SDH 2000 ™ Conference Proceedings

Formalization of Advanced Map Operations

Martin Erwig & Markus Schneider
FernUniversitat Hagen, Praktische Informatik 1V
58084 Hagen, Germany

{erwig, markus.schneider } @fernuni-hagen.de

1 INTRODUCTION

Numerous applications in spatially-oriented disciplines like geography, cartography, and related areas, as
well as in computer-assisted systems like geographical information systems and spatial database systems
witness the importance of maps or spatial partitions. A map is a fundamental and well-known metaphor
and a widely recognized geometric and topological structure that is capable of carrying a large amount
of information.

In a former paper (Erwig et al., 1997) we have layed the foundation for a formal treatment of spatial
partitions. This formal framework rests on three basic and powerful partition operations to which all
application-specific operations known in the literature can be reduced. In this paper, we identify advanced
operations on maps and extend the formal framework accordingly.

1.1 Maps Revisited

A spatial partition is a subdivision of the plane into pairwise disjoint regions where regions are sepa-
rated from each other by boundaries and where each region is associated with an attribute having simple
or even complex structure. That is, a region with an attribute incorporates all points of a spatial par-
tition having this attribute. A spatial partition implicitly models topological relationships between the
participating regions which can be regarded as integrity constraints. First, it expresses neighborhood re-
lationships where different regions may have common boundaries. This property is immediately visible
on a map. A second related aspect is that different regions of a partition are always disjoint (if we neglect
common boundaries) so that a visual representation of a partition has a very simple structure and is easy
to grasp.

The basic idea for modeling a spatial partition is to map the Euclidean space to some label or attribute
type, that is, regions of a partition are assigned single labels. Adjacent regions have different labels in
their interior, and a boundary is assigned the pair of labels of both adjacent regions.

A number of application-specific operations has been defined on maps. The most important operation is
overlay which allows to arrange two partitions with different attribute categories on top of each other and
to combine them through geometric intersection into a new partition of disjoint and adjacent regions. An-
other operation is reclassify which retains the geometric structure of the spatial partition and transforms
all or some partition attributes to new or modified attributes. The operation fusion is a kind of grouping
operation with subsequent geometric union. It merges neighbored regions of a partition with respect to
partially identical attributes. The geometric union of all regions of a partition is formed by the opera-
tion cover; it yields a result partition consisting of a single region. With the operation clipping we can
compute the intersection of a partition and a given rectangular window. The difference operation takes
two spatial partitions defined over the same attribute domain and computes the geometric difference of

Spatial Analysis 8a.3

SDH 2000 ™ Conference Proceedings

their point sets. All the regions of the first partition are maintained in the result partition except for those
parts that have the same attributes in both partitions. The task of the operation superimpose is to lay the
regions of a partition over another partition and to cover and erase parts of the other partition. Finally,
the operation window allows to retrieve those complete regions of a spatial partition whose intersection
with a given window is not empty.

In (Erwig et al., 1997) we have shown that all these application operations (and even generalizations of
them) can be reduced to three fundamental operations intersection, relabel, and refine. Intersecting two
spatial partitions means to compute the geometric intersection of all regions and to produce a new spatial
partition; each resulting region is labeled with the pair of labels of the original two intersecting regions,
and the values on the boundaries are derived from these. Relabeling a spatial partition has the effect of
changing the labels of its regions. This can happen by simply renaming the label of each region; or, in
particular, distinct labels of two or more regions are mapped to the same new label. If some of these
regions are adjacent in the partition, the border between them disappears, and they are fused in the result
partition. Refining a partition means to look with a finer granularity on its regions and to reveal and to
enumerate the internal component structure of regions.

1.2 New Applications

Despite all these operations coping with a large number of map applications, there are queries that cannot
be answered by them and that require a new class of advanced map operations. Assume that we are given
a country map with the population number for each country. Then we can ask, for instance, for the total
population of all countries. This query needs a traversal over all countries and a simultaneous summation
of all population numbers. We provide the operation map aggregation for calculating such kinds of
statistics over a map. Or we are interested in labeling each country with its region’s area. We cannot
perform this operation by a simple relabeling since it is applied only to labels of single points and not to
whole regions. For this purpose we offer an operation called region-based map annotation.

In addition, the advanced operations comprise map selection for extracting regions with selected at-
tributes into a new map, map layering spreading map information to different layers by distributing and
grouping attributes, map joining for combining maps with identical geometries but different attributes,
map lookup searching for map information by attribute patterns, map annotation for adding information
to the regions of a map that is given by tables (functions), and path extraction for finding a path between
two regions of a map.

With two exceptions (mentioned later) our model does not leave the context of maps. Hence, the only
support we need at a user interface are partitions and a facility to enter arguments. As a consequence, we
will obtain simple and user-friendly interfaces.

Section 2 discusses related work. Sections 3 to 6 introduce the advanced map operations in more detail
and give application examples for them. Section 7 briefly reviews the formal model of maps and map op-
erations as described in (Erwig et al., 1997). Section 8 formalizes definitions of the new map operations.
Finally, Section 9 draws some conclusions.

2 RELATED WORK

Maps have been identified as a central spatial concept (Frank, 1990) to organize our perception and
understanding of space. They correspond to the cognitive experience and knowledge humans have of
areal phenomena in the real world.

Spatial Analysis 8a.4

SDH 2000 ™ Conference Proceedings

Frequently, maps arise from classifying space according to some attribute (like rural areas according to
their agricultural use). They are then called thematic maps or categorical coverages (Frank et al., 1997;
\olta et al., 1993). The operations in this context focus only on partitions of attribute values alone;
spatial operations on maps including geometric intersections are completely ignored. In categorical
coverages, themes and attributes are fixed. This means that dynamic extensions or combinations of
different partitions are not possible.

In geographically-oriented applications and systems maps are regarded as the primary tool for spatial
analysis tasks (Berry, 1987; Frank, 1987; Frank et al., 1997; Huang et al., 1992; Nagy et al., 1979;
Tomlin, 1990; Valenzuela, 1991; \olta et al., 1993). These tasks are solved on the basis of the map
operations summarized in the Introduction. Application-oriented expositions of these operations can be
found in (Berry, 1987; Dangermond, 1990; Frank, 1987; Giiting, 1988; Giting et al., 1995; Huang et al.,
1992; Kriegel et al., 1991; Schneider, 1997; Scholl et al., 1989; Tomlin, 1990; Valenzuela, 1991) for
overlay, in (Berry, 1987; Dangermond, 1990; Huang et al., 1992) for reclassify, in (Chan et al., 1996;
Guting et al., 1995; Huang et al., 1992; Kriegel et al., 1991; Schneider, 1997; Scholl et al., 1989) for
fusion, in (Scholl et al., 1989) for cover, in (Scholl et al., 1989) for clipping, in (Huang et al., 1992) for
difference, in (Chan et al., 1996; Scholl et al., 1989) for superimposition, and in (Scholl et al., 1989) for
window.

At afirst glance, it seems that several advanced operations introduced in this paper can be simply realized
with the relational model. This is, indeed, true for thematic data but in no case valid for geometric
attributes. The first problem of the relational model is to store geometry in relations. This has led to
extended relational data models and to the introduction of spatial data types (Schneider, 1997) as attribute
types in relation schemes. A data type for regions is an example. The second problem is that even this
approach has not solved the issue how to model the integrity constraints underlying partitions, namely
the disjointedness and adjacency of the regions of a partition. These topological constraints cannot
be maintained by the relational model so that it is unsafe regarding this aspect. A few unsatisfactory
proposals have been made. In (Giiting, 1988) a spatial data type area is suggested to model constraints
on partitions. Within the framework of an extended relational data model the set of polygons occurring
in a relation as a column of an attribute of type area has to fulfill the integrity constraint that all polygons
are adjacent or disjoint to each other. Unfortunately, the maintenance of this property is not supported
by the data model, rather it is up to the user’s responsibility. A generic data type for partitions, called
tessellation, is informally introduced in (Huang et al., 1992) as a specialized type for sets of polygons;
this type can be parametrized with an attribute of a yet unspecified type. In (Giiting et al., 1995) so-called
restriction types have been proposed. This concept allows one to restrict the general type for regions to
subtypes whose values all satisfy a specific topological predicate (like disjoint) and which nevertheless
inherit the properties and operations of the more general type for regions. But it is unclear which DBMS
component controls the adherence to this constraint. The third problem is that it is unclear and probably
impossible how to implement geometric operations like intersection with the aid of the relational model.

3 EXTRACTING AND COMBINING MAP LAYERS

A map layer (or simply a layer) is similar to what is sometimes called a coverage, a thematic map, an
overlay, or a layer in GIS and cartography. It represents a set of data describing the spatial variation
of one or more related attributes in a study area. We will call areas of a map associated with the same
attribute regions.

Usually, geometric information contained in a map is modeled as a sequence of map layers which can
afterwards be overlayed into a single map. In this section, we go the other way round. From an applica-
tion point of view, we will introduce operations for extracting layers from maps by map selection and for
recombining layers into a single map by a special kind of map overlay called disjoint map composition.

Spatial Analysis 8a.5

SDH 2000 ™ Conference Proceedings

As an introductory example we assume a map which presents a classification of land use. The classifi-
cation comprises attributes like “wheat”, “steel industry”, “coal mining”, “barley”, “chemical industry”,
“vegetable”, etc. (see Figure 1).

wheat
[~ barley

Figure 1: Example of a map

Then we can ask, for instance, for only those areas that are only cultivated with wheat or barley; that is,
the use of the remaining areas is not of interest for us. This query requires a map operation called map
selection which extracts only those regions of the original map which have an attribute out of a collection
of pre-specified attributes. The result is a new single map (Figure 2).

Map selection can be generalized to an operation called map layer generation. Imagine that we plan to
distribute the information of our map from Figure 1 and to show regions of agricultural and industrial
use on two separate map layers. Then we group the attributes indicating agricultural use into the more
general category “agricultural” and the attributes indicating industrial use into the more general category
“industrial”. (In general, we can, of course, use more than two attribute categories.) Afterwards, based
on the original map, for each of the two general categories a separate map layer is produced, and each
map layer contains all those regions belonging to a general category and labeled according to the original
attribute resolution. Figure 3 presents the result of map layer generation based on the map of Figure 1.
The general categories are visualized as strings beside the map layers. Map layer generation is, in partic-
ular, interesting for spatial analysis tasks solved with the aid of user interfaces where it can be employed
by the user to produce and manage new collections of maps.

industrial m ’ wheat
barley
h
55 St Ieat / rye
@E& L™ barley [stesl
A

3’; agricultural] codl
[] coa &= (T

Figure 2: Map after map selection Figure 3: Map after map layer generation

Obviously, due to the described construction process of map layers, the geometries of all map layers
are disjoint with respect to their interiors. Only boundaries of regions of different layers may partially
coincide. Hence, the original map can be recombined by a map overlay operation which does not need to
compute any intersections but simply form their geometric union and adopt their corresponding attributes.
We call it disjoint map composition. From this point of view, disjoint map composition is the inverse
operation of map layer generation.

4 JOINING AND INSPECTING MAPS

Spatial analysis frequently produces collections of different maps whose spatial reference system and
whose subdivision of space into regions (that is, whose geometry) is the same. These maps essentially

Spatial Analysis 8a.6

SDH 2000 ™ Conference Proceedings

differ in the themes they deal with and hence in the attribute distributions. An interesting task is therefore
to integrate all attribute informations with respect to the same regions into a single map.

Consider as an example the European countries and assume that a collection of maps gathers statistical
data for each country involving country name, population, population density, average income, unem-
ployment rate, spoken language, etc. Figure 4 shows two maps, each map presenting three fictitious
countries. The first map is labeled with country names, and the second map is labeled with population
density.

Next, we could be interested in an integrated view of all attributes on a single map. The effect is that all
attributes are joined; the geometry of the resulting map is the same as the geometry of the original map
collection and remains unchanged. We call this operation a map join. Figure 5 visualizes the map join of
the two maps of Figure 4.

Figure 4: Two example maps with the same Figure 5: Map after map joining
geometry but different themes

Sometimes, one is interested in the functional relationship between parts of an attribute labeling a region.
Concerning our example of Figure 5 we can obtain a function from country name to population density
with the instances A — 256, B — 357, and C — 268. We call this operation functional extraction since
the functional relationship between different attribute parts pertaining to the same region is extracted
from a map.

A map usually offers a global view of a collection of regions labeled with some attribute. Often, the user
is interested in retrieving only partial information of a map where some kind of “search key” is given as
an attribute pattern to specify the desired data. Usually, an attribute has a more complex structure and
consists of several components. Consider again a map of European countries with the country name, the
population, and the spoken language for each country. Assume that we are interested in all countries
where German is the spoken language. Then we can search with the attribute pattern (_, _, German)
for all these countries. The symbol “_” serves as a wildcard and stands for an arbitrary value of the
respective attribute component. Hence, an attribute pattern may have wildcards or concrete values of the
corresponding attribute component as entries. In the example, the result is a map containing only those

countries speaking German. We call this operation map lookup.

5 INFORMATION EXPANSION IN MAPS

Frequently, we are interested in extending the information available on a map. Assume that a map of
oil fields with their names is given and that we additionally have a table indicating the owner of each oil
field (Figure 6).

To produce a map showing the connection between the name and the owner of an oil field, we have
to supplement the name attribute of each oil field appropriately. The result is shown in Figure 7; we
combine the map and the table (given as a function) and obtain a new map labeled with the name and the
owner for each oil field. This operation is called map annotation.

Spatial Analysis 8a.7

SDH 2000 ™ Conference Proceedings

oil field | owner

X BP
Y Shell
z Exxon
Figure 6: Qil field map and ownership table Figure 7: Map after map annotation

So far, annotation in maps has not taken into account the geometry and the geometric properties of the
single regions of a map. However, geometry-based annotation leads to very interesting and important
queries. For instance, we can ask for the area, the perimeter, or the diameter of each oil field in the
map. This necessitates an access to single regions of a map and elementary unary functions computing
numerical properties of each region. The oil field map and a function for calculating region areas, for
example, are then combined and yield a new map where each region is tagged with the oil field name and
its area. We call this operation region-based map annotation.

6 MAP AGGREGATION AND CONNECTIVITY

Another important map operation is map aggregation which serves for calculating summary statistics
over a map or over a distinguished collection of regions of a map. Imagine a map of districts where each
district is tagged with its name and its population number (Figure 8).

To compute the total population of all districts, we have to traverse them and to accumulate all population
numbers. That is, as input we take the map, a function which adds the current population number to the
intermediate sum of the districts already visited, and an initial value for the summation process to start
with. In our example, the initial value is 0. The result is a new map (Figure 9) where the aggregation
value is attached to each district region of the map.

Figure 8: Map showing districts Figure 9: Map showing the total popu-
and their population lation number attached to all districts

Aggregation values are often used in further map operations. For instance, with the available information
we can compute the ratio of each region’s population to the total population of all districts and label each
district with this result. In our example we obtain the following proportions: A : 31.22%,B : 50%,C :
11.72%, and D : 7.06%.

Besides summation we can, of course, use other numerical aggregation functions. For example, we can
compute the minimum average income of a number of countries to identify the poorest country, or the
maximum birth or death rate in countries of the Third World.

Spatial Analysis 8a.8

SDH 2000 ™ Conference Proceedings

An example of a non-numerical aggregation function is the insertion of an element into a collection of
values. Imagine a country map showing for each country its name, the economic community to which
it belongs (like the European Union), and its most important natural resource. The task is to find out
all natural resources that are available in an economic community “A”. First, we identify all countries
belonging to the economic community “A” by map lookup (see Section 4). Afterwards, we aggregate
over this intermediate map and insert all names of natural resources into a set. Hence, the initial value
must be the empty set. The result is a new map where all attributes of the original map have been extended
by the set resulting from aggregation.

Another interesting issue relates to connectivity properties of maps. This is illustated, for example, by
the applications whether it is possible to reach a country K from a country A overland, or whether two
friendly nations A and K located on the same continent can visit each other overland without being forced
to traverse enemy territory (Figure 10).

These applications ask for a path between A and K. As input we need a country map and two countries
A and K for expressing the start and destination of a possible path between them. In any case, the result

Za G

T T R

Figure 10: Searching a path on a map Figure 11: Finding a path on a map

If a path exists, the result is a map with a path of minimal length to indicate the existence of such a path.
If a path does not exist, only start and destination (here: the countries A and K) are shown on the result
map. We call this operation path extraction.

7 SPATIAL PARTITIONS: AFORMAL MODEL OF MAPS

In this section we briefly repeat the definitions of our model for spatial partitions. We provide a precise
definition for the type of two-dimensional partitions in Section 7.1 followed by a definition of the basic
operations in Section 7.2.

Before we start giving mathematical definitions for partitions, we shortly summarize the used notation.
The application of a function f : A — B to a set of values S C A is defined as f(S) :={f(x) | x e S} CB.
If we are sure that f(S) yields a singleton set, we write f[S] to denote this single element (instead of
the singleton set), that is, f(S) = {y} = f[S] =y. (f[S] is undefined if |f(S)| # 1.) Similarly, for
doubly-nested singleton sets we use f[[-]] to extract elements, that is, f(S) = {{y}} = f[[S]] =Y.

Below we frequently have to denote functions used as parameters for operations. For this we employ
the lambda-notation Ax:S.E(x) (where E is an expression using x). This is an abbreviation for the set
expression {(x,E(x)) | x € S} (which actually represents a function).

The inverse function f=1:B — 24 of f is defined by f~1(y) := {x € S| f(x) =y}. Note that f~1 is
a total function and that f— applied to a set yields a set of sets. The range of a function f : A — B is
defined as rng(f) := f(A). Later we frequently have to denote the range of a partition. Therefore, we

Spatial Analysis 8a.9

SDH 2000 ™ Conference Proceedings

define for a set-valued function f : A — 2B the notation s-rng[f] := {b € B | {b} € rng(f)} giving the
values occurring in singleton-sets.

We also introduce a notation for power sets containing sets of constrained size: for > € {>,>,=} and
k € IN we define S := {s € 25| |s|>k}.

Let (X, T) be a topological space with topology T C 2%, and let S C X. The interior of S is defined as
the union of all open sets that are contained in S and is denoted by IntS, and the closure of S is defined
as the intersection of all closed sets that contain S and is denoted by S. The exterior of S is given by
ExtS := Int(X —S), and the boundary (or frontier) of S is defined as FrS := SN X —S. An open set is
called regular if A= IntA. The type of regular open sets is closed under intersection. The topological
space that we work with in this paper is IR?.

A partition of a set S can be viewed as a total function f : S — | into an index set I; f induces an
equivalence relationship =¢ on S that is defined by x =ty <= f(x) = f(y). The equivalence classes
S/=+ are called blocks. The block S; that corresponds to an index i is given by S; := f~1(i), and the
whole partition {S; | i € I} (= S/=¢) is also given by f=1(1) if f is surjective.

7.1 The Type of Spatial Partitions

A spatial partition (in the two-dimensional case) is not just defined as a function f : IR? — | for two
reasons: first, in most applications f cannot be assumed to be total, and second, f cannot be uniquely
defined on borders between adjacent subsets of IR2. Moreover, it is desirable from an application point
of view to require blocks (modeling regions of a common label) to be regular open sets (Tilove, 1994).

Therefore, we have defined spatial partitions in several steps (Erwig et al., 1997): first, a spatial mapping
of type A is a total function 1t: IR? — 2A. We require the existence of an undefined element L5 € A,
which is used to represent undefined labels, that is, the “exterior” or “outside” of a partition is the block
b C IR? with Tip] = L for all p € b. The power set range type 2” is used to model labels on region
borders: a region of 1tis a block that is mapped to a singleton set whereas a border of 1tis a block that is
mapped to a subset of A containing two or more elements. Then the interior of 1tis defined as the union
of 7Us regions, and the boundary of 1tis defined as the union of 1T's borders.

Definition 1 Let 1tbe a spatial mapping of type A.

() p(m:=mi(mg(m=Y (regions)
(i) w(m) = (rng(m>1) (borders)
(i) (1) = Urepm (interior)
(v) B = Upewm (boundary)

Finally, a spatial partition of type A is a spatial mapping of type A whose regions are regular open sets
and whose borders are labeled with the union of labels of all adjacent regions:

Definition 2 A spatial partition of type A is a spatial mapping 1tof type A with:
(i) Vvrep(m:r=Iintr
(i) Vbe o(m):mib] = {r[r]] |r e p(MAbCT}

The use of 1b] on the left hand side and 1[r]] on the right hand side in (ii) can be made clear as follows:
consider a block of a partition 11, for example, a region r or a border b. For each point p that is contained

1Recall that in a topological space the following three axioms hold (Dugundiji, 1966): () U,V € T = UNV €T, (ii)
SCT = UyesU €T, and (iii) Xe T, @ € T. Theelements of T are called open sets, their complements in X are called
closed sets, and the elements of X are called points.

Spatial Analysis 8a.10

SDH 2000 ™ Conference Proceedings

inrorinb, 1(p) yields as a label a set of values. For p € r, this is a singleton set, say {a}, and for p € b,
this is a set {a,b,...} of two or more elements. Now when we apply Tt to the whole set r (or b), we
obtain the set of all labels for all points. By definition these are all equal, so the results of 1t(r) and 1(b)
are {{a}} and {{a,b,... }}, respectively. Thus, if we want to denote the common label of all points of
a block, this is given by r] = {a} or {b] = {a,b, ...}, respectively. Likewise, 1{[r]] = a. Hence, 1b]
denotes the common label, a set {a,b,... }, of border block b, and T{[r]] gives the label of each touching
region.

We denote with [A] the type of all spatial partitions with label type A.

7.2 Operations on Partitions

We have defined three basic operations on spatial partitions: intersection, relabel, and refine. The in-
tersection of two partitions 1, and 1@ of types A and B, respectively, is again a spatial partition (of type
A x B) where each interior point p is mapped to the pair of values (Ti1[p], Te[p]), and all border points are
mapped to the set of labels of all adjacent regions (as required by the second part of the definition of a
partition). Formally, we can define the intersection of two partitions 11; : [A] and Tt : [B] in several steps:
first, we compute the regions of the resulting partition. This can be done by simple set intersection since
regions are, by definition, regular open sets and since N is closed on regular open sets:

pn(Ty,) == {rnr’ | rep(m)Ar ep(m)}

Second, the union of all these regions gives the interior of the resulting partition: 1(Ty,TR) =
Urep,(m,e) - NOW the spatial mapping restricted to the interior can be just obtained by mapping each
interior point p € | :=14(my, TR) to the pair of labels given by 14 and T,:

15 = Ap:l.{(u[p], Te[p])}

Third, the boundary labels can be derived from the labels of all adjacent regions. Let R := pn (T4, TR),
| :=1~(my,TR), and F := IR? — 1. Then we have:

intersection : [A] x [B] — [A x B]
intersection (1, TR) := 1y UAp:FA{TY[[r]] [TERApPET}

To understand the use of 11[-]] in the above definition, recall the remark after Definition 2: since we have
to place pairs of labels in the result set and since 1i(r) = {{(a,b)}}, we obtain (a,b) by application of

2in)

Relabeling a partition Tt of type A by a function f : A — B is defined as f o 11, that is, in the resulting
partition of type B each point p, interior as well as boundary, is mapped to f(1i(p)) (recall that 1i(p)
yields a singleton set, for example, {a}, and f applied to this set yields the singleton set { f(a)}):

relabel : [A] x (A — B) — [B]

relabel(tg, f) := Ap:IR%.f(11(p))
Finally, the refinement of a partition means the identification of connected components. This is achieved
by attaching consecutive numbers to the components. A connected component of an open set S is a
maximum subset T C S such that any two points of T can be connected by a curve lying completely

inside T (Dugundji, 1966). Let y(r) = {c1,...,Cx } denote the set of connected components of a region
r. Then, similar to intersection, we can define the operation refine in several steps.

First, the regions of the resulting partition are the connected components of all regions of the original
partition.

py(m:= |J v
rep(m

Spatial Analysis 8a.11

SDH 2000 ™ Conference Proceedings

Again, the union of all these regions gives the interior of the resulting partition: (1) := Uycp . This
means that neither the interior nor the boundary is changed by refine.

We can now directly define the resulting partition on the interior, since through the computation of the
connected components we automatically obtain a set of numbers that can be used as additional labels.
Thus, the refinement of the interior is given by:

1= {(p,{(mp,)}) [r € p(MAY(r) = {c1,-.., o } A€ {l,... .k} Apeci)

Finally, we have to derive the labels for the boundary from the interior. (Recall that (1) = B(refine(1)).)
Now let R := py(T0), | :=1y(T), and F := IR2 —I. Then we have:

refine : [A] — [A x IN]
refine(t) ;== UAp:F.{my[[r]] [re RApeT}

In (Erwig et al., 1997) we have proved that partitions are closed under the three operations intersection,
relabel, and refine.

8 ADDITIONAL HIGH LEVEL PARTITION OPERATIONS

The three basic operators presented in the previous section cover a broad range of application-specific
operations that have been summarized in the Introduction. In the following subsections we define several
additional operations to formalize the advanced and in part novel applications described in Sections 3 to
6.

8.1 Operations for Layering

The select operation is used to extract specific parts of a partition. It can be considered, in fact, as a
special case of relabeling in which all non-interesting parts of the partition are mapped to undefined and
all interesting parts are kept unchanged. The decision, which parts to keep and which to forget, is based
on the labels of the partition and is thus realized by a predicate on the label type A. We can therefore
define select using the operation relabel:

select : [A] x (A— IB) — [A]
select(rt,P) := relabel (1t Ax:A.if P(X) then x else L)

The “dual” of a partition select(rt,P) is always given by the expression select(tt —P). Intuitively, the
overlay of select(rt P) and select(1t, —P) should always yield the original partition Tt To express this
relationship formally, we first define an operation union that combines two partitions of the same type
that are disjoint in the following sense: two partitions 1t: [A] and 1t : [A] are called disjoint iff Vp € IR? :
T{p] = LAV T[p] = La. We write Tih Y to express the fact that tand ¢ are disjoint.

Now union is defined to yield the label of either Ttor 1. If Ttand 17 are not disjoint, union is defined to
yield L 4 for all points of their common domain. We can define union by relabeling the intersection of Tt
and 1¢ with the following function (for a,a’ € A):

a ifa=_1a
aga ={ a ifa=.1la
1A otherwise

We can now define:

union : [A] x [A] — [A]
union (Tt 17) := relabel(intersection (10, 17),A(X,Y):A X AX DY)

Spatial Analysis 8a.12

SDH 2000 ™ Conference Proceedings

Thus, we can express the above characterization of select as
union(select(t, P), select(t, —P)) = 1t
which is true because select(t, P) select(rt, —P).

The operation layer is a generalization of relabel and constructs layers of partitions according to the
relabeling function. In practice, the target type B of the relabeling function f : A — B will often be used
to group sets of A-labels into different classes, and for each class an own partition is computed. More
precisely, for each label b € B let Ap C A be the set of A-labels mapped by f to b (that is, Ap = f~1(b)).
Then with 1t: [A], layer(Tt, f) constructs for each b € B a partition 11, : [Ap] which is identical to Tton
all points mapped to a label in Ay and which yields L A everywhere else. The relationship between each
label b € B and its corresponding layer [Ap] is captured by the fact that layer returns a function of type
B—[A]

layer : [A] x (A — B) — (B — [A])
layer (1t f) := Ab:B.select(Tt Ax:A. f(x) = b)

This means that layer (1t f) yields for each b € B an A-partition whose labels are all mapped by f to
b. We call functions of type B — [A] that result from the layer operation also layered partitions and a
partition Ay, a layer.

We have a similar characterization for layered partitions as for select. To express this, we extend the
union operation from the binary case into an operation collapse that is able to aggregate a complete
layered partition:

collapse : (B — [A]) — [A]
collapse(L) := mgunion ... union Tt, where L(B) = {1y, ... ,Th}

With collapse we can express the fact that the overlay of a layered partition generated by the operation
layer from a partition Ttyields again the partition 1T

collapse(layer(m)) =t

which is true because the layers generated by select are pairwise disjoint.

8.2 Joining and Inspecting Partitions

The relate operation allows to access specific region labels of one partition 1’ : [B] by using another
partition Tt: [A] to identify the corresponding region. This requires both partitions to have exactly the same
regions, that is, p(1) = p(17'). In that case we can compute a function that gives for each a € s-rng[1] C A
the value b € B to which the region is mapped by 1. We can define the relate operation by composing
mt with 7t

relate : [A] x [B] — (A — B)
relate(1, 77) == Ax:A.TC[[Ir 2 ({x})]]

Since 11 yields a region, that is, a set of points, we have to use T[-]] to extract the single label value.
The relationships between T, 77, and relate(Tt,) are summarized in Figure 12.

We can well consider partitions as database objects: then the regions serve, in a sense, as object identi-
fiers, and partitions, such as 1t: [A], play the role of attributes (with name Ttand domain A). In the context
of the operation relate, we notice that Ttis used like a key attribute. (Note that by definition, any partition
is a key attribute in the sense that the labels identify the regions.)

Spatial Analysis 8a.13

SDH 2000 ™ Conference Proceedings

IR?

7N

relate(m, 1) B

Figure 12: Definition of relate

One drawback of the relate operation is that the result of the operation, a function of type A — B, is not
a partition. In contrast, all other operations do return partitions (except layer which returns a layered
partition). Therefore, we favor a different way of accessing partition labels, which is described in the
following.

First, we can accumulate different labels for the same regions by simply using the intersection operation
on corresponding partitions Tt: [A] and T : [B]. This results in a partition having again the same regions
as Ttand 17, but whose labels are of type A x B. The application of intersection to two partitions having
the same regions represents an important special case, and we call this operation join.

Then the retrieval of specific informations from partitions is achieved by the operation lookup, which
takes a partition 1t: [A] and a pattern of type A, and constructs a (sub-) partition of type A of all those
parts whose labels match the pattern. First of all, we have to explain what a pattern is: a pattern is either
a value or the wildcard symbol “_”. The type of patterns over a (non-product) type A is denoted by A and
is defined as:

A:=AU{}

Thus, for example, 17 and _ are elements of the pattern type IN. A pattern over a product type is simply
a tuple of patterns over the component types, that is,

A X .. X A=A XL x A

Hence, (3,true) is a pattern of type IN x IB, as are (0, _) or (-, -). A pattern specifies the values lookup
should search for in a partition. The wildcards serve as “don’t care”-values that match any value. For-
mally, matching a pattern ¢ (which can be a wildcard _or a value y) against a value x, written as @ < X, is
defined by the following rules:

<X
y=<X < y=X
(@1,) < (X0y---,Xk) <= @1 < X2 A AQ < Xk

The first line expresses the fact that a wildcard matches any value, the second line says that values match
on equality, and the last line defines that tuples match component-wise.

Now lookup can be simply defined by using select:

lookup : [A] x A — [A]
lookup (T, @) := select(T, AX:A.@ < X)

The result of lookup is a partition containing all regions whose labels match the specified pattern.

8.3 Extend Operators

We define two “label extension” operators that address two shortcomings of the relabel operation as
defined in Section 7.2. These operators realize map annotation.

Spatial Analysis 8a.14

SDH 2000 ™ Conference Proceedings

First, the newly assigned labels are automatically keys of the partition resulting from relabel, which leads
sometimes to undesired fusion effects. Consider, for example, a user who tries to assign with relabel a
numeric label to a partition of countries. Now if two countries accidentally get the same label, the regions
of the two countries are fused in the partition that is returned by relabel, which is generally not what the
user expected. A possible solution is to keep the original label together with the newly assigned one.
This is actually possible with relabel itself, but since this operation will occur quite frequently, we give
it an own name. Therefore, we define an operation extend as follows:

extend : [A] x (A — B) — [A x B]
extend(Tt f) := relabel (T, AX:A.(X, f(X)))

An important property of extend is that the regions of the argument partition are not changed. We can
express this formally by:

p(extend(t, f)) = p(Ty)

The second limitation of relabel is that it is a local operation in the sense that each point is assigned
a new label independent from all other points; relabel depends only on the old label of each point. In
some situations, however, it is important to assign a label to a whole set of points where the label value
depends on that set. This is particularly true in cases when numeric labels are to be assigned that depend
on regions, such as the area or the diameter of a region. In most cases one is not interested in getting
regions of the same label fused. Thus, we define the operation r-extend similar to extend: the only
difference is that the parameter function is not applied to each point’s label but to the region the point
lies in.

r-extend : [A] x (2% — B) — [A x B]
r-extend (1t f) := relabel (Tt Ax:A.(x, f(TT1({x}))))

As for extend, the regions of the argument partition are not affected by r-extend:

p(r-extend(r, f)) = p(m)

8.4 Partition Aggregation

In the design of an aggregation operator we have strived for a compromise between a powerful operator
that is capable of expressing many interesting map operations and a simple operator that is easy to
understand by users. We have arrived at an operator aggregate that accumulates the labels of a partition
Tt: [A] with a binary function f : A x B — B starting with an element u : B (u is called unit). In many cases
we will have B = A, for example, when aggregating numerical labels by min, +, and so on. However,
there are also cases in which a type B # A is needed, for example, when collecting labels in a set; in that
case we have: B = 2. Since the definition of aggregate does not have to take the adjacency structure of
the map into account, we can use the well-known aggregations of sets (Breazu-Tannen et al., 1991; Erwig
et al., 1991; Breazu-Tannen et al., 1992; Fegaras et al., 1995): agg(f,u,S) to denote the aggregation of
a finite, non-empty set by a binary function:

agg(f,u,@) =u
agg(f,u,{ayus) = f(a,agg(f,u,S))

Now we can define map aggregation as follows (recall that for 1t: [A] we have s-rng[rj ={a € A| {a} €

rg(m}):

aggregate : [A] x (Ax B — B) x B— [Ax B]
aggregate(Tt, f,u) := extend(1, Ax:A.agg(f,u,s-rng[m]))

Spatial Analysis 8a.15

SDH 2000 ™ Conference Proceedings

Note that we do not just return the accumulated value, but rather extend all regions of the argument
partition with the accumulated value. This is in line with our approach to stay within partition types, and
it also provides better support for many applications where the accumulated value is, in a further step,
related to the regions’ values (for example, to show the proportion of an area to the total area).

We could have defined aggregate in a much more general way: by taking the dual graph of a partition an
aggregation operator can move in an exactly prescribed way through this graph. We have actually defined
and investigated several versions of such an operator in a different context (Erwig, 1997). Exploiting
adjacency (and implicitly also distance) information of regions clearly makes such aggregation operators
more expressive, but they also require some practice to be effectively used.

Instead, we add a further operator to support applications that exploit the topological structure of parti-
tions. We define the operation connect that takes a partition 1t: [A] and two labels x,y : A and determines
whether the regions labeled x and y are connected, that is, whether the regions are adjacent or whether
there is a chain of regions connecting them.

The dual graph Gy, of a partition 1t: [A] is defined as an undirected, unlabeled graph in which nodes are
represented by region labels: G = (s-rng[r], Ex) where E= rng(m)=2. Note that an edge is represented
by a two-element set of A-labels, and since borders between adjacent regions are uniquely labeled with
a set containing both regions’ labels, we can simply take the set of all two-element border labels as the
set of edges. A path in Gy between two nodes x and y is a non-empty sequence of nodes p = X1,-.. ,Xn
With X = X1, Y = Xn, and {xi,Xi+1} € Exfori € {1,... ,n—1}. The length of such a path is £(p) :=n—1.
We denote by Nyy(Gr) the set of nodes contained in a shortest path (with respect to £) between x and y.
When no path exists in G between x and y, Ny (Gr) is defined to yield {x,y}.

Now connect is defined to return a sub-partition of Ttthat contains all regions of a shortest path between
xandy in Gy if it exists and just the regions for x and y otherwise.

connect : [A] x Ax A— [A]
connect(Tt,x,y) := select(T,Az:A.z € Nyy(Gr))

9 CONCLUSIONS

We have identified several new operations on maps. By using a formal model for partitions we provide
a theoretical framework that is well-suited for studying maps and operations on them: the definitions
become quite simple, where at the same time, the operations are very powerful. In particular, variations
and extensions of map operations can be easily defined and studied.

References

Berry, J. K. (1987). Fundamental Operations in Computer-Assisted Map Analysis. Int. Journal of Geo-
graphical Information Systems, 1(2), 119-136.

Breazu-Tannen, V., Bunemann, P. and Nagvi, S. (1991). Structural Recursion as a Query Language. 3rd
Int. Workshop on Database Programming Languages. 1-12.

Breazu-Tannen, V., Bunemann, P. and Wong, L. (1992). Naturally Embedded Query Languages. 4th Int.
Conf. on Database Theory. LNCS 646. 140-154.

Chan, E. P. F. and Zhu, R. (1996). QL/G: A Query Language for Geometric Databases. 1st Int. Conf. on
GIS in Urban and Environmental Planning. 271-286.

Dangermond, J. (1990). A Classification of Software Components Commonly Used in Geographic In-
formation Systems. Introductory Readings in Geographic Information Systems. Taylor & Francis.

Dugundji, J. (1966). Topology. Allyn and Bacon.

Spatial Analysis 8a.16

SDH 2000 ™ Conference Proceedings

Erwig, M. (1997). Functional Programming with Graphs. 2nd ACM Int. Conf. on Functional Program-
ming. 52-65.

Erwig, M. and Lipeck, U. W. (1991). A Functional DBPL Revealing High Level Optimizations. 3rd Int.
Workshop on Database Programming Languages. 306-321.

Erwig, M. and Schneider, M. (1997). Partition and Conquer. 3rd Int. Conf. on Spatial Information
Theory. LNCS 1329. 389-408.

Fegaras, L. and Maier, D. (1995). Towards an Effective Calculus for Object Query Languages. ACM
SIGMOD Conf. on Management of Data. 47-58.

Frank, A. U. (1987). Overlay Processing in Spatial Information Systems. 8th Int. Symp. on Computer-
Assisted Cartography. 16-31.

Frank, A. U. (1990). Spatial Concepts, Geometric Data Models and Data Structures. Computer and
Geosciences.

Frank, A. U., Volta, G. S. and MacGranaghan, M. (1997). Formalization of Families of Categorical
Coverages. Int. Journal of Geographical Information Science, 11(3), 215-231.

Guting, R. H. (1988). Geo-Relational Algebra: A Model and Query Language for Geometric Database
Systems. Int. Conf. on Extending Database Technology. LNCS 303. 506-527.

Guting, R. H. and Schneider, M. (1995). Realm-Based Spatial Data Types: The ROSE Algebra. VLDB
Journal, 4(2), 100-143.
Huang, Z., Svensson, P. and Hauska, H. (1992). Solving Spatial Analysis Problems with GeoSAL, a
Spatial Query Language. 6th Int. Working Conf. on Scientific and Statistical Database Management.
Kriegel, H.-P., Brinkhoff, T. and Schneider, R. (1991). The Combination of Spatial Access Methods
and Computational Geometry in Geographic Database Systems. 2nd Symp. on Advances in Spatial
Databases. LNCS 525. 5-21.

Nagy, G. and Wagle, S. (1979). Geographic Data Processing. ACM Computing Surveys, 11(2), 139-181.

Schneider, M. (1997). Spatial Data Types for Database Systems - Finite Resolution Geometry for Geo-
graphic Information Systems. LNCS 1288. Springer-Verlag.

Scholl, M. and Voisard, A. (1989). Thematic Map Modeling. 1st Int. Symp. on Large Spatial Databases.
LNCS 409. 167-190.

Tilove, R. B. (1994). Set Membership Classification: A Unified Approach to Geometric Intersection
Problems. The Computer Journal, 37(1), 25-34.

Tomlin, C. D. (1990). Geographic Information Systems and Cartographic Modeling. Prentice Hall.

Valenzuela, C. R. (1991). Data Analysis and Modeling. Remote Sensing and Geographical Information
Systems for Resource Management in Developing Countries. 335-348.

\Wolta, G. S. and Egenhofer, M. J. (1993). Interaction with Attribute Data Based on Categorical Coverages.
1st Int. Conf. on Spatial Information Theory. LNCS 716. 215-233.

Spatial Analysis 8a.17

