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Abstract. Program traces are a sound basis for explaining the dynamic
behavior of programs. Alas, program traces can grow big very quickly,
even for small programs, which diminishes their value as explanations.
In this paper we demonstrate how the systematic simplification of traces
can yield succinct program explanations. Specifically, we introduce op-
erations for transforming traces that facilitate the abstraction of details.
The operations are the basis of a query language for the definition of
trace filters that can adapt and simplify traces in a variety of ways.
The generation of traces is governed by a variant of Call-By-Value se-
mantics which specifically supports parsimony in trace representations.
We show that our semantics is a conservative extension of Call-By-Value
that can produce smaller traces and that the evaluation traces preserve
the explanatory content of proof trees at a much smaller footprint.
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1 Introduction

Explaining program behavior has many uses, including program maintenance,
debugging, and teaching. In particular, when the correctness of a program is
in doubt, an explanation can help to regain the user’s trust and confidence.
Users often employ debuggers to understand program behavior [14], even though
debugging is costly [15] and focuses more on identifying and removing bugs.
Moreover, debuggers typically already assume an understanding of the program
by the programmer [11]. Research on customizable debugging provides additional
evidence for the limitations of generic debugging approaches [9, 7].

Perera, et al. [12] use partial program traces to explain program executions.
Through backward program slicing only those parts of a trace are retained that
contribute to a selected part of the output; all irrelevant parts of the trace are
replaced by holes. However, the resulting traces can still be large, even for simple
programs, because much of the information that is produced through slicing
techniques, while technically relevant, might not contribute to the explanation.

Partial traces can be very effective, but they may omit the wrong information.
In general, no one trace works equally well as an explanation for every user, since
different users typically have different questions about the behavior of a program.
The approach we present in this paper gives users the ability to manipulate
program traces through a query language and thus gives them control over which
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. . .a

fact 6⇓ 720b

case 6 of {0 -> 1; y -> 6*fact 5}⇓ 720c

6*fact 5⇓ 720d

fact 5⇓ 120e

. . .g

fact 0⇓ 1h

case 0 of {0 -> 1; y -> 0*fact (0-1)}⇓ 1i

6*120 = 720f

Fig. 1. Trace view for fact 6. (The LaTeX code for trace views was generated by our
prototype implementation, with some manual adjustment of horizontal positioning.)

parts of a trace to hide and which parts to keep. To illustrate this aspect, we
demonstrate how to create a trace for the factorial function that could be used,
for example, as a teaching aid. Consider the following definition.

fact = \x -> case x of {0 -> 1; y -> x * fact (x-1)}

Suppose that we want to explain the computation of fact 6. A proof tree gen-
erated by a typical big-step Call-By-Value operational semantics consists of 80
nodes and 22 levels, which is a lot of information. However, to understand how
this computation works, one doesn’t need to see all instances of the recursive
function call. Specifically, one might expect a trace to execute all parts of a def-
inition once, but generally not more than that. One might also want to filter
out some of the more clerical arithmetic computations (for example, for decre-
menting a counter) and the lookup of variable bindings. We call such a filtered
trace a trace view. In Figure 1 we show a trace view with only 7 non-hidden
judgments on 8 levels that meets these expectations. The trace view is obtained
from a complete trace in six steps: (1) hiding top-level declarations, (2) hid-
ing and propagating variable lookups, (3) hiding and propagating evaluations of
subtractions, (4) hiding reflexive judgements, (5) hiding intermediate recursive
calls, and (6) hiding pattern matching evaluations.

These steps are achieved by filter operations which hide nodes and subtrees,
occasionally propagating information from hidden nodes to the rest of the trace.
The nodes to which a particular filter is to be applied are determined by patterns
that are matched against the judgments in the nodes of the trace.
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First, let expressions that define the program to be explained are contained
in nodes that carry judgements of the form let x=e′ in e⇓ v. A pattern for such
a judgment can use values or a wildcard symbol �. Thus, to hide the definition of
f we use the pattern let f = � in � ⇓ � Similarly, information about bindings is
presented by so-called binding nodes, which carry judgments of the form n:x=v,
saying that variable x has the value v and that the binding was introduced by
node n. To hide all binding nodes, as we do in this example, we use the pattern
�: � = �. However, we do not simply hide binding nodes, but also propagate
the bound values to where they are used. For reasons that will become clear in
Section 4, we call this operation factoring. The effect of factoring can be seen,
for example, in node c where the value 6 is used instead of the variable x.

While we have hidden the binding node for fact (which is a premise for node
b), we haven’t propagated its value (the function definition), as can be seen again
in node c in the expression 6*fact 5. Responsible for this behavior is our version
of operational semantics, Call-By-Named-Value, introduced in Section 2, which
stores names with values. As explained in Section 3, the presentation of traces
exploits the names of function values to produce smaller and more readable
traces. This effect is extremely useful for tracing the execution of higher-order
functions where substituting function values for variables that are referenced
(potentially multiple times) can render traces effectively unreadable.

A filter for hiding and propagating some of the arithmetic is also expressed
through factoring with a pattern. In our example we use the pattern �-1⇓ � to
hide only decrements by 1, since we want to retain some of the multiplication
expressions, which are important for explaining the functioning of fact. Also,
some of the judgements, for example, 5⇓ 5, do not add explanatory value to the
trace. A filter to hide all such judgements uses a pattern �a ⇓ �a, that contains
indexed wildcards. Indexed wildcards force equivalence on values in different
places.

Hiding recursive fact calls is more complicated, since we don’t want to hide
all applications of fact. We can keep the first two calls and the last call as well
as the first and last expansion of the function body by modifying the set of
matched nodes through a function limitRec. The function limitRec is defined
with combinators described in Section 5. Note that we shouldn’t define limitRec

to simply remove the first and last of the matched nodes (assuming we can rely
on the matched nodes to appear in a particular order), because this wouldn’t
work well, for example, in the expression fact 5+fact 6. The definition provided
in Section 5 is more robust and works well with cases like these.

We also hide all pattern matching judgements of the form v|p ρ (that match
a value v against a pattern p and produce a binding ρ), again using a pattern
with only wildcards: �| � �. As with the recursive function calls, we only hide
nodes and don’t propagate any information. Finally, we also hide the definition
of fact to focus on the evaluation steps.

To summarize, the trace view in Figure 1 can be produced from the complete
trace by applying the filters shown in Figure 2, which can be done step-by-step
in the user interface of our prototype or by running a script.
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hide (funDef fact)

factor binding

factor dec

hide reflexive

hide middleFact

hide patMatch

funDef f ≡ let f = � in � ⇓ �
binding ≡ �: � = �
dec ≡ �-1⇓�
reflexive ≡ �a ⇓�a
middleFact ≡ limitRec fact

patMatch ≡ �| � �

Fig. 2. Filters used to produce the trace view for fact 6.

Some of these filters are quite generic and can be reused in other examples.
In fact, we reuse them all in the next example to illustrate more features of our
approach. Consider the trace in Figure 3 that explains the following program.

let twice = \f -> \x -> f (f x) in

let fact = \x -> case x of {0 -> 1; y -> x * fact (x-1)}

in twice fact 2

The trace view is generated by the following filter script, which uses two more
patterns (fun and fact2) whose meaning should be obvious. The two patterns
illustrate how general patterns can be combined into very specific ones. Here, the
first factoring step excludes the binding for f, and the sequencing combinator
then is used to apply the hiding operation to recursive nodes only after the
application of fact 2. (The sequencing combinator s1 then s2 performs the node
selection s2 to each subtrace whose root matches the result of selection s1 and
then merges the results of the s2 selections.)

hide (funDef �)
factor binding except fun

hide fact2 then middleFact

...

funDef f ≡ let f = � in � ⇓ �
fun ≡ �: f = �
fact2 ≡ fact 2⇓ �

Note that fact 2 needs to be computed twice in the above program. Thus, a
trace that is based on a proof tree would have two occurrences of the subtrace
for fact 2⇓ 2. However, explaining the same computation more than once does
not provide any additional benefit. On the contrary, the extra space requirement
is detrimental to an effective explanation. To address this problem, we represent
traces as DAGs. Here node g is a shared premise of nodes d and f. To avoid
potential clutter caused by DAG edges, we decided to represent multiple edges
to the same premise by showing nodes as a reference.

We can also observe another benefit of our Call-By-Named-Value semantics
in this trace. Standard Call-By-Value would have evaluated the expression in
node c to \x->f (f x) where f is bound to the definition of fact. The judgement
in node d would then be f (f 2)⇓ 2 which is semantically correct, but can be
confusing, since the introduction of the alias f for fact causes an indirection that
has to be tracked by the user. Also, when f is applied, the reference to f would
be replaced by its value, the definition of fact, leading to a more complex trace.
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. . .a

twice fact 2⇓ 2b

twice fact⇓ \x->fact (fact x)c

\x->f (f x)⇓ \x->fact (fact x)e

b: f=facth

fact (fact 2)⇓ 2d

fact 2⇓ 2f

case 2 of {0 -> 1; y -> 2*fact 1}⇓ 2g

2*fact 1⇓ 2i

fact 1⇓ 1j

. . .l

fact 0⇓ 1m

case 0 of {0 -> 1; y -> 0*fact (0-1)}⇓ 1n

2*1 = 2k

g

Fig. 3. Trace view for twice fact 2

Finally, we can observe how bindings are represented in traces using the
aforementioned binding nodes instead of as part of environments. Node h shows
that f is bound to the function fact (again showing the name instead of the
definition) and that the binding was generated by node b. The concept of binding
nodes allows us to omit environments in evaluation judgments, and our Call-By-
Named-Value semantics save us from the need to use closures as function values.
The main contributions of this paper are the following.

– A new Call-By-Named-Value semantics that facilitates the creation of par-
simonious traces by employing names for values (Section 2). We show that
Call-By-Named-Value is a conservative extension of Call-By-Value that can
generate smaller traces.

– A DAG structure for traces that substitutes binding nodes for environments
(Section 3) and uses operations for trace simplifications (Section 4). We show
that the evaluation traces preserve the explanatory content of proof trees at
a much smaller footprint.

– A notion of trace view that encapsulates the contraction of subtraces into sin-
gle nodes, plus corresponding operations for producing trace views through
the hiding and factoring of judgments, which preserve the explanatory con-
tent of traces. We show that the trace operations produce residual explana-
tions that can be expected from the corresponding trace simplifications.
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u, v ∈ Val ::= c ν . . . ν | \x->e | fix(\x->e, f)
p ∈ Pat ::= c p . . . p | x
ν ∈ NVal ::= vx ... x

e ∈ Expr ::= x | e e | case e of {p->e; . . . ; p->e} | let x=e in e | e op e | ν

Fig. 4. Expressions, Patterns, and (Named) Values

– A trace query language that supports the modular definition of reusable,
expressive filters for trace simplifications (Section 5). The trace query lan-
guage turns basic trace transformations into comprehensive strategies for
simplifying traces.

After discussing related work in Section 6, we present conclusions in Section
7 where we also comment on future work and briefly report results from an
evaluation of the space savings that can be achieved by trace views.

2 Call-By-Named-Value Semantics

Our object language is the untyped lambda calculus, extended by numbers and
algebraic data types (see Figure 4). We use c to represent integers and con-
structor names and x, y, and f for variables. A pattern is a constructor applied
to a (potentially empty) list of patterns or a variable. A value is a constructor
applied to a (potentially empty) list of (named) values, a function or a fixpoint
construction. A named value (ν) is a plain value which has a (possibly empty)
sequence of names attached to it, written as vx1...xk . The names have no seman-
tic significance but will be used to make traces shorter and more readable. A
binding is a pair of a name and a named value x=ν, and an environment ρ is
a sequence of bindings. Environments are extended on, and searched from, the
right end.

The semantics of our language are defined in Figure 5 through rules for the
judgment ρ : e⇓ vx̄. Notably, our definition uses named values in addition to
plain values. Otherwise, the rules are a variation of Call-By-Value, and we call
the semantics therefore Call-By-Named-Value (CBNV ).

Names are attached to values when they are retrieved from the environment
(in rule Var). By repeatedly binding a value to different variables, the value
can accumulate a list of attached names (or “aliases”). Named values lose their
attached names in basic computations as described in rule BinOp. Another
departure from ordinary Call-By-Value is that we use plain lambda expressions
instead of closures to represent function values. The purpose, again, is to achieve
simpler traces. In rules Abs and Fix we substitute all free variables in abstraction
bodies (except x and f) by their bound values in ρ. This is done using the
environment as a function ρx̄(e), defined as follows.

ρx̄(e) = [ν1/x1, . . . , νk/xk]e
where ρ|dom(ρ)−x̄ = {ν1=x1, . . . , νk=xk}
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Con
ρ : c⇓ c

Var
x=vȳ ∈ ρ
ρ :x⇓ vȳx

BinOp
ρ : e1 ⇓ vx̄1 ρ : e2 ⇓ vȳ2 v1 op v2 = v

ρ : e1 op e2 ⇓ v

AppF
ρ : e1 ⇓ (\x->e′)f̄ ρ : e2 ⇓uȳ ρ, x=uȳ : e′ ⇓ vx̄

ρ : e1 e2 ⇓ vx̄

AppC
ρ : e1 ⇓ c v̄ȳ ρ : e2 ⇓ vx̄

ρ : e1 e2 ⇓ c v̄ȳ vx̄

AppFix
ρ : e1 ⇓ fix(\x->e, f)ḡ ρ : e2 ⇓uȳ ρ, x=uȳ : [fix(\x->e, f)ḡ/f ]e⇓ vx̄

ρ : e1 e2 ⇓ vx̄

Case
ρ : e⇓uȳ uȳ|pi ρ′ ρ, ρ′ : ei ⇓ vx̄i @j.1 ≤ j < i ∧ uȳ|pj ρj

ρ : case e of {p1->e1; . . . ; pk->ek}⇓ vx̄i

Abs
ρ : \x->e⇓ \x->ρx̄(e)

Fix
ρ : fix(\x->e, f)⇓ fix(\x->ρx,f (e), f)

PVar
vȳ|x x=vȳ

PCon
vx̄11 |p1 ρ1 . . . vx̄nn |pn ρn

c vx̄11 . . . vx̄nn |c p1 . . . pn ρ1, . . . , ρn
Let

ρ : e′ ⇓uȳ ρ, x=uȳ : e⇓ vx̄

ρ : let x=e′ in e⇓ vx̄

Fig. 5. Big-Step Call-By-Named-Value Semantics

Since the only difference between CBNV and CBV semantics are the names at-
tached to values, both evaluate expressions to the same results, except for possi-
ble attached names and the resolving of closures in CBNV. A closure (\x->e,ρ)
can be viewed as being equivalent to its resolved form \x->ρx̄(e). 1 Writing v ≈ v′
for the extension of this relation to all values, we can express the relationship
between CBV and CBNV as follows. (We ignore free variables in ρx̄(e), since
such expressions are considered meaningless in both semantics.)

Theorem 1. ρ : e ⇓CBNV vx̄ ∧ FV(v) = ∅⇐⇒ ρ : e ⇓CBV v′ ∧ v ≈ v′

3 From Proof Trees to Traces

We introduce a DAG model of traces for judgments j = ρ : e⇓ ν that eliminates
duplicates, replaces variable lookups by binding nodes, replaces function values
by their names in places they are not applied, and eliminates environments.

Let Pj = (N,L,R,E) be the proof tree for j where N is a set of nodes,
L : N → Jν maps each node to the judgment it is labeled with, R maps each
node to the name of the rule that was used to create it as a conclusion, and
(n,m) ∈ E iff m is a child of n in Pj . The root of Pj is labeled with j. The
type of judgments Jν used in proof trees is defined in Figure 6. In addition to
evaluation judgments, Jν includes pattern matching judgments, equations for
binary operations, and variable lookups.

1 Or fix(\x->ρx,f (e), f), if the closure is recursive.
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j ∈ Jν ::= ρ : e⇓ ν | ν|p b | v op v = v | x=ν ∈ ρ
j ∈ Jw ::= e⇓w | w|p b | v op v = v | n·n.x=w | ···
w ∈W ::= x | v

Fig. 6. Judgments stored in proof trees (Jν) and traces (Jw).

The type of judgments Jw used in traces is slightly different: First, evalu-
ation judgments don’t have an environment, and expressions don’t evaluate to
named values but to names or values (W ). Second, variable lookups are replaced
by binding nodes, and we have placeholder nodes (···), explained in Section 4.1.
Finally, all judgments only use plain values v (or names or values w) instead of
named values ν. The names associated with values are exploited in the transla-
tion process to replace some of the values in e⇓w and w|p ρ.

In the first step, we generate a DAG from the proof tree. To this end, we
need an equivalence predicate on the judgments Jν used in labels. Two values v
and v′ are equivalent (written as v ≡ v′) if they are identical. The same is true
for variables, patterns, and expressions. Two named values are equivalent if their
plain values are, that is, vȳ ≡ vx̄ (ignoring names increases the opportunities
for sharing). The following rules define the equivalence of environments and
judgments.

ν1 ≡ ν′1 . . . νk ≡ ν′k
{x1=ν1, . . . , xk=νk} ≡ {x1=ν′1, . . . , xk=ν′k}

ρ(e) ≡ ρ′(e′) ν ≡ ν′

ρ : e⇓ ν ≡ ρ′ : e′ ⇓ ν′

ν ≡ ν′ ρ ≡ ρ′

ν|p ρ ≡ ν′|p ρ′
v1 op v2 = v ≡ v1 op v2 = v

ν ≡ ν′

x=ν ∈ ρ ≡ x=ν′ ∈ ρ′

The equivalence of labels induces a corresponding equivalence for nodes: n ≡
m ⇔ L(n) ≡ L(m). To increase the potential for sharing, we could extend
equivalence to account for α-equivalence. However, this would require to use
“named variables” (similar to named values), since the transformation of traces
may change the binding parent of shared computations. Such a “bound variable
shift” is similar to the effect of “origin shift”, explained later (cf. Figure 7). Since
α-equivalence would complicate our model further, we leave it for future work.

To generate the DAG, we choose a minimal subset of N that doesn’t lose any
judgments, that is, we pick a smallest set N≡ ⊆ N so that ∀j ∈ rng(L).∃n ∈
N≡.L(n) ≡ j. Next we redirect edges to/from nodes in N≡.

E≡ = {(n,m) | (n′,m′) ∈ E ∧ {n,m} ⊆ N≡ ∧ n ≡ n′ ∧m ≡ m′}

Finally, we transform labels ρ : e⇓ ν ∈ rng(L) to ρ|FV(e) : e⇓ ν to restrict ρ to the
most recent bindings of free variables in e. We write L1

≡ for the resulting labeling
function. ThenGj = (N≡, L

1
≡, R,E≡) is the proof DAG for j derived from Pj . We

use superscripts to disambiguate the different versions of the labeling function
that result from each step.
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(let x = 1 in x+1+1) + (let x = 1 in x+1)⇓ 5a

let x = 1 in x+1+1⇓ 3b

x+1+1⇓ 3e

x+1⇓ 2f

b: x=1h 1+1 = 2i

2+1 = 3g

let x = 1 in x+1⇓ 2c

f

3+2 = 5d

Fig. 7. Trace for (let x = 1 in x+1+1) + (let x = 1 in x+1).

In the second step, we tag variable bindings in environments with the nodes
of the judgments that created them, as well as with the nodes of the bindings’
scopes. Since some nodes are shared, it may happen that an environment contains
a binding that has more than one origin and scope. Consider the trace in Figure
7. The judgment x+1⇓ 2 in node f that results from the evaluation of both let

expressions is shared. One of its premises is the binding node h, which has its
origin in nodes b and c. We usually only show the origin of the binding for the
context of the node, in this case b, but when we transitively hide all the nodes
in the subtrace with root e, we still have to show node f as a premise for node
c. But now the origin of the binding x=1 is node c, which should be indicated
in the binding node (see Section 4.1).

To tag variable bindings, we must determine which nodes produce bindings
that are used by other nodes. To this end, we define a relation O ⊆ N≡ ×N≡ ×
Var×N≡, where (n,m, x, nj) ∈ O means “the variable x is used in the label of
node nj , and has origin n and scope m.” We first define an auxiliary relation
O′ ⊆ N≡×N≡×Var that captures which nodes are considered origins and scopes.
We consider two cases: (A) For a node n with R(n) ∈ {AppF,Let,AppFix} that
has a child m with label ρ, x=uȳ : e′ ⇓ νx̄, we have (n,m, x) ∈ O′. (B) For a node
with R(n) = Case, that has a child m1 with R(m1) = PVar or R(m1) = PCon
(and thus having a label in the form v|p ρ′) and a child m2 with a label in the
form ρ, ρ′ : ei ⇓ νx̄i , we have (m1,m2, x) ∈ O′ iff x is bound in b.

Intuitively, O′ relates variables and their possible origins and scopes. How-
ever, O′ is too general, since it does not include information regarding which
occurrences of x have particular origins and scopes. We thus define a more pre-
cise O′′ relation as follows.

O′′ = {(n,m, x, nj) | (n,m, x) ∈ O′ ∧ nj ∈ σ∗T (m)}

In the above expression, σ∗(m) is the set of nodes reachable from node m. The
new relation adds nodes nj that contain x as a free variable in their label. Unlike
O′, only occurrences of x in descendants of the scope m are included. Finally, to
get O from O′′, we have to account for variable shadowing.

O = {(n,m, x, nj) ∈ O′′ | ∀n′,m′ ∈ N≡.(n′,m′, x, nj) ∈ O′′ ⇒ m′ /∈ σ∗T (m)}
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Intuitively, only the closest origins and scopes are included in O. We finally
transform each label’s environment to include the origin and scope information.
To this end we define scope/origin pairs for a variable x and node nj as follows.

ω(x, nj) = {n·m | (n,m, x, nj) ∈ O}

With this definition we then extend every binding x=v in an environment ρ
by the origin/scope information, yielding ω(x, nj).x=v. We thus evolve L1

≡ as
follows.

L2
≡(nj) = {ω(x, nj).x=v | x=v ∈ ρ} : e⇓ ν

The scope node of a binding is the top-most node in which that binding is
available. For some operations on traces, it’s necessary to know the set of all
nodes in which a binding is available, which is given by the following function.

Sx(m) = σ∗T (m)−
⋃
{σ∗T (m′) | (n′,m′, x, n′j) ∈ O ∧m′ ∈ σ∗T (m)}

S(m) includes all descendants of m, except those that are descendants of another
scope node m′ further down the tree, to account for shadowing.

At this point, the environments contain information that will help us tailor
our traces later on. In particular, for a judgement of the form ρ : e⇓ ν, the scopes
of the variables bound in ρ can be used to determine nodes where e can be safely
replaced with ν. We capture this information in a function η(n), which is defined
to work on evaluation judgments in the current mapping L2

≡.

η(n) =

{⋂
ō.x=ν′∈ρ

⋃
n′·m∈ō Sx(m) if L2

≡(n) = ρ : e⇓ ν
∅ otherwise

This definition ensures that an expression will be replaced by its value only in
labels of nodes where all free variables are defined and have the same value. If
no variables are bound in ρ, then the scope of a node is the entire trace, or N≡.

In the third step, we replace applications of the Var rule by binding nodes:
For each node k ∈ N≡ with R(k) = Var and L2

≡(k) = ρ :x⇓ vȳx where ō.x=vȳ ∈
ρ, we change L2

≡ to L3
≡(k) = ō.x=v and remove the node m with (k,m) ∈ E≡

as well as the edge (k,m).
In the final step, we replace named values by names or values. Specifically,

we replace named functions by their names and remove names from other values,
that is, we replace all (\x->e)zȳ by z (the first name assigned to the function) and
cx̄ by c. As a special case, if the first name z is equal to the variable being bound,
we instead use the second name (the first element of ȳ) if it is available. This is
a very simple strategy, but CBNV offers opportunities to explore more refined
replacement rules based on properties of the trace and guided by annotation from
the user. We also eliminate the environments from all evaluation judgments, since
the origins of variable bindings are captured by their node tags. This yields L4

≡.
After the transformation steps, we can drop the rule labels R, since they are

no longer needed. We call the resulting DAG Tj = (N≡, L
4
≡, E≡, η) a trace for
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the judgment j. In the following we simply use N instead of N≡ (same for E
and L) and consider the “≡” subscript as implicitly present.

In the rest of the paper we use the following notation for accessing specific
parts of traces. In the definition of T [n], the notation L[n], E[n], and η[n] is used
to denote restrictions of the sets to element to only include nodes in σ∗T (n).

T̂ root node of trace T
σT (n) = {m | (n,m) ∈ E} direct premises of node n
σ∗T (n) = {m | (n,m) ∈ E∗} direct & indirect premises of node n
T [n] = (σ∗T (n), L[n], E[n], η[n])} subtrace of T with root n

Traces represent comprehensive explanations of program executions that are
subject to systematic transformations using two specicific trace operations, to
be introduced next.

4 Trace Views as Explanations

As described in [5], proof trees can be viewed as explanations. Specifically, the
judgment in each node is explained by the judgments in its children. In the con-
text of operational semantics, a rule defines what counts as a valid explanation
of a judgment, that is, in a rule P1, . . . , Pn =⇒ C the premises P1, . . . , Pn
explain the conclusion C in the sense that the correct answer to the question
“Why is C true?” is: “Because P1, P2, etc.” A proof tree is comprehensive as
an explanation of the judgment at its root, since it contains explanations for all
judgments in internal nodes that might themselves be in need of an explanation.

By strictly following the rules of the semantics in building a proof tree we also
ensure that the proof tree provides a correct explanation. This seems to be obvi-
ous, but it is important to point out that an explanation could, in principle be
incorrect, and since we will use transformations of explanations in the following,
we need to guard against the construction of incorrect ones. There are several
ways in which an explanation can be incorrect. First, an explanation could con-
tain an incorrect judgment. For example, 3⇓ 4 cannot be derived by the rules
and thus makes any explanation it is used in incorrect. Second, an explanation
could contain a correct judgment that doesn’t match the rule used for building
the explanation. For example, the correct explanation for 3+4⇓ 7 contains the
three premises 3⇓ 3, 4⇓ 4, and 3+4 = 7. If the first premise were replaced by 2⇓ 2
or the third premise were replaced by 2+5 = 7, the resulting explanation would
contain only correct judgments, but it would still be an incorrect explanation.
Finally, an explanation could contain extra judgments that, while true, don’t
contribute anything to the explanation. An example would be to add a fourth
premise 7⇓ 7 to the explanation of 3+4⇓ 7.

While the construction of traces described in Section 3 does change the struc-
ture of judgments and turns the tree into a DAG, it doesn’t change the factual
statements of the judgments, and it doesn’t omit any facts either.

Proposition 1 The trace Tj derived from a proof tree Pj for a judgment j is a
correct and comprehensive explanation for j.
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In the following we write T ∴ j when T is a correct explanation for j, that is,
the correctness part of Proposition 1 can be simply rephrased as Tj ∴ j.

While we always want to have correct explanations, we do not necessarily
need comprehensive explanations. Specifically, we don’t need an explanation for
a judgement that is well understood. A non-comprehensive explanation might
be often even preferable to a comprehensive one, since it is smaller and can thus
be understood more easily.

4.1 Hiding Judgments and Subtraces

We can consider two main cases for simplifying traces by omitting parts: removal
of leaves or complete subtrees (or sub-DAGs), and removal of (one or more)
internal nodes. The latter requires redirecting its incoming and outgoing edges,
which may cause incorrect explanations. Consider, for example, the explanation
for ρ : succ (succ 1)⇓ 3, which according to the AppF rule has three premises,
(a) ρ : succ⇓ \x->x+1, (b) ρ : succ 1⇓ 2, and (c) ρ, x = 2 : x+1⇓ 3. If we remove
(b) and replace it with its three premises (another (a), (d) ρ : 1⇓ 1, and (e)
ρ, x = 1 : x+1⇓ 2), the resulting explanation now has five premises, a, a, d, e,
and c. Now the premises d and e do not match the premise b required by the
AppF rule, and thus, the resulting trace is an incorrect explanation.

Therefore, nodes aren’t removed from a trace, but rather only hidden. More
precisely, they are marked as hidden, and (maximal) groups of connected hidden
nodes are shown in the trace as an ellipsis (···) when they have non-hidden
premises. Given a total order < on N , we can identify any connected hidden
subgraph with its smallest node. With ∼ being the reflexive, transitive, and
symmetric closure of edges from E that are between two nodes in H, we can
define a function R that performs this identification as follows.

R(n) = {min([n]∼) | n ∈ N}

Hidden sinks are subgraphs of hidden nodes with no outgoing edges, that is,
SH = {n ∈ R(N) | @(l,m) ∈ E : R(l) = n ∧ R(m) 6= n} The trace view of T
induced by H is the graph TH = (NH , LH , EH , η) where:

NH = R(N)− SH
EH = {(R(m), R(n)) | (m,n) ∈ E ∧R(m), R(n) ∈ NH ∧R(m) 6= R(n)}

LH(n) =

{
··· if n ∈ H
L(n) otherwise

We use τ to range over trace views.
The two basic operations for hiding and unhiding a single node are:

TH − n := TH∪{n} TH + n := TH−{n}

Due to their type, both operations are left associative.
A trace view is a correct explanation if all hidden nodes can be substituted

by (subgraphs of) judgments so that the resulting trace is a comprehensive and
correct explanation. Of course, this can be easily achieved by unhiding all the
hidden nodes, that is, trace views are by construction correct explanations.
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Lemma 1. τ ∴ j =⇒ τ − n ∴ j and τ ∴ j =⇒ τ + n ∴ j

To make the interaction work with trace views intuitive, it is important that
node hiding and unhiding is commutative.

Lemma 2. τ − n−m = τ −m− n and τ + n+m = τ +m+ n

Commutativity of node (un)hiding supports the incremental construction of ex-
planations, since hiding operations can be applied and undone in arbitrary order.
Hiding and unhiding are idempotent, but they are not inverses of each other,
because even though unhiding a hidden node will make the node visible, hiding
a node after unhiding it will still hide it in the resulting trace view.

τ − n− n = τ − n τ − n+ n = τ

τ + n+ n = τ + n τ + n− n = τ − n

If we could only hide individual nodes one by one, the construction of explana-
tions would be too arduous. Since it’s only natural to want to transitively hide all
premises of an understood judgment, we define a corresponding operation. How-
ever, we cannot simply hide all nodes m ∈ σ∗T (n), since we shouldn’t hide nodes
that are still used as premises in other (non-hidden) parts of the trace view. We
should hide only those descendants of n that are only reachable through n. We
can gather this set of weak descendants through the following definition.

σ◦T (n) = {n} ∪ {m ∈ σ∗T (n) | deg−T [n](m) = deg−T (m)}

With the help of that function we can define the following operation for hiding
a node and all of its weak descendants. Similarly, we can also define transitive
functions for hiding and unhiding nodes.

TH 	 n := TH∪σ◦T (n) TH ⊕ n := TH∪σ◦T (n)

The transitive (un)hiding operations enjoy the same algebraic properties as the
single-node versions of the operations.

τ 	 n	 n = τ 	 n τ 	 n⊕ n = τ

τ ⊕ n⊕ n = τ ⊕ n τ ⊕ n	 n = τ 	 n

4.2 Applying Judgments and Factoring Traces

In some cases traces can be simplified beyond hiding. For example, understanding
the judgment length []⇓ 0, we may in addition to hiding it actively employ it to
replace subexpressions length [] elsewhere by 0. We call the use of a judgment
L(n) = e⇓ v as a rewrite rule applying a judgment ; it is used within n’s scope,
that is, for the set of nodes in the trace where e is certain to be evaluated to
the same result v. The function η, included in each trace, contains this scope
for every node. We use η with one adjustment: We consider the scope of a
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(let x = 1 in x+1+1) + (let x = 1 in x+1)⇓ 5a

let x = 1 in 3⇓ 3b let x = 1 in x+1⇓ 2c

x+1⇓ 2e

c: x=1f 1+1 = 2g

3+2 = 5d

Fig. 8. Factoring judgment x+1+1⇓ 3 in node e (cf. Fig. 7).

lambda abstraction to be only the node in which it is evaluated, and thus avoid
substituting lambda abstractions.

In the following definition we write !m for the condition m ∈ η(n) ∧ L(m) =
e′ ⇓w′, which identifies nodes that are subject to the simplification substitution.

(N,L,E, η)H • n := (N,L′, E, η)H where

L′(m) =


[v/e]e′ ⇓w′ if !m ∧ L(n) = e⇓w
[w/x]e′ ⇓w′ if !m ∧ L(n) = ō.x=w

L(m) otherwise

For example, to apply the judgment x+1⇓ 2 in node f in the trace from Figure 7,
we have to substitute 2 for x+1 in the scope for x+1, which is given by the scope
for variable x. Since node f is shared, the binding node for x (that is, h) has two
scope nodes associated with it, namely b and c.

Applying a judgment leads to a redundant judgment of the form w ⇓w. We
generally want to hide such judgments, since they don’t contribute to the ex-
planation. Therefore, we define an additional operation factor that applies a
judgment and transitively hides it at the same time.

τ ÷ n := (τ • n)	 n

We call the application of a factor operation trace factorization and also refer
to the result as factored trace. As an example, consider the factoring of the
judgment x+1+1⇓ 3 in node e in Figure 7: Node e and its premise g are removed
from the trace. Because f, h, and i are shared as a premise of the judgment in
c, they will not be removed. The factored trace is shown in Figure 8. Nodes f,
h, and i from Figure 7 now appear as e, f, and g. Note that these nodes are no
longer children of b. The binding in f (which was previously h) is created in c,
which means that the binding node’s origin has to be changed from b to c.

Unlike the hiding of nodes, which changes merely the presentation of a trace,
the applying and factoring of judgments can change traces substantially through
the simplification of expressions.

In particular, when the root of an explanation is affected by e′ ⇓w′, such an
altered trace does not explain the original judgment in the root anymore, that is,
j = e⇓w turns into j′ = [w′/e′]e⇓w, and we have τ ÷ n ∴ j′ but not τ ÷ n ∴ j.
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q ::= hide s | hideAll s | apply s | factor s | q & q
s ::= ι | s and s | s or s | s except s | s then s | fix s | try s | root

ι ::= e� ⇓ v� | v�|e� b� | v� op v� = v� | x�.x�=v� | �a

Fig. 9. Queries, Selectors, and Patterns

But that is, we argue, exactly what one should expect of an explanation: A
residual explanation for e⇓w that omits everything related to explaining e′ ⇓w′
is an explanation for [w′/e′]e⇓w, and that is the trace that one gets.

To formulate the formal relationship for factored traces, we write dje to
denote the trace for a judgment j and j

j′ for dje ÷ n with L(n) = j′. In general,
we have the following relationship for factored traces.

Theorem 2.

FV(e′) = ∅ =⇒ e⇓w
e′ ⇓w′

=
[w′/e′]e⇓w
w′ ⇓w′

We can explain the idea also in terms of factoring and hiding.

Lemma 3. L(n) = e′ ⇓w′ ∧ FV(e′) = ∅ =⇒ de⇓we ÷ n = d[w′/e′]e⇓we 	 n

5 Trace Query Language

The query language consists of two parts: operations and selectors. The opera-
tions are as described in the previous sections. Selectors are used to find nodes
where operations should be applied. The grammars for these two components
of the language are given in Figure 9; it also contains a grammar for patterns,
which is similar to Jw from Figure 6, without the ellipsis and extended by a
wildcard symbol (we use e� to stand for e or �, v� to stand for v or �, etc.).
Different occurrences of an non-indexed wildcard � can be bound independently
of one another. To force the occurrence of the same bound value in different
places, the wildcard can be indexed, as for example in �a ⇓ �a, which matches
expressions that evaluate to themselves.

When a selector s is applied to a trace, it yields a set of nodes matching the
selector, ordered according to a breadth-first traversal of the trace.

If the selector is a pattern ι, it yields the set of all nodes with matching labels
(written as l ≺ ι). The matching relation is fairly straightforward: Each pattern
ι matches the corresponding judgment, while the wildcard � matches anything.

A selector may also be a combination of other selectors. For instance, s1 or s2

finds nodes that are selected by either s1 or s2. Similarly, s1 and s2 finds nodes
selected by both s1 and s2, and s1 except s2 will yield all nodes matched by s1

that are not matched by s2.
More sophisticated queries can be built with the selectors root, s1 then s2,

try s, and fix s: root returns the root node of the trace, sequencing s1 then s2
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applies s2 to subtraces T [n] of T for every node n selected by s1 and merges the
final results, and fix computes fixed points.

We can use then to find evaluations of the factorial function that occur as
children of other evaluations of the function (indicating recursion).

(fact � ⇓ �) then ((fact � ⇓ �) except root)

Here except root ensures that only the children of the function application are
selected, and not the parent application itself. Here are a few more frequently
used general-purpose selectors (where all = � is just a convenient alias):

none = root except root

first s = s except (s then (s except root))
descendants = all except root

children = first descendants

The selector first s will find all nodes selected by s that are not children of
other nodes also selected by s. The selectors descendants and children find the
transitive and immediate children of the trace’s root node, respectively.

The combinator then in itself cannot be used to define more complicated
traversals of a trace. Instead, the fix selector can be used to perform an arbitrary
number of sequencing operations. It works by repeatedly sequencing s with itself
until the result of the sequencing stops changing. To help avoid fixed points where
no nodes are selected, the try s combinator can be used, which returns the root
of the graph if s does not select any nodes. This way, we are able to terminate
the sequencing right before hitting an empty result, rather than after. We can
use fix to find all nodes that are used outside of a call to the factorial function.

fix ((children or root) except (fact � ⇓ �))

The new combinator enables us to define a few more general purpose selectors.

last s = fix (try (s except root))
uniqueChildren s = (s then all) except (fix ((children or root) except s))

The last s selector will find all nodes selected by s that do not have other nodes
selected by s as descendants, while uniqueChildren s will find descendants of
nodes selected by s that are not referenced anywhere else in the trace.

The semantics for the selector language are given in Figure 10. We can now
use the arsenal of selectors to construct specialized queries to help with creating
explanations. For instance, we may want to hide all evaluations of a recursive
function except for the first and last one. This can be achieved with the limitRec

f selector, defined as follows, where f is the name of the recursive function.

nonFirst s = (s except first s) then descendants

afterLast s = last s then all

limitRec f = notFirst (f � ⇓ �) except afterLast (f � ⇓ �)

We can now define the semantics of queries as a transformation of trace views
through the operations introduced in Section 4. (Note that for any ordered set
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JιK(L,N,E) = {n | L(n) ≺ ι}
Js1 and s2KT = Js1KT ∩ Js2KT
Js1 or s2KT = Js1KT ∪ Js2KT
Js1 except s2KT = Js1KT − Js2KT
JrootKT = {T̂}

Js then s′KT =
⋃
n∈JsKT Js′K(T [n])

Jfix sKT =

{
JsKT if Js then sKT = JsKT
Js then (fix s)KT otherwise

Jtry sKT =

{
JrootKT if JsKT = ∅
JsKT otherwise

Fig. 10. Selector Semantics

of nodes M = {n1, . . . , nk}, we use for all � ∈ {−,	,+,⊕, •,÷} the notation
T �M as an abbreviation for T � n1 � . . .� nk).

Jhide sKT = T − JsKT Japply sKT = T • JsKT
JhideAll sKT = T 	 JsKT Jfactor sKT = T ÷ JsKT

Jq1 & q2KT = Jq2K(Jq1KT )

Note that the uniqueChildren combinator was not created arbitrarily; in fact, its
behavior closely aligns with that of the σ◦T (n) function (defined in Section 4.1).
We capture this in the following lemmas (where Lemma 5 is a direct consequence
of Lemma 4).

Lemma 4. JuniqueChildren sKT =
⋃
n∈JsKT σ

◦
T (n)

Lemma 5. JhideAll sKT = T − JuniqueChildren sKT

6 Related Work

Our Call-By-Named-Value semantics is similar to the work of Acar et al. [1], in
which the semantics of a language are extended to support provenance. They
use a fixed algorithm for disclosure slicing to reduce the size of traces, whereas
our approach allows tailoring of traces through a query language.

Problems with the visualization of large proof trees has been addressed
Dunchev et al. [3] through hiding structural rules (similar to our Var rule)
and unused contexts (similar to our hidden environments). Their Prooftool al-
lows users to focus on sub-proofs, similar to our hiding and factoring operations.
They also discuss the use of proof DAGs but decided against them because of
the difficulty of finding graph layouts that avoid crossing edges.

Proof trees are universal structures to trace arbitrary programs. A different
kind of structure called value decomposition was introduced in [4] for explaining
the execution of dynamic programming algorithms. This approach is based on
a semiring model of dynamic programming, and while it can produce succinct
explanations, it is limited to only a small set of programs.

The work on explaining (imperative) functional programs [12, 13] employs
program slicing as a technique to generate dynamic explanations for the part of
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output selected by the user. Program slicing filters out parts from traces that
do not lead to the selected partial output. The approach assumes that a user
would like to understand certain part of the output, which isn’t always the case.
Also, the generated traces can still be quite large. Our approach is somewhat
orthogonal and could in principle be combined with program slicing techniques.

The idea of algorithmic debugging is to incrementally tailor a proof tree for
a computation by repeatedly asking users about the expected results of subex-
pression evaluations [10]. Like most other debugging approaches, the goal is not
to provide any explanation of why the output was generated in the first place.

The Java Whyline [8] is a debugger for Java program that allows program-
mers to ask questions about the output, which the debugger tries to answer
by computing a backward trace of the computations that caused the output.
Haskell’s debugger Hood [6] generates a trace of intermediate values of com-
putation. A programmer needs to annotate the interesting parts in the source
code. When the code is recompiled and rerun, the debugger results in a trace of
intermediate values along with the actual output. This is similar to our approach
in that the user has some control over the form and size of the produced trace.

The selector component of our query language was inspired by the rewrite
strategies approach presented by Visser et al. [16], which are used to define al-
gorithms that apply optimizations to programs. Much like our query language,
these strategies provide a toolbox of combinators that allow the user of the sys-
tem to construct more complicated traversal and transformation algorithms. The
selectors defined in this paper are more linmited: they lack the ability to trans-
form the trace, and they are not capable of maintaining a context of encountered
expressions, or making decisions based on that context.

7 Conclusions and Future Work

We have presented a new approach for explaining program behavior that is
based on a new Call-By-Named-Value semantics, a DAG-based representation
for traces, and a query language for expressing trace manipulations. A major
innovation of our traces is the economical presentation of information and an
effective method for hiding large parts of uninteresting regions from a trace.

Our initial experiments with this new approach are encouraging: For a bench-
mark set of 21 functional programs used in an introductory CS course, we could
achieve reductions between 79% and 98% (in 90% of the cases the traces have
been reduced by 85% or more). For this we needed 12 standard filters (7 of
these were always applied and 5 only in specific instances). (Details about this
evaluation, can be found in Bajaj et al. [2].)

In future work, we can make explanation traces even more succinct through
dead-code elimination, especially within expressions. For example, the True

branch in a judgment case False of {...; False -> 0}⇓ 0 can be omitted. This
strategy is applicable even if part of the code is not dead but “dormant” and
thus explanatorily irrelevant in the current part of the trace. Moreover, we can
further exploit the Call-By-Named-Value semantics by having users tag impor-
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tant names, and we can also exploit the fact that named values can have an
arbitrary number of names. Instead of always displaying one specific name, the
decision can be made dynamically, for example, when a value acquires a more
meaningful name in the evaluation of a program (such as when list elements
acquire the name pivot during the execution of quicksort).
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