expanding number of XML ap-
plications on the other hand, is not without problems. Of particular concern
is the danger of isolated data and application “islands” that can lead users to
perceive a prodigious supply of data that is often inaccessible to them through
their current applications.

This issue has been observed and extensively addressed in previous work in
data integration, for example, [8, 14, 6, 7, 19, 13] and more recently in schema
integration and query discovery [21, 24, 15, 16]. So far, however, all the proposed
solutions require user input to build a translation program or query. Even more
troubling, since each different data source requires a separate transformation,
the programming effort grows linearly with the number of data sources. In many
cases this effort is prohibitive.

Consider the following scenario. An application to evaluate the publication
activities of researchers accepts XML input data, but requires the data to be
of the form “publications clustered by authors”. A user of this system finds a
large repository of bibliographic data, which is given in the format according to
the DTD shown in Figure 1 on the left. In the following, we will refer to the
corresponding XML data as bib. The application cannot use these data because

<!ELEMENT bib (book|article)*>

<!ELEMENT book (title,author*)>

<!ELEMENT article

(title,author*,journal)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT journal (#PCDATA)>

<!ELEMENT byAuthor author*>

<!ELEMENT author (name,(book|article)*)>

<!ELEMENT book title>

<!ELEMENT article (title,journal)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT journal (#PCDATA)>

Fig. 1. DTD of available data and DTD of required data.

bibliographic entries are not grouped by authors. What is needed is a tool that
can transform bib into a list of author elements, each containing a sublist of their
publications. Such a format is shown in Figure 1 on the right.

Although tools are available that support the transformation, they sometimes
require non-trivial programming skills. In almost all cases they require some form
of user interaction. In any case, users might not be willing to invest their time in
generating one-time conversion tools. Moreover, if the integration of several dif-
ferent data sources should be required to create several different transformations,
the programming or specification effort quickly becomes untenable.

An intrinsic requirement is that these transformations be “as information
preserving as possible”. In the best case the generated transformation preserves
the information content completely, but in many instances transformations that
lose information are also sufficient. For example, if an application requires only
books with their titles, a transformation that “forgets” the author information
of an XML document works well.

Our solution to the described problem can be summarized as follows: First,
identify an algebra of information-preserving and information-approximating
XML transformations. In particular, these operations have a precisely defined
type, that is, an associated schema transformation for DTDs. By induction it
then follows that if we transform a DTD d into a DTD d′ by a sequence of these
elementary XML transformations, the same sequence of operations transforms
an XML value of DTD d lossless or approximating into an XML value of DTD
d′. The second step is then to define a search algorithm that constructs a search
space of DTDs by applying algebra operations and find a path from a source
DTD d to the required target DTD d′. The path represents the sequence of
operations that realize the sought transformation.

There might be, of course, cases in which the automatic inference does not
work well. The situation is comparable to that of search engines like Google
that do not always find good matches due to a lack of semantics or structure
associated with the query keywords. Nevertheless, search engines are among the
most valuable and most frequently used tools of the Internet since they provide
satisfactory results in practice. For the same reasons, automatic integration tools,
although not complete, might be valuable and useful tools in practice.

This paper presents the proposed approach through examples. Due to space
limitations we have to restrict ourselves to the description of a small number of
elementary XML operations that can be employed in generated transformations

and also a subset of axioms for information approximation. Nevertheless, we
will be able to demonstrate the automatic generation of an XML transformation
within this restricted setting.

The rest of this paper is structured as follows. In Section 2 we will dis-
cuss related work. In Section 3 we will formally define the problem of XML-
transformation inference. In Section 4 we axiomatize the notions of information
preservation and approximation. In Section 5 we define what it means for an
XML transformation to be DTD correct. In Section 6 we introduce basic XML
transformations that will be used as building blocks in Section 7 in the inference
of complex XML transformations. Finally, Section 8 presents some conclusions.

2 Related Work

Related work has been performed in two areas: (i) schema matching and query
discovery and (ii) data semantics and information content.

Schema Matching and Query Discovery. Approaches for matching between
different data models and languages are described in [19, 2, 3]. Data integration
from an application point of view is also discussed, for example, in [8, 6, 14, 13].
We will not review all the work on data integration here because data integration
is traditionally mainly concerned with integrating a set of schemas into a unified
representation [22], which poses different challenges than translating between
two generally unrelated schemas.

A more specific goal of schema matching is to identify relationships between
(elements) of a source and a target schema. Such a mapping can then be used
to deduce a transformation query for data.

The Cupid system [15] focuses exclusively on schema matching and does not
deal with the related task of creating a corresponding data transformation/query.
The described approach combines different methods used in earlier systems, such
as MOMIS [4] or DIKE [20].

The Clio system [9] is an interactive, semi-automated tool for computing
schema matchings. It was introduced for the relational model in [16] and was
based on so-called value correspondences, which have to be provided by the
user. In [24] the system has been extended by using instances to refine schema
matchings. Refinements can be obtained by inferring schema matchings from
operations applied to example data, which is done by the user who manipulates
the data interactively. User interaction is also needed in [21] where a two-phase
approach for schema matching is proposed. The second phase, called semantic

translation, is centered around generating transformations that preserve given
constraints on the schema. However, if few or even no constraints are available,
the approach does not work well.

It has been argued in [16] that the computation of schema matchings can-
not be fully automated since a syntactic approach is not able to exploit the
semantics of different data sources. While this is probably true for arbitrarily
complex matches, it is also true that heuristic and linguistic tools for identify-
ing renamings can go a long way [12, 5]. Certainly, quality and sophistication of

transformations can be increased by more semantic input. However, there is no
research that could quantify the increase/cost ratio. So it is not really known
how much improvement is obtained by gathering semantics input. The approach
presented in this paper explores the extreme case where users cannot or are not
willing to provide input, which means to provide fully automatic support for
data transformation.

Information Content. A guiding criterion for the discovery of transforma-
tions is the preservation (or approximation) of the data sources to which the
transformations will be eventually applied. Early research on that subject was
performed within relational database theory [10, 11] and was centered around
the notion of information capacity of database schemas, which roughly means
the set of all possible instances that a schema can have. The use of information
capacity equivalence as a correctness criterion for schema transformations has
been investigated in [17, 18]. In particular, this work provides guidelines as to
which variation of the information capacity concept should be applied in dif-
ferent applications of schema translation. One important result that is relevant
to our work is that absolute information capacity equivalence is too strong a
criterion for the scenario “querying data under views”, which is similar in its re-
quirements to data integration. In other words, those findings formally support
the use of information approximation in transformation inference.

3 Formalization of Transformation Inference

In the following discussion we make use of the following notational conventions.

Symbols denote

x, x′, y, z XML elements (also called XML values)
`, `′ lists of XML elements
d, d′ DTDs
t, u tags
t4 XML elements with tag t

t[x1 . . . xk], t[`] XML elements with tag t and subelements x1 . . . xk (or `)

Sometimes we want to refer to a subelement without caring about the exact po-
sition of that element. To this end we employ a notation for XML contexts : C〈x〉
stands for an XML element that contains somewhere a subelement x. Similarly,
C〈`〉 represents an XML element that contains a list ` of subelements. This no-
tation is particularly helpful for expressing changes in contexts. To simplify the
discussion, we do not consider attributes or mixed content of elements in the
following.

Now we can describe the problem of XML-transformation inference precisely
as follows. We are given an XML data source x that conforms to a DTD d (which
is written as x : d), but we need the data in the format described by the DTD
d′. Therefore, we are looking for an XML transformation f that, when applied
to x, yields an XML value x′ that conforms to the DTD d′ (that is, f(x) : d′)
and contains otherwise as much as possible the same information as x. This last

condition can be expressed by defining a partial order on XML values ≺ that
formalizes the notion of having less information content. A slight generalization
of the problem is to find transformations f with the described property without
knowing x. We can express the problem mathematically as follows.

P (d, d′) = {f | ∀x.x : d =⇒ f(x) : d′ ∧ @f ′.f ′(x) : d′ ∧ f(x) ≺ f ′(x)}

P defines the set of all transformations f that map an XML value conforming to
d to a value conforming to d′ and also have the property that there is no other
transformation f ′ with that property that preserves more information content.
The generalized definition reflects the application when the DTD d of the XML
data source is known, but the (possibly very large) XML document x has not
been loaded (yet). In the following we consider this second case since it subsumes
the previous one.

4 Information Preservation and Information

Approximation

We formalize the concepts of information preservation and approximation by
defining corresponding relations on XML trees. These relations are induced by
operations on XML values. We consider here the renamings of tags and regroup-
ing as an information-preserving operation and the deletion of elements as an
information-approximating operation. This limitation is not really a problem
since the whole theory is generic in the axiomatization of information preser-
vation/approximation, which means that the set of chosen operations does not
affect the overall approach.

Formally, two elements that have non-matching tags, such as x = <t>a</t>

and x′ = <u>a</u>, are considered to be different. However, if we rename the tag
t in x to u, both elements become identical. We write {t 7→ u} for a renaming of
t to u and {t 7→ u}(x) for the application of the renaming to the element x. It
happens quite frequently that the same data are named differently by different
people. For example, we might find bibliographic data sources that wrap the
author information by tags <author>, <name>, <aname>, and so on. With regard
to the information contained in the XML value, the actual choice of individual
tag names does not really matter. Therefore, we can consider a broader kind
of equality “up to a tag renaming r”, written as ≡r. For example, under the
renaming {t 7→ u} the elements x and x′ are equal, which we could express, for
example, by x ≡{t7→u} x′. This is because {t 7→ u}(x) = x′. We must be careful
not to rename with a tag that is already in use in the element to be renamed. For
example, if we renamed <author> to <title>, the meaning of the bibliographic
data from Section 1 would change. In general, a renaming r can consist of a
set of tag renamings, which means that r is a function from old tags to new
tags. These two sets can be extracted from a renaming by dom(r) and rng(r),
respectively.

We can formalize the equivalence of DTDs modulo renamings by a rule like
ren≡ shown in Figure 2. In this and the rules to follow, r denotes an arbitrary

ren≡

rng(r) ∩ tags(x) =
�

r(x) = x′

x ≡r x′
cong≡

x1 ≡r y1 . . . xk ≡r yk

t[x1 . . . xk] ≡r t[y1 . . . yk]

grp≡
C〈t[`1] . . . t[`k]〉 ≡r C〈t[`1]〉 . . . C〈t[`k]〉

del�
C〈x〉 �r C〈〉

cong�

x1 �r y1 . . . xk �r yk

t[x1 . . . xk] �r t[y1 . . . yk]

Fig. 2. Axiomatic definition of information content and approximation

(set of) renaming(s). The first premise of the rule prevents name clashes by re-
quiring fresh tags in renamings. The function tags computes the set of all tags
contained in an XML element. We also have to address the fact that some re-
namings are more reasonable than others, for example, {name 7→ aname} is more
likely to lead to equivalent schemas than, say {name 7→ price}. In the described
model, any two structurally identical DTDs can be regarded as equivalent under
some renaming. This leads to equivalence classes that are generally too large. In
other words, schemas that would not be considered equivalent by humans are
treated as equivalent by the model. This will be particularly evident when the
tags used in the source and target DTD are completely or mostly different.

This problem can be addressed by defining an ordering on renamings that is
based on the number and quality of renamings. A cost or penalty can be assigned
to each renaming based on its likeliness. For example, names that are “similar”
should be assigned a relatively low cost. Measures for similarity can be obtained
from simple textual comparisons (for example, one name is the prefix of another),
or by consulting a thesaurus or taxonomy like WordNet [1]. Synonyms identified
in this way should also have a low penalty. In contrast, any renaming that has
no support, such as {name 7→ price}, receives a maximum penalty. With this
extension we can measure any equivalence d ≡r d′ by a number, which is given
by the sum of the penalties of all renamings in r. Later, we can use this measure
to select the “cheapest” among the different possible transformations by favoring
a few, well-matching renamings.

Renaming is the simplest form of extending verbatim equality to a form
of semantic equivalence. As another example, consider a structural equivalence
condition that is obtained from the observation that an element x with tag u con-
taining k repeated subelements with tag t is a grouped or factored representation
of the association of each t-element with the rest of x. Therefore, it represents
the same information as the corresponding “de-factored” or “ungrouped” repre-
sentation as k u-elements each containing just one t-element. For instance, the
following element on the left represents (in a factored way) the same information
as the two elements shown on the right.

<book>

<title>Principia Math.</title>

<author>Russel</author>

<author>Whitehead</author>

</book>

<book>

<title>Principia Math.</title>

<author>Russel</author>

</book>

<book>

<title>Principia Math.</title>

<author>Whitehead</author>

</book>

In general, an element C〈t[`1] . . . t[`k]〉 contains the same information as the list
of elements C〈t[`1]〉 . . . C〈t[`k]〉. This idea can be captured by the axiom grp≡

shown in Figure 2.
Finally, we also need congruence rules to formalize the idea that if elements x

and x′ contain the same information, then so do, for example, the elements t[x]
and t[x′]. This is achieved by the rule cong≡ shown in Figure 2. This approach
for formalizing the notion of information equivalence by a set of axioms and rules
provides a sound basis for judging the correctness of inferred transformations.

In a similar way, we can axiomatize the notion of information approximation.
For instance, deleting a subelement from an element x yields a new element x′

that contains fewer information than x but agrees otherwise with x. This idea
can be expressed by the axiom del� shown in Figure 2 where we also give
a congruence rule cong� for information approximation. Since the definition
of approximation is an extension of equivalence, we also have to account for
renamings in the predicate �r.

5 DTD Correctness of XML Transformations

DTDs can be formally defined by extended context-free grammars. Non-recursive
DTDs can be represented simply by trees, that is, they can be represented es-
sentially in the same way as XML values. This tree representation simplifies the
description of DTD transformations. Note that in this representation * and |

occur as tags. For example, the DTD for bib can be represented by the following
tree.

bib[*[|[book[title, *[author]], article[title, *[author], journal]]]]

Representing DTDs as trees means that we can re-use the tree operations we
have already defined for XML values. The complexity of the resulting notation
can be simplified by abbreviating *[e] by e∗ and |[e, e′] by (e|e′) so that we can
recover most of the original DTD notation:

bib[(book[title, author∗] | article[title, author∗, journal])∗]

A DTD transformation is given by a function that maps a DTD d to another
DTD d′. For each XML transformation f , we can consider its corresponding
DTD transformation, for which we write f . Depending on the language in which

f is defined and on the formalism that is used to describe DTDs and DTD trans-
formations, there might exist zero, one, or more possible DTD transformations
for f . The DTD transformation f that corresponds to an XML transformation
can also be considered as f ’s type, which is expressed by writing f : d → d′ if
f(d) = d′.

Formally relating DTD transformations to the transformations of the under-
lying XML values is achieved by the notion of DTD correctness, that is, an XML
operation f : d → d′ is defined to be DTD correct if

f applies to x =⇒ ∀x : d.f(x) : d′

In other words, DTD correctness means that the DTD transformation f that
is associated with an operation f is semantically meaningful, that is, it reflects
correctly the DTD transformation for each underlying XML value. (We can write
the condition also as: ∀x : d.f(x) : f(d).)

6 Basic XML Transformations

The feasibility of the automatic XML-transformation inference hinges to a large
part on the ability to express complex XML transformations as compositions of a
small set of simple operations, which we call basic operations. The design of these
basic operations is guided by the following criteria. All basic operations must
(a) be information preserving or information approximating, (b) have a clearly
specified DTD transformation, and (c) be DTD correct. Why do we require
these properties? Item (a) ensures that inferred transformations do not change
the information contained in XML data or at most lose information, but never
introduce new information. Properties (b) and (c) will ensure that the inference,
which is directed by DTDs, yields transformations of XML values that conform
to these DTDs. The notion of DTD transformations and correctness will be
explained below.

Next we consider three basic XML transformations that have been designed
guided the just mentioned criteria: renaming, product, and deletion.

Renaming. The rename operation α takes a renaming r = {t1 7→ u1, . . . , tk 7→
uk} with ui 6= ti for 1 ≤ i ≤ k and applies it to all tags in an XML element x.
We require that the new tags ui do not occur in x.

αr(x) =

{

r(x) if rng(r) ∩ tags(x) = ∅
x otherwise

Let us check the design constraints for this operation. For information preser-
vation we require that the XML value obtained by the operation in question
is equivalent to the original XML value. In the case of renaming we therefore
require αr(x) ≡r x, which follows directly from the axiom ren≡ shown in Figure
2. The DTD transformation that corresponds to renaming can be described by:

αr : d → r(d)

which means that α transforms an XML value conforming to a DTD d into a
value whose DTD is obtained by renaming tags according to r. The proof of
DTD correctness can be performed by induction over the syntactic structure of
the DTD transformation.

Product. Another basic operation is the operation π for de-factoring XML
elements. We also call this operation product since it essentially computes a
combination of an element with a list of its subelements. The tag t of the subele-
ment to be considered is a parameter of π.

πt(u[C〈t[`1] . . . t[`k]〉]) = u[C〈t[`1]〉 . . . C〈t[`k]〉]

The additional root tag u is needed in the definition to force the repetition
to apply below the root element. We assume implicitly in this and all other
definitions that operations leave all XML values unchanged that do not match
the pattern of the definition. In the case of π this means that for any element x

that does not contain repeated t-subelements we have πt(x) = x. Again we can
check the properties of the operation π. First, information preservation follows
from the axiom grp≡ and the congruence rule cong≡ shown in Figure 2. The
type of π is:

πt : u[C〈t∗
4
〉] → u[C〈t4〉

∗]

DTD correctness can again be shown by induction.
Deletion. As an example for an information-approximating operation, con-

sider the XML transformation δt that deletes a sequence of t-subelements (on
one level) from an XML element. It can be defined as follows.

δt(C〈t[`1] . . . t[`k]〉) = C〈〉

Obviously, δ is not information preserving, but it is information approximating,
which can be proved using the axiom del� from Figure 2. The type of δ can be
described succinctly by re-using the context notation for XML trees.

δt : C〈t∗
4
|t4〉 → C〈〉

As for the other XML transformations, DTD correctness can be proved by in-
duction.

To summarize, for all the basic operation ω defined, we have the following
property.

∀x.x : d =⇒ ω(x) : ω(d) ∧ (∃r.x ≡r ω(x) ∨ ω(x) �r x)

That is, each basic operation ω is: (1) DTD correct and (2a) information pre-
serving or (2b) information approximating (recall that ω denotes the DTD trans-
formation of ω).

7 Transformation Inference

A very simple, although effective, initial approach is to build a search space
of DTDs starting from the DTD of the source document, say d, by repeatedly

applying all matching operations until the target DTD, say d′, is reached. By
“matching operations” we mean basic operations whose argument type have d

as an instance.
In the search we always favor following paths along information-preserving

operations over information-approximating operations. Whenever we apply α we
take tags(d′) as a pool from which to draw new names. We also have to ensure
not to repeatedly apply inverse renamings to prevent running into infinite search
paths.

Once we have reached d′ by this procedure, the path from d to d′ in this search
space corresponds to a sequence of basic XML transformations ω1, . . . , ωk whose
composition f = ωk · . . . ·ω1 is the sought transformation of type d → d′. This is
because we are using only DTD-correct transformations. If all basic operations
ωi are information preserving, then so is the transformation f . If at least one ωi

is information approximating, then so is f . If we are not able to generate d′, the
algorithm stops with an error.

To illustrate the transformation inference by an example, consider the task
of creating a list of title/author pairs for books from the bib element. This means
to find a transformation from the DTD d for bib

bib[(book[title, author∗] | article[title, author∗, journal])∗]

into the following DTD d′.

bookAuthors[book[title, author]∗]

First, since the tag bookAuthors is not contained in the source DTD d, we know
that we have to apply αr with r = {bib 7→ bookAuthors}. Next, we can apply
δarticle because its type matches with the context

C1 = bookAuthors[(book[title, author∗] | 〈 〉)∗]

However, we might also apply πauthor by choosing, for example, the following
context (note that u = bookAuthors).

C2 = (book[title, author∗] | article[title, 〈 〉, journal])∗

(Alternatively, we could also match author∗ in the book element.) Nevertheless,
we choose to apply δ because it is simpler, which is somehow indicated by the
smaller context C1. We could also try to apply δbook to delete the book element,
which, however, does not seem to make any sense because we then “lose” a tag
of the target DTD. After having applied δarticle, we have reached the DTD
described by the context C1. Now it makes sense to apply πauthor. Before we do
this, however, we simplify C1 according to a rule d|〈 〉 = d to remove the now
unnecessary | constructor. So the context for the application of πauthor is (with
u = bookAuthors):

C3 = book[title, 〈 〉∗]∗

The resulting DTD after the application of πauthor is

bookAuthors[(book[title, author]∗)∗]

A final simplification through the rule (d∗)∗ = d∗ [23] yields the target DTD.
The inference process has therefore generated the transformation

f = πauthor · δarticle · α{bib7→bookAuthors}

The description is a bit simplified, because in order to apply the operations in f

to some XML value, we need all the contexts that were determined during the
inference process. Treating these contexts here like implicit parameters, we can
now apply f to bib and obtain the desired XML value.

With two additional operations for lifting elements upward in XML trees
and grouping elements according to common subelements, we can describe the
XML transformation that is required for the example given in Section 1. De-
signing these operations so that they are DTD correct and information pre-
serving/approximating and making transformation inference powerful enough
to discover them is part of future work.

8 Conclusions

The fast growing number of Web applications and available information sources
carries the danger of creating isolated data and application islands because the
distributed nature of the Internet does not enforce the use of common schemas
or data dictionaries. Our approach aims at avoiding these data islands and to
promote the free flow and integration of differently structured data by developing
a system for the automatic generation of XML transformations.

Our approach differs from previous efforts since we aim at a fully automated
transformation discovery tool where user interaction is not required a priori. It
will not, however, rule out any additional input the user is willing to provide. As
one example, user-defined renamings can be easily integrated into our approach
by setting penalties for these renamings to zero. In other words, users can interact
if they want to, but are not required to do so.

References

1. WordNet: A Lexical Database for the English Language.
http://www.cogsci.princeton.edu/~wn/.

2. S. Abiteboul, S. Cluet, and T. Milo. Correspondence and Translation for Hetero-
geneous Data. In 6th Int. Conf. on Database Theory, LNCS 1186, pages 351–363,
1997.

3. P. Atzeni and R. Torlone. Schema Translation between Heterogeneous Data Models
in a Lattice Framework. In 6h IFIP TC-2 Working Conf. on Data Semantics, pages
345–364, 1995.

4. S. Bergamaschi, S. Castano, and M. Vincini. Semantic Integration of Semistruc-
tured and Structured Data Sources. SIGMOD Record, 28(1):54–59, 1999.

5. M. W. Bright, A. R. Hurson, and S. Pakzad. Automated Resolution of Seman-
tic Heterogeneity in Multidatabases. ACM Transactions on Database Systems,
19(2):212–253, 1994.

6. V. Christophides, S. Cluet, and J. Simèon. On Wrapping Query Languages and
Efficient XML Integration. In ACM SIGMOD Conf. on Management of Data,
pages 141–152, 2000.

7. S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your Mediators Need Data Con-
version! In ACM SIGMOD Conf. on Management of Data, pages 177–188, 1998.

8. A. Eyal and T. Milo. Integrating and Customizing Heterogeneous E-Commerce
Applications. VLDB Journal, 10(1):16–38, 2001.

9. L. M. Haas, R. J. Miller, B. Niswonger, M. T. Roth, P. M. Schwarz, and E. L.
Wimmers. Transforming Heterogeneous Data with Database Middleware: Beyond
Integration. Bulletin of the IEEE Computer Society Technical Committee on Data

Engineering, 22(1):31–36, 1999.
10. R. Hull. Relative Information Capacity of Simple Relational Database Schemata.

SIAM Journal of Computing, 15(3):856–886, 1986.
11. T. Imielinski and N. Spyratos. On Lossless Transformation of Database Schemes

not Necessarily Satisfying Universal Instance Assumption. In 3rd ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems, pages 258–265, 1984.
12. P. Johannesson. Linguistic support for Analysing and Comparing Conceptual

Schemas. IEEE Transactions on Knowledge and Data Engineering, 21(2):165–182,
1997.

13. A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying Heterogeneous Information
Sources Using Source Descriptions. In 22nd Int. Conf. on Very Large Databases,
pages 251–262, 1996.

14. B. Ludäscher, Y. Papakonstantinou, and P. Velikhov. Navigation-Driven Evalua-
tion of Virtual Mediated Views. In 7th Int. Conf. on Extending Database Technol-

ogyEuropean, LNCS 1777, pages 150–165, 2000.
15. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema Matching with

Cupid. In 27th Int. Conf. on Very Large Databases, pages 49–58, 2001.
16. R. J. Miller, L. M. Haas, and M. A. Hernàndez. Schema Mapping as Query Dis-

covery. In 26th Int. Conf. on Very Large Databases, pages 77–88, 2000.
17. R. J. Miller, Y. Ioannidis, and R. Ramakrishnan. The Use of Information Capacity

in Schema Integration and Translation. In 19th Int. Conf. on Very Large Databases,
pages 120–133, 1993.

18. R. J. Miller, Y. Ioannidis, and R. Ramakrishnan. Schema Equivalence in Hetero-
geneous Systems: Bridging Theory and Practice. Information Systems, 19(1):3–31,
1994.

19. T. Milo and S. Zohar. Using Schema Matching to Simplify Heterogeneous Data
Translation. In 24th Int. Conf. on Very Large Databases, pages 122–133, 1998.

20. L. Palopoli, G. Terracina, and D. Ursino. Towards the Semi-Automatic Synthesis
of Cooperative Information Systems and Data Warehouses. In ADBIS-DASFAA

Symp. on Advances in Databases and Information Systems, pages 108–117, 2000.
21. L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernàndez, and R. Fagin. Translating

Web Data. In 28th Int. Conf. on Very Large Databases, 2002.
22. S. Ram and V. Ramesh. Schema Integration: Past, Current and Future. In A. El-

magarmid, M. Rusinkiewicz, and A. Sheth, editors, Management of Heterogeneous

and Autonomous Database Systems, pages 119–155. Morgan Kaufman, 1999.
23. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton.

Relational Databases for Querying XML Documents: Limitations and Opportuni-
ties. In 25th Int. Conf. on Very Large Databases, pages 302–314, 1999.

24. L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-Driven Understanding
and Refinement of Schema Mappings. In ACM SIGMOD Conf. on Management

of Data, 2001.

