Introduction to the
Haskell Code Supplement [ESsss

C!_lf: orilbhm

Version o.1, September 2017

xplain Computing ®

©2017 by Martin Erwig

This document serves as a guide to the Haskell code examples for the book Once Upon an Al-
gorithm: How Stories Explain Computing. It explains how the concepts of computer science
introduced in the book can be realized in the Haskell programming language. The guide mainly
follows the structure of the book, but it also provides a brief introduction to some basic elements
of Haskell. Since many of the examples are based on the examples from the book, this guide
assumes that you have read the corresponding chapter before working through the code.

In addition to explaining the code and how it relates to the examples in the book, this guide
also occasionally points to parts of the book for additional background information. Finally, the
guide provides exercises throughout the text with solutions in the form of Haskell files, which
are part of the code supplement. The exercises help readers test their understanding.

What this Guide is Not

Note that this guide is zot a comprehensive Haskell tutorial. While I have tried to explain all
concepts necessary to follow the code examples, you should not expect to become a proficient
Haskell programmer just by following the examples in this document. There are many excellent
tutorials (wiki.haskell.org/Tutorials) and books (wiki.haskell.org/Books) available for learning
Haskell. Specifically, I will not explain Haskell error messages, which can sometimes be difficult
to work with. This means that you may have to consult outside resources, such as the mailing
list for beginners (beginners@haskell.org), an IRC channel (wiki.haskell.org/IRC channel), or
someone you know who has some Haskell experience.

Moreover, this document does not explain how to operate a computer. This guide assumes
some basic computer literacy, including how to use a text editor and how to install and execute
programs on a computer.

Before We Can Begin

The first step is to install a Haskell interpreter on your computer. There are several ways to
do this. The easiest approach is probably to go to www.haskell.org/platform/ and follow the
instructions to download and install the implementation for your operation system.

http://wiki.haskell.org/Tutorials
http://wiki.haskell.org/Books
mailto:beginners@haskell.org
https://wiki.haskell.org/IRC_channel
https://www.haskell.org/platform/

Date.hs

This guide assumes that you have downloaded the code examples, which are grouped accord-
ing to the structure of the book; that is, all the definitions for the examples used in one chapter
are usually contained in one corresponding Haskell file. (Some chapters may have multiple files.)
The name of the file containing relevant definitions is indicated in the margin of this text. Solu-
tions to exercises are contained in separate files and are also mentioned in the text margin.

Using an Editor and the Haskell Interpreter

It is important to understand that the code presented in this guide occurs in two principally
different places, namely (1) in Haskell files and (2) in the interpreter window.

First, definitions of values and functions are usually placed in a file (that has the file extension
.hs). For example, we can define a number weeks and a function days for computing the days
contained in a given number of weeks and put them into a file with the name Date.hs. Code that
appears in a file is shown indented and in typewriter font as follows:

weeks :: Int
weeks = 6

days :: Int -> Int
days w = 7 * w

Second, once the Haskell interpreter has been started, it presents a window into which files with
definitions can be loaded and where expressions can be evaluated. In the following I am using the
Glasgow Haskell Compiler, which is provided as part of the Haskell platform. After starting the
interpreter,’ we are presented with a short message, followed by an input prompt.?

GHCi, version 8.0.1: http://www.haskell.org/ghc/ :7 for help

Loaded GHCi configuration from /Users/erwig/.ghci
Prelude>

Now we can enter expressions for the interpreter to evaluate, like so:

Prelude> 4+5%*6
34

We can also load files with definitions that are then available for inspection and evaluation.’

Prelude> :1 Date.hs

[1 of 1] Compiling Main (Date.hs, interpreted)
Ok, modules loaded: Main.
*Main>

For example, we can use the function days to compute the number of days in 52 weeks.

*Main> days 52
364

'On Linux and Unix systems, including Mac OS, this is done by entering the command ghci in a terminal window.

*Here Prelude> means that a standard set of Haskell definitions have been loaded and are available for execution.

*The prompt changes to *Main>, which is the default name for Haskell modules. Every collection of definitions
in a file is considered to be a module. The module name can be changed, but this is not so important here. In the rest
of this guide I will mostly omit the module name in the prompt, since it is not really needed and since it makes the
examples a bit easier to read.

https://www.haskell.org/platform/

When we change the definitions in a file and want to use them in the interpreter, we can use
the command :r to reload the definitions. In later parts of this guide I will explain some other
features of the interpreter.

The important thing to remember is this: when definitions of values, types, and functions
are shown, as for weeks and days, these appear in some file that can be loaded into the Haskell
interpreter. On the other hand, expressions to be evaluated must be entered into the Haskell
interpreter, which is indicated by the > prompt that precedes expressions and by the result printed
on the next line.

Oh, and then there will be errors. Inevitably, you will enter an erroneous expression into
the interpreter or place an incorrect definition in a file. Since machines are so picky in what
input they accept, talking to a machine can be a frustrating experience. Errors can be simple
misspellings, which are easy to spot and correct:

> week

<interactive>:1:1: error:
* Variable not in scope: week
* Perhaps you meant weeks (line 4)

But some error messages can also be more difficult to understand.
> days

<interactive>:2:1: error:
* No instance for (Show (Int -> Int)) arising from a use of print
(maybe you haven’t applied a function to enough arguments?)
* In a stmt of an interactive GHCi command: print it

This message essentially says that function values cannot be printed, which means functions
should be applied to their arguments (an Int value in this case). As mentioned, you should not
hesitate to consult outside resources for help when you cannot make sense of an error message. In
some cases, a simple Google query will help. In other situations, try the mailing list for beginners
(beginners@haskell.org) or an IRC channel (wiki.haskell.org/IRC channel).

From Humans to Machines

In the book I can use English instead of a formalized notation to express concepts and ideas of
computing. Specifically, I can describe algorithms using everyday language. This works well
because the computers intended for processing these descriptions are humans who understand
potentially ambiguous natural language. Humans are very good at using context information to
fill in gaps and guess the intent of a definition in cases when it is not completely clear.

By contrast, machines generally lack the ability to make common-sense inferences and require
precise instructions about every detail. In explaining an algorithm to a machine, vagueness is not
an option, and every instruction of an algorithm must be unambiguous. To formulate an algo-
rithm in a programming language we have to be precise about every aspect, since we can’t expect
the machine to fill in missing details. Programming is the process of translating an algorithm that
is given in some non-formalized description into a language, called a programming language, that
is understood by a computing machine. The result of this process is a program. In other words, a
program is an algorithm that can be executed by a machine.

mailto:beginners@haskell.org
https://wiki.haskell.org/IRC_channel

Concept Haskell

Algorithm Function
Representation Type
Instruction/Step Expression

Execution Function Application

Table 1: How algorithmic concepts are realized in the programming language Haskell.

Programming is not a simple activity. Many errors and problems that arise during program-
ming result from the often non-trivial translation of a high-level, potentially vague algorithm into
a precise program. This basic fact has an important consequence for the structure and content of
this guide.

On the one hand, since it is fairly easy to describe Hansel and Gretel’s pebble-tracing algo-
rithm in English, it can be presented at the beginning of the book. On the other hand, since
it is much harder to describe a corresponding program in Haskell (or any other programming
language), we cannot start the introduction to Haskell with this example. Therefore, to have all
the features of Haskell available that are required to express the pebble-tracing program, we have
to precede the program by an introduction of a number of basic Haskell programming concepts.

Any introduction to programming is mostly forced to take a bottom-up approach, since
programming languages lack much of the flexibility of natural languages that afford top-down
descriptions. Therefore, I start in the following section with an introduction to several basic
concepts of Haskell to prepare you for the code for chapter 1.

Algorithmic Concepts in Haskell

Every algorithm describes the transformation of some representation. A representation is re-
alized in a programming language through basic values such as numbers or symbols and data
structures such as lists or trees. Therefore, to define an algorithm, we have to first identify the
representations that it is supposed to transform. In Haskell these representations are given by
basic types such as Int for numbers or String for text, predefined data types for lists, or types
defined by the programmer specifically for the algorithm. An algorithm is realized in Haskell as a
function. More specifically, an algorithm that transforms a representation that is given by a type
T into a representation of type U is realized in Haskell as a function of type T -> U. The arrow
indicates that this is the type of a function that takes as input values of type T and produces as a
result values of type U. To execute an algorithm for some input arguments means in Haskell to
apply the corresponding function to the values that represent the input. The mapping between
algorithmic concepts and corresponding Haskell concepts is summarized in table 1.

Let’s consider as an example an algorithm for determining the time for setting an alarm clock.
The idea is very simple: if you plan to leave the house at some time ¢ in the morning and the
duration of getting dressed, having breakfast, etc., is d, the alarm clock should be set to go off at
time ¢ —d.

While the instructions needed for this algorithm are trivially simple and consist only of a
single subtraction, the question of what representation to choose is not as obvious. How should
we represent the time and duration values to be manipulated by the algorithm? One could,

WakeUp.hs

» Parameters
Chapter 2

for example, represent time as the minutes since midnight, and duration also as minutes, which
means that 7 a.m. would be represented by the number 420, and the duration of 1 hour and 10
minutes would be represented by the number 7o.

In Haskell, (positive and negative) whole numbers are elements of the type Int. An algo-
rithm to compute the wake-up time can thus be realized through the following Haskell function
wakeUpM,* which takes two values of type Int and produces an Int value as a result.’

wakeUpM :: Int -> Int -> Int
wakeUpM leave duration = leave - duration

The first line defines the type of the function, that is, the type of its parameters and its result. The
symbol :: can be read as “has type,” and the arrow symbol -> separates the types of parameters
from each other and from the type of the result.

The second line defines what the function wakeUpM does when it is applied to two arguments.
These arguments are represented in the definition by the two parameter names: the first parame-
ter leave stands for the time to leave the house, and the second parameter duration stands for the
time required to complete the activities from getting up to leaving the house. The two parameters
are introduced directly following the function name, and the definition of the function result is
given by the expression leave - duration that follows the = sign.®

If we place this function definition into a file, say WakUp.hs, we can load it into the Haskell
interpreter. Starting the Haskell interpreter ghci from the command line will produce an output
similar to the following.”

> ghci WakeUp.hs
GHCi, version 8.0.1: http://www.haskell.org/ghc/ :7 for help
Loaded GHCi configuration from /Users/erwig/.ghci

[1 of 1] Compiling Main (WakeUp.hs, interpreted)
Ok, modules loaded: Main.
*Main>

Now that we’re inside the Haskell interpreter, we can “talk Haskell” to it. We do this mainly by
applying functions to arguments, adding definitions, or reloading files after changing definitions.
In the example, we can compute wake-up times for different time and duration values by applying
the function wakeUpM to corresponding integer values. For example, if we want to leave the house
at 7 a.m. and we need 1 hour and 10 minutes for our daily morning routine, we can execute the
algorithm by applying wakeUpM to the the values 420 and 70.°

> wakeUpM 420 70
350

How is this result actually obtained? One can think of the arguments as being substituted for the

*The trailing M stands for “minutes.” We will encounter several variations of this function later.

*In Haskell the names of functions, parameters, and other variables must start with a lowercase letter, whereas all
type names must start with an uppercase letter.

®Having seen function definitions in mathematics, one might expect a different syntax, maybe something like
wakeUpM(leave,duration) = leave - duration. Such a definition is actually also possible in Haskell, but it
has a slightly different type that restricts how the function can be used. The shown definition is more general. In
particular, it allows the partial application of functions (see section 1.1). It is the standard way of defining functions in
Haskell.

7Starting ghci with a Haskell file name as argument has the same effect as starting ghci, followed by loading the
file using the :1 interpreter command.

8 As mentioned earlier, I will omit module names in the interpreter prompt when showing examples.

» Types
Chapter 14

corresponding parameters in the function definition, which then yields an expression that can
be evaluated. In the example, if we substitute 420 for leave and 70 for duration, we obtain the
following expression, which evaluates to 350.

420 - 70

The result 350 is not surprising, but it is also only of limited use. What time do we have to set the
alarm clock to now? Since few alarm clocks allow entering only minute values as alarm times, we
have to convert the value back into hours and minutes. This is not hard, but it is inconvenient,
which indicates that we may not have chosen the best representation for the computation. We
could use floating point numbers (of type Float) instead of integers to represent time and dura-
tion as fractions of hours.” However, this doesn’t really help very much. First, representing 1
hour and 10 minutes as a Float number requires some calculation. Fortunately, we don’t have to
do this ourselves: we can actually delegate the work to the Haskell interpreter.

> wakeUpH 7 (1+10/60)
5.8333335

While we didn’t have to compute anything for specifying the input arguments, the result leaves
us with the task of converting a Float number back into hours and minutes.

Maybe we need yet another representation. In particular, why not represent time and du-
ration values by pairs of numbers? Let’s try this approach next. A pair of values is written in
Haskell like in mathematics. For example, we can write (7,0) for the pair of numbers 7 and
0 that represent 7 a.m. and (1,10) for 1 hour and 10 minutes. Since we don’t need to represent
fractional values anymore, we can use integers in these pairs. In Haskell the corresponding type is
written as (Int,Int), which can be read as: “this is a type of pairs whose elements are integers.”

Note that we actually do not expect arbitrary integers to appear in time pairs. Specifically, for
a 24-hour representation we expect for each pair of integers (h,m) that 0 <h <23and 0 <h < 59.
For the following definitions we simply assume that these constraints are satisfied. We could
easily implement a function that checks these restrictions, see exercise 5.

To change the function definition to the new pair type, we could again replace each occur-
rence of Float or Int in the type by (Int,Int), but the repeated use of the pair type as well
as the fact that it is not clear what each Int component represents suggests to introduce a type
definition, which introduces a name for a type that can be used in its place. Here is one way of
doing it.

type Time = (Int,Int)

This definition allows us to use the name Time in the type of the function, but it doesn’t explain
what role the two components play. Therefore, we could add two further type definitions for
hours and minutes and adapt the definition of Time accordingly.

type Minute = Int
type Hour Int
type Time = (Hour,Minute)

Note that these definitions are not strictly needed; omitting the type definition(s) and simply
using (Int,Int) instead of Time works just as well. But type definitions often make programs and

°To achieve this, we can either change the types of the existing function wakeUpM or define a second function
wakeUpH (where the trailing H stands for “hour”).

» Conditional
Chapter 10

their intentions clearer. With the new pair representation of time we can now try to implement
another version of the wakeUpM function. Since subtraction is only defined for numbers and not
for pairs, we need to change the definition of the function. In a first attempt we naively try to
subtract hours and minutes individually.

wakeUpNaive :: Time -> Time -> Time
wakeUpNaive (h,m) (h’,m’) = (h-h’,m-m’) -- incorrect definition

Testing this definition with our example values immediately reveals a flaw.

> wakeUpNaive (7,0) (1,10)
(6,-10)

The result is obviously incorrect, since there are no time values with negative numbers. This
“underflow” error occurs whenever the minutes to be subtracted exceed the minute value of the
time from which they are to be subtracted. (An underflow can also happen for the hour values.)
There are at least two ways to fix this problem. One is to identify the situations that would
lead to an underflow and adjust the result accordingly. Specifically, whenever m’ is larger than m,
we need to subtract an additional 1 from the hours h. We must also adjust the minute value by
adding 60, since we are effectively trading 1 hour against 60 minutes. This is essentially the same
thing that happens during the subtraction algorithm for decimal numbers where one “borrows”
10 to facilitate subtraction of a larger digit from a smaller one. The difference here is that one
hour is equivalent to 60 minutes.

To express the idea of producing alternative results in Haskell we need some way of returning
different results depending on a condition. Here, a condition is an expression that evaluates to
either True or False, which are values of type Bool. An example is the expression 3<4, which
checks whether 3 is less than 4. Since this is the case, the expression evaluates to True.

Haskell provides two ways of selecting between two results based on a condition. One is to
use an if-then-else construction, which leads to the following definition.

wakeUp :: Time -> Time -> Time
wakeUp (h,m) (h’,m’) = if m’>m then (h-h’-1,60+m-m’)
else (h-h’,m-m?)

The other approach is to split the equation into two parts and prefix each result case with a
condition. All cases are tried in order from top to bottom, and the first case whose condition
yields True is selected.

wakeUp :: Time -> Time -> Time
wakeUp (h,m) (h’,m’) | m’>m = (h-h’-1,60+m-m’)
| otherwise = (h-h’,m-m?’)

The latter style is often more readable, in particular, when multiple conditions are needed that
lead to more than two different results.

Let’s test the new definition with our example. Since we are using pairs of integers to rep-
resent time, we have to give the arguments to the wakeUp function in this form and obtain the
result in the same way.

> wakeUp (7,0) (1,10)
(5,50)

One might prefer to see the result printed in a more conventional form such as 5:50 a.m. This
is easy to achieve, but doing so here would distract from the mission of this section.

The pair representation for time has made it easier to use the function and, in particular,
interpret the result, but it has made the implementation more complicated. In general, we can
observe:

(a) Most problems can be solved with different representations.
(b) The choice of representation affects the implementation and use of functions.

An alternative approach to implementing wakeUp is to map the Time arguments to minutes, per-
WakeUpS.hs form subtraction with these minute values, and then convert the result back into a Time value.

Exercise 1

Define the following two functions to convert between the hour/minute and minute representation of

time.
timeToMinutes :: Time -> Minute
minutesToTime :: Minute -> Time

The functions should have the property that they are each other’s inverses, that is, for any valid time
value t (that is, any pair (h,m) with 0 <h < 23 and 0 < h < 59), the following equation should hold:
minutesToTime (timeToMinutes t) = t. Likewise, for any minute m between O and 1439 the following
equation should hold: timeToMinutes (minutesToTime m) =m.

The condition mentioned in the exercise also demonstrates how to apply a function to the result
computed by another function. The combination of function applications is how multiple steps
in an algorithm are executed in a language like Haskell: if you want to transform a value using
a function £ and then transform the returned result further by another function g, you can
simply apply g to the result of £ as in g (£ x). When combining multiple steps in this way,
as in the example k (h (g (£ x))), one can make nested function applications more readable
by introducing names for intermediate results. For example, we can rewrite the last example as

follows:
let y = f x
z=8Y7
a=nhz
in k a

This is particularly useful in cases where an intermediate result is used more than in one place.
For example, the application g (f x) (£ x) can be conveniently be rewritten as follows:

let y = f x
ingyy

Not only is this convenient and less error-prone in cases we have to use a large, complicated
expression more than once, it also has the added benefit that the computation of the named

expression is performed only once, which saves computing time.

Give an alternative implementation for the function WakeUp that uses the two functions timeToMinutes
and minutesToTime. (Hint: The expression div n m computes how often m fits into n, and the expres-
sionmod n mcomputes the rest that remains when dividing n by m.)

For the following exercise we have to understand the type Bool of boolean values, which consists
of the two values True and False. These values are used to represent the outcome of conditions,
such as m’>m that is used in the definition of the function wakeUp. In addition to predefined test
and comparison operations, we can define our own functions to represent tests. For example,
here is the definition of a function that tests whether an integer is positive. Note that the type
specifies that positive applies to integers but returns boolean values.

positive :: Int -> Bool
positive x = if x>=0 then True else False

As with the definition of wakeUp, we can split the equation using the condition and obtain an
equivalent definition that uses two cases for the equation.

Give an alternative definition of the function positive that uses a condition to split the equation into
two cases.

We can observe something peculiar in the definition of positive: The definition effectively says
that if the condition x>=0 evaluates to True, then return True, and if x>=0 evaluates to False,
then return False. This seems to be redundant in the sense that the condition already provides
the value that should be returned by the function. In other words, it seems that we can save the
if-then-else construct (or the split equation) and return the expression itself as a result. We are
thus tempted to define the function simply as follows, simply using the condition itself as a result.

positive :: Int -> Bool
positive x = x>=0

This definition says that positive x returns the same result as the expression x>=0, which is
exactly what we want.°

Exercise 4

Define the following two functions that check whether an integer is a valid minute or hour value. A
minute value is valid if it is in the range o to 59, and an hour value is valid if it is in the range o to 23.
(Hint: The expression ¢ && c’ yields True if both c and ¢’ evaluate to True.)

validMinute :: Minute -> Bool
validHour :: Hour -> Bool

1°T'he definition can actually be further simplified by exploiting the fact that functions can be partially applied to
only some of their arguments and then return functions as a result. For binary operations this is also called sectioning
and works by enclosing the operations in parentheses and filling the left or right argument, which allows the simplified
definition positive = (>=0), see also section 1.1.

Chapterl.hs

» Parameters

Chapter 2

We can now combine the two functions to define a test for valid time values.

Implement the function validTime :: Time -> Bool that takes a Time value (h,m) and returns True
if h and m are valid hour and minute values, respectively.

;!‘ .\Z/I '\f/'
78N 78N /N

The purpose of this section is the introduction of some basic concepts of Haskell that are needed
to express algorithms. The chosen example is necessarily very simple. In particular, the algorithm
itself consists of only one step,'! and the employed representation consists of numbers or pairs
of numbers. In the next section I demonstrate how to implement more complicated algorithms
that require a mechanism to express the repetition of steps and that use lists as a representation
for collections of values.

1 A Path to Understanding Computation

Chapter 1 is centered around Hansel and Gretel’s algorithm for finding their way back home
from the forest. The algorithm consists of steps to move along a path of pebbles that Hansel
had dropped on the way into the forest. Any algorithm works by transforming a representation,
and the pebble-tracing algorithm transforms the position of Hansel and Gretel as they move
from pebble to pebble. To emulate this behavior with a computer we first need to define a
representation for the position of Hansel and Gretel and the positions of all the pebbles.

A position in the two-dimensional plane can be represented by a pair of floating point num-
bers. Such a pair is called a coordinate. Typically, the first component in a coordinate is used to
define the horizontal position, and the second component defines the vertical position. We can
assign some arbitrary position to Hansel and Gretel’s home.

type Pos = (Float,Float)

home :: Pos
home = (3.0,4.5)

Before we can define a function for Hansel and Gretel’s pebble-tracing algorithm, we have to
develop a number of auxiliary definitions. We start by looking into different ways to move
around. Moving from a given position n units to the right (or east) can be achieved by the
following function.

moveRightBy :: Float -> Pos -> Pos
moveRightBy n (x,y) = (x+n,y)

It is instructive to contemplate the type of moveRightBy in more detail. The function has two
parameters, the distance to move (a Float value) and the position from which to move (a Pos
value). While it makes sense to separate a function parameter type from its result type by an ar-
row (indicating the dependency of resulting values on the arguments supplied for the parameter),
it seems peculiar that the two parameters are separated by an arrow as well.

"The algorithm in exercise 2 consists of four steps.

10

» Substitution
Chapters 13, 15

ChapterlS.hs

1.1 Multiple Parameters and Partial Function Application

The rationale for this notation is that a function of two parameters of types A and B that returns
something of type C is actually the same as a function of one parameter of type A that returns a
function of type B -> C.'? In other words, if we apply a function with two parameters to only one
of its arguments, the result is a function of the remaining argument. This is called partial function
application, and the style of writing functions in this way is called c#rrying. In the example, this
means if we apply moveRightBy to only a float value, say 3, we obtain a function that takes a
position and transforms it by adding 3 to the horizontal component. We can test this in Haskell
as follows. We can define moveRightByThree as the result of the application moveRightBy 3, and
observe that it is indeed a function of type Pos -> Pos. Note that the let command of the
interpreter extends the definitions currently available; it can also hide previous definitions by
providing a new definition for an already existing name. And the :t command shows the type of
any definition known to the interpreter.

> let moveRightByThree = moveRightBy 3
> :t moveRightByThree
moveRightByThree :: Pos -> Pos

We can also easily convince ourselves that applying moveRightByThree to a position p yields the
same result as the application of moveRightBy to 3 and p. We can test this using concrete positions,
such as home.

> moveRightByThree home
(6.0,4.5)

> moveRightBy 3 home
(6.0,4.5)

We can even let Haskell do the comparison (note that == is the operation for testing the equality
of two values).

> moveRightByThree home == moveRightBy 3 home
True

But maybe this relationship holds only for this particular case. How can we be sure that it
is true for any position and any movement? This is obvious if we substitute the definition of
moveRightByThree.

moveRightByThree p
= moveRightBy 3 p substitute definition of moveRightByThree

Thus we have seen that moveRightBy can be viewed as a parameterized operation on positions:
once it is provided with a specific distance, it turns into an operation that transforms Pos values.

Define the function moveUpBy :: Float -> Pos -> Pos.

It is easy to see that we can use the function moveRightBy also to move to the left by simply
providing a negative number as a first argument. Similarly, we can use moveUpBy to move down.

2In math, the two types Ax B — C and A — B — C are said to be isomorphic.

11

» Control
Structures
Chapter 10

1.2 Multiple Steps through Composing Function Applications

Simple horizontal and vertical movements can be employed as individual steps within larger algo-
rithms, which are obtained through composition of steps. The most simple form of composition
is to execute one step after another. Since the execution of a single step corresponds in Haskell
to the application of a function, such a sequential composition corresponds to the composition
of functions that represent the individual steps. For example, we can express moving 4 units up
followed by moving 3 units to the right by the following expression.

> moveRightBy 3 (moveUpBy 4 home)
(6.0,8.5)

This might be a bit difhicult to parse. In particular, it may seem strange that the second step of
moving right precedes the first one of moving up. We could untangle the expression using a let
expression that defines an intermediate position p.

let p = moveUpBy 4 home
in moveRightBy 3 p

This formulation highlights the fact that the expression moveUp home 4 is computed first and that
its result is a position that is subsequently transformed by moveRight.

This still doesn’t look great. Specifically, it is not what you might expect if you have seen
algorithmic notation or programs that operate by assuming the modification of some underlying
state. The reason for the more clumsy seeming notation is that functional programming lan-
guages such as Haskell make the values that are subject to transformation explicit. Specifically, if
the transformation affects an underlying state, the state representation has to be passed explicitly
into functions as arguments and returned from functions as results, and this is what shows up in
the notation. Other language approaches leave state arguments implicit, which leads to a simpler
notation. The advantage of explicit state arguments and results is that it facilitates the reasoning
about programs. There are several ways to address the notational inconvenience, but this would
be a distraction from the goal of this section, and it ultimately doesn’t affect the formulations of
algorithms too much anyway.

Define the function moveBy :: Float -> Float -> Pos -> Pos that takes two Float values and a
position and returns the position obtained by moving horizontally (as indicated by the first Float) and
vertically (as indicated by the second Float).

Instead of moving a certain distance from a given position, we can also envision movements
directly to a new position. The following definition captures this idea.

moveTo :: Pos -> Pos -> Pos
moveTo p _ = p

The first argument p represents the new position to move to, which is also the result of the
function moveTo, no matter what the second Pos value is (which represent the current position).
The definition uses an underscore instead of a name for the second parameter to indicate that it
is not used in the definition."’

1We can use a name for the second parameter, but the use of the underscore emphasizes the fact that the second
parameter is not used in the definition.

12

> Lists
Chapter 4

With the function moveTo we can move to a specific position. The idea is to use this function
in the pebble-tracing algorithm to repeatedly move to the next visible pebble on the path home.
To realize this idea we need to answer several questions.

® How do we represent the pebbles dropped by Hansel?

* How do we identify the next visible pebble?

® How do we express the repeated application of a function?

* How do we represent the movement of Hansel and Gretel from one pebble to the next?

1.3 Representing Collections with Lists

To start with the first question, a collection of pebbles can be represented in several different
ways. A straightforward approach is to use a list data structure. In Haskell, a list can be simply
written down by listing all of its elements. For example, we can define the following list that
contains three positions.

pebbles :: [Pos]
pebbles = [(9.0,8.0), (6.0,8.5), homel

Note the type declaration in the first line: it says that pebbles is a list of positions. For any type
T, the type [T] denotes the type of lists that contain elements of type T. Note that lists in Haskell
are homogeneous, that is, all elements in the list have to have the same type.

In addition to listing all elements at once, we can also build lists incrementally by adding
elements at the front of an existing list, which is done with the so-called cons operator : as
follows:

> (11.0,9.5) :pebbles
[(11.0,9.5),(9.0,8.0),(6.0,8.5),(3.0,4.5)]
> pebbles

[(9.0,8.0),(6.0,8.5),(3.0,4.5)]

Note how home has been replaced by its definition and that the spaces after the commas have been
removed: it doesn’t matter how exactly we denote values; the Haskell interpreter uses an internal
representation and prints values in a normalized way.

Exercise 8

Define the value pebbles using only the cons operator :. (Hint: You have to start with the empty list,
which is written as [].)

As the reevaluation of pebbles shows, the expression (11.0,9.5) :pebbles constructs a new list
but does not change the existing definition of pebbles. If we wanted to add the new coordinate
to the list pebbles we have to add it to the definition in the program or define a new value in the
interpreter using the let command of the interpreter.

> let morePebbles = (11.0,9.5) :pebbles
> morePebbles
[(11.0,9.5),(9.0,8.0),(6.0,8.5),(3.0,4.5)]

Lists can be inspected and decomposed in many different ways. The function head computes
a list’s first element, and the fucntion tail computes the list obtained by removing the first
element.

13

> head pebbles
(9.0,8.0)

> tail pebbles
[(6.0,8.5),(3.0,4.5)]

The function reverse reverses the order of elements in a list, and ++ appends two list.

> reverse pebbles

[(3.0,4.5),(6.0,8.5),(9.0,8.0)]

> pebbles ++ pebbles
[¢(9.0,8.0),(6.0,8.5),(3.0,4.5),(9.0,8.0),(6.0,8.5),(3.0,4.5)]

Of course, we can also compose list functions. For example, we can access the second element of
a list by computing the head of the tail of a list.

> head (tail pebbles)
(6.0,8.5)

But we cannot compute tail (head pebbles), since head pebbles produces a pair of Float
values, whereas tail requires a list as an argument.

Define the function last :: [Pos] -> Pos that computes the last element in a list of positions by
composing the functions head and reverse.

Having chosen lists as a representation for a collection of pebbles, we can now address how to
identify the next pebble. The elements in a list are ordered but not necessarily in the way Hansel
and Gretel would find them during their search. Let us assume for simplicity that Hansel and
Gretel always find the pebble that is closest to their current position. How could we identify that
pebble in the list? Since we do not know a priori which pebble is the closest, we have to traverse
the list and compute the distance between Hansel and Gretel’s position and each pebble and then
pick the one for which this result is smallest.

A function for computing the distance between two positions is obtained by a straightfor-
ward encoding of the formula for the distance between two points in the plane. (Note that
x~2 computes the square of x and that sqrt is the function for computing the square root of a
number.)

distance :: Pos -> Pos -> Float
distance (x1,yl) (x2,y2) = sqrt ((x2-x1)"2 + (y2-y1)~2)

Next we can apply different strategies to identify the closest pebble. Any approach has to traverse
the list and compute for each pebble the distance to Hansel and Gretel’s position. However,
there are different ways to then determine the closest pebble. One approach is to remember
the currently closest pebble and its distance and update this information while traversing the
list. This approach is in the spirit of imperative programming that views computation as state
manipulation. A slightly different approach is to first compute all distances, then find the smallest
one of these, and finally traverse the list again to find the position whose distance is equal to the
minimum distance. In the following, I will describe this approach, since it reflects the style of
functional programming that emphasizes the composition of functions and values.

14

» Recursion
Chapter 12

1.4 Different Ways to Transform Lists

Functional programming offers several different high-level operations to transform lists (and
other collections). One is offered by the function map that applies a function to all elements
in a list. For example, we can increment all numbers in a list by 1 by applying the function succ
for computing successors of integers to all the elements in the list.

> map succ [3,4,5,6]
[4,5,6,7]

Or we can compute the distances of all pebbles to a position, say (3,2.5) by applying the func-
tion distance (3,2.5)'* to all elements in the list pebbles.’®

> map (distance (3,2.5)) pebbles
[8.13941,6.708204,2.0]

Haskell provides a special syntax, called list comprebensions, that can make applications of map
more convenient and can simplify the combination with other computations.

> [distance (3,2.5) p | p <- pebbles]
[8.13941,6.708204,2.0]

The expression can be read as follows: “For each position p taken from the list ps, compute
distance (3,2.5) p.” All the results are collected in a list that is the result of the expression.
(List comprehensions offer a number of additional features, some of which we will employ soon.)

The other major approach for processing lists is called folding, which is repeatedly combining
two elements from a list into one element. This process combines the values in a list to a single
value.’® A simple example of list folding is the definition of the function smallest for computing
the smallest number in a list that uses the predefined Haskell function min to compute the smaller
of two elements.

smallest :: [Float] -> Float
smallest [x] = x
smallest (x:xs) = min x (smallest xs)

The definition considers two cases: First, when the list contains only a single element, that
element is the list’s smallest element. Second, in the general case, when the list is not empty,
the smallest element is the smaller of the first element x and the smallest of the elements in the
remaining list xs.

The second case illustrates an important feature of computing: the use of recursion. In a
recursive function definition the name of the function being defined is used in its own definition.
This happens here with smallest. The meaning in this case should be clear: in order to compute
the smallest element of a list, we can compute the smallest element of the rest list and then take
the smaller of that result and the first element of the list. An equation of a function definition
that uses recursion is also called a recursive or inductive case of the definition, and an equation
that does not use recursion is called a base case. Note also that the function smallest is undefined
for empty lists, and will produce an error when applied to an empty list (see also box ErRror
HANDLING.)

“Note that we have to put the partial function application in parentheses because otherwise map would try to apply
the function distance to (3,2.5), which is a pair and not a list.

1> Remember that while distance applied to two arguments yields a Float value, distance applied to only its
first argument p yields a function that takes a position and returns the distance to p.

%Folding is also often referred to as aggregation or reduction.

15

ErRrOR HANDLING

This introduction to Haskell mostly ignores the handling of errors in functions, that is, when
functions are undefined for some values of their input types, they will fail with an error message
or, worse, not terminate. It is good software engineering practice to handle errors explicitly to
avoid unexpected behavior and surprising error messages. However, this often complicates the
code and distracts from the core of algorithms.

For example, executing smallest [] will fail with an error message. Errors can be dealt with
by changing the result types of functions to account for erroneous situations, but this requires
that all calls of such functions have to explicitly deal with the two different cases. Since the major
purpose of this introduction is to illustrate computer science concepts, error handling code is
omitted in most cases for clarity.

Define the function myMin :: Float -> Float -> Float for computing the smaller of two Float
values. (The function min is already predefined in Haskell, and the attempt to redefine it would lead to an
error.)

Equipped with the function smallest, we can now define a function for finding the pebble that
is closest to a given position. The function closestTo operates in basically four steps, imple-
menting the strategy outlined before. First, we compute the distance of all pebbles from c,
which represents the current position of Hansel and Gretel. This is done by the list com-
prehension [distance ¢ p | p <- psl], which produces a list of Float values. Second, we
compute the smallest value of this list using the function smallest, and we bind the result to
the variable d using the let-in construct. Third, we compute the list of all pebbles whose
distance to c is exactly the smallest distance d. This is done in a second list comprehension
[p | p <- ps, distance c p == d], which filters out all those p taken from ps that satisfy the
condition distance ¢ p == d. This list comprehension computes a list of potentially several po-
sitions that are all equally close to c. Since we need one position, we select the first of these using
the function head.

closestTo :: Pos -> [Pos] -> Pos
closestTo ¢ ps = let d = smallest [distance ¢ p | p <- ps]
in head [p | p <- ps, distance c p == d]

Now we can find the closest position from a list of pebbles that Hansel and Gretel can move to.
It is not so obvious, however, how to combine the list of pebbles, the function closestTo, and
the function moveTo to describe the movement of Hansel and Gretel along the pebbles in the list.

1.5 Repeating Steps through Recursion

For implementing the pebble-tracing algorithm, it is again instructive to think about the repre-
sentation that the algorithm has to transform. In the following we will consider several attempts
that ultimately lead to the solution.

The most obvious transformation is the movement of Hansel and Gretel from one position to
another. Since the next position is found in the list of pebbles, it seems the input to the function
implementing the algorithm should be a position and a list of pebbles, and the output should be

16

a new position. If we look closely at the type of this function Pos -> [Pos] -> Pos and think of
what it should do, we notice that we already have defined it: it is, in fact, the function closestTo.

Next we have to figure out how to apply this function repeatedly. There are several ways
to do this. In the style of functional programming, we can define a function using recursion,
which we have already encountered in the definition of the function smallest. This definition
has to consider two cases. First, if Hansel and Gretel are already home, the task is finished, and
no further transformation of their position is required. Otherwise, the function should continue
using the position from the pebbles that is closest to the current one.

The following function definition realizes these two cases using a split equation based on the
condition c==home."” The parameter c represents the current position of Hansel and Gretel, home
is the position defined earlier, representing the location of their home, and == tests whether the
two are equal.’®

findHomel :: Pos -> [Pos] -> Pos
findHomel ¢ ps | c==home = home
| otherwise = findHomel (closestTo ¢ ps) ps

The interesting case is the second part of the equation where findHome1 is recursively applied to
the position that is closest to the current position c. The function application closestTo ¢ ps
represents the first step in the algorithm, namely going to the position of the next pebble, and
the recursive application of findHome1 represents the continuation of the algorithm, that is, all
the remaining steps until Hansel and Gretel reach the position represented by home.

The shown definition looks reasonable and seems to make sense. Without reading ahead, can
you spot what’s wrong with it? To see what the problem is, apply the function to a location, say
(10,10).

> findHomel (10,10) pebbles

Surprisingly, this computation does not terminate. (You can abort a computation by pressing
Control+C in the interpreter.)

1.6 'When Computations Don’t Terminate

Instead of just telling you why the definition doesn’t terminate, let’s change the definition of the
function findHome1 so that it reveals more about its behavior and gives us a clue about what’s
going on. The function’s behavior is reflected by the the position it traverses. Therefore, we can
change the definition such that it doesn’t just produce the final position reached, but the list of
all traversed positions. To do this we first have to change the function’s result type to return a
list of positions [Pos]. Then we have to adapt the two return expressions of the split equation to
produce the appropriate lists. In the base case, when we’re already home, the list consists of just
the final position, home, reflected by the return result [home] that represents a list of just that one
position. Otherwise, the list of traversed positions is given by the current position c, followed
by the list of positions from the next position to home, which is computed recursively as before.
The resulting function definition looks as follows: "’

7You may notice that the function definition relies on the position home to be part of the list ps. We will relax this
assumption in exercise 13.

"¥The chosen name for the function findHome1 indicates that this is only the first version; we encounter several
alternative definitions in the following.

YThe T appended to the name stands for “trace,” indicating that the function computes a trace of positions.

17

findHomelT :: Pos -> [Pos] -> [Pos]
findHomelT ¢ ps | c==home [home]
| otherwise = c:findHomelT (closestTo c ps) ps

We can apply findHomelT to compute a list of positions.

> findHomelT (10,10) pebbles
[(10.0,10.0),(9.0,8.0),(9.0,8.0),(9.0,8.0),(9.0,8.0),

Like findHome1, this function will not terminate and quickly fill the screen. To see only the
beginning of the list, we can select its first seven elements using the built-in Haskell function
take as follows:

> take 7 (findHomelT (10,10) pebbles)
[(10.0,10.0),(9.0,8.0),(9.0,8.0),(9.0,8.0),(9.0,8.0),(9.0,8.0),(9.0,8.0)]

.. This reveals what the problem is. The function is stuck on the first position in pebbles.*
» Termination

Chapter 11 .
Exercise 11

Termination of an algorithm or program generally depends on the input on which it is run.

(a) Is there a list of pebbles that can we use as a second argument so that findHome1 (and £indHome1T)
will always terminate?

(b) Is there a situation in which the function application of findHomel (or findHomelT) using the list
pebbles does, in fact, terminate?

Why is the program stuck on the first position it finds in pebbles? The answer can be found by
looking at the definition of closestTo, which computes the closest position in the list pebbles
to the current position. Suppose the closest position found in pebbles is p. The function then
computes in the first recursive call closestTo p pebbles. What is the result? Of course, it is p
since the distance from p to itself is always O.

To fix this problem, we can try to amend the definition of findHome1 so that when we com-
pute the closest position to ¢ we disregard the current position. This can be achieved by using a
list comprehension that selects all positions from ps that are different from c.?!

findHome2 :: Pos -> [Pos] -> Pos
findHome2 ¢ ps | c==home = home
| otherwise = findHome2 (closestTo ¢ [p | p <- ps, p/=cl) ps

Unfortunately, this definition still does not terminate, which can be easily verified by trying to
compute findHome2 (10,10) pebbles. Again, to see what’s going on, we can define a tracing
version of this function using the same strategy employed in findHome1T.

findHome2T :: Pos -> [Pos] -> [Pos]
findHome2T c¢ ps | c==home = [home]
| otherwise = c:findHome2T (closestTo c [p | p <- ps, p/=cl]) ps

If we compute the first few elements of the sequence, we can observe a back-and-forth between
two positions.

2Tf you are skeptical and suspect that this is not the case, try to compute longer lists with take 20 or take 100.
2'The condition c/=p is True if ¢ is not equal to p.

18

> take 7 (findHome2T (10,10) pebbles)
[(10.0,10.0),(9.0,8.0),(6.0,8.5),(9.0,8.0),(6.0,8.5),(9.0,8.0),(6.0,8.5)]

The problem arises once the distance to the next pebble is larger than the one from the previous
one, in which case closestTo identifies the previous position as the next.

The solution to this problem is to remove any position moved to from the list of pebbles so
that it can’t be reached again. This implementation amounts to Hansel and Gretel’s picking up
the pebbles as they encounter them.

Removing the elements in ys from xs amounts to computing the difference between two lists
ys and xs, which can be computed using the built-in Haskell function \\. With this function
we can simply remove the current position from the currently remaining list of pebbles by the
expression ps \\ [c]. Note that we have to enclose c in square brackets to turn it into a one-
element list, since \\ requires two lists as argument.

findHome3 :: Pos -> [Pos] -> Pos
findHome3 ¢ ps | c==home = home
| otherwise = findHome3 (closestTo c¢ ps) (ps \\ [c])

The function findHome3 finally accomplishes the goal of computing a path along a set of positions
given by a list based on distance, which can be easily verified by applying findHome3 to different
inputs. And to see the positions traversed by findHome3, one can easily define a tracing version
as done for findHome2 and findHome1.

Does a computation findHome3 c ps always traverse all the positions in ps? Justify your answer.

The program findHome3 assumes the the position of Hansel and Gretel’s home is contained in
the list pebbles, because otherwise it would not be clear how to formulate the condition for the
function to terminate. Such a dependency of an algorithm on its input is bad programming style.
We get rid of this dependency in the following exercise.

Exercise 13

First define the function f£indPath that takes two position parameters, the start and the end position, plus
the parameter for the pebbles and finds the path from the start to the end position.

findPath :: Pos -> Pos -> [Pos] -> Pos
findPath from to ps = ...

Using the function f£indPath, define the function findHome that finds a path from a given start position
to the position home.

findHome :: Pos -> [Pos] -> Pos
findHome ¢ ps = findPath ...

While the function findHome3 correctly computes the path home, its definition contains a minor

19

flaw, which may not be easy to spot.

Exercise 14

Define the function findHome3T analogous to the other two tracing functions, and then execute the
following:

> findHome3T (1,1) [(2,2),(3,3) ,homel

Identify the problem, and then define a function £findHome4T that doesn’t suffer from it.

For simplicity the repeated steps from pebble to pebble that are expressed as a loop in the al-
gorithm are represented in the findHome functions using recursion. The algorithm can also be
expressed as a program that uses a loop, which reflects the original algorithm more closely but is

also a bit more complicated. The relationship between loops and recursion is discussed in sections
22 and ??.

A ZEB 4\ 4
/z\ /!\ /z\

In this section we have seen how the implementation of an algorithm requires the careful design
of the underlying representation that it is transforming. This is done through the definition of
types, which guide the function definitions. I discuss representations in more detail in sections
3 and 4. First, however, we consider in the next section the question of runtime and space
requirements of computation.

2 Walk the Walk: When Computation Really Happens

The previous section is focused on how to implement an algorithm in Haskell, which involves
the identification of the appropriate representation and the definition of a function that correctly
maps any possible input to the desired output. We have seen that this is not always an easy task.
A particular challenge is to not make any unwarranted assumptions.

In addition to correctness, another critical aspect of computation is its cost. Any algorithm
or program requires time to execute and space to store the manipulated representations. While a
program that computes incorrect results is of limited use (or might be even dangerous), a program
that is correct but takes too long to execute or requires resources beyond what is available is also
effectively useless.

Chapter 2 of the book illustrates how the use of parameters facilitate the description of algo-
rithms that work for different inputs. This aspect has already been covered and thus doesn’t need
to be explained again. In addition, Chapter 2 discusses the resource requirements of algorithms,
and this section provides code examples to illustrate this aspect.

2.1 How to Measure Runtime

Typically, the runtime of an algorithm is measured as a function of the size of its input. Abstract-
ing from different inputs and expressing the runtime as dependent on the input ensures that the
runtime information characterizes the algorithm performance for arbitrary inputs and not for a
particular one.

Determining the runtime of an algorithm is not a programming but an analytical activity,
which means that we apply mat to figure out the runtime of an algorithm instead of writing

20

Chapter2.hs

a program. Still we can support this activity by transforming programs that work on values
representing the problem domain so that they count the number of steps they take. This doesn’t
mean that we can compute the runtime of programs, it only means that we can compute sample
values that provide hints about a program’s complexity.

To illustrate this idea, let’s consider again the definition of the function smallest (see also

page 15).

smallest :: [Float] -> Float
smallest [x] = x
smallest (x:xs) = min x (smallest xs)

There are two possibilities to change this definition so that it counts the steps that the function
performs. First, we could try to add the computation of steps to the computation of values. This
means that the return type of the function becomes a pair of the result and the number of steps.
If we represent the number of steps with integer values, this approach leads to the following type
and base case:

smallestS :: [Float] -> (Float,Int) -- unnecessarily complicated
smallestS [x] = (x,1)

We call the function smallestS to indicate that it (also) computes the number of steps. While
this works well so far, the definition for the inductive case is complicated by the fact that the
recursive call to smallestS now produces a pair of values, which have to be extracted from the
pair to facilitate the two computations of values and steps to proceed.

A simpler approach is to ignore the computation of the original values altogether and only
compute the number of steps, which is appropriate because we already have the function smallest
to compute the values. This means that the result type of smallestS should be simply Int. But
what about the type of the input? While smallest works on lists, the goal of smallestS is to
report the number of steps the algorithm takes dependent on the size of the input, that is, the
length of the list. Therefore, the input to smallests should be also an integer representing the
length of the input list. To express the purpose of smallestS more clearly in its type, we use the
following two type definitions.

type Size = Int
type Steps Int

The definition of the function smallestS must now compute the number of steps the function
smallest takes for a list of a given length. We have already seen that the smallest element of a
list containing just one element can be computed in one step, since we can simply return the list
element as a result. For a list of 7 elements the definition of smallest first recursively computes
the smallest element of the tail of the list, which contains 7 — 1 elements, and then determines
the smaller of that element and the first element of the list. The number of steps required by the
recursive computation can be computed, also recursively, by smallests, since this is a function
that determines the number of steps smallest takes for a length of some size. The computation
of the minimum takes one step. Altogether, this leads to the following definition.

smallestS :: Size -> Steps

smallestS 1 =1
smallestS n = 1 + smallestS (n-1)

21

With smallestS we can now compute the number of steps for different lengths as follows.

> smallestS 7
7
> smallestS 99
99

Since the runtime of an algorithm is a function relating input size to number of steps, applying
smallestS to individual values is not very useful. To get a more comprehensive picture of the
runtime, we should apply the function to large range of values. We can use the map function to
do this together with a special Haskell syntax that allows us to construct a list of values by giving
a range.

> map smallestS [1..25]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25]

This indicates that smallestS behaves like the identity function and that the number of steps
that smallest needs is proportional to the length of the input list. This behavior is called linear,
and smallest is said to have linear runtime. We sometimes also say that smallest is a linear
algorithm. Of course, looking at a limited number of examples is not a proof that the runtime of
smallest is linear; it only suggests this fact.

Note that ignoring the values of lists and not distinguishing between lists of the same length,
effectively considering them the same by representing them by their length, is a form of abstrac-
tion. This means that functions that share the same structure have the same runtime (if the
individual steps have the same runtime). Therefore, if we consider a function largest that can
be obtained from smallest by replacing min with max, we can see that it also has linear runtime,
since the definition of a step counting function largestS would be identical to smallests.

Exercise 15

Consider the following definition of the function snoc that add an integer at the end of an integer list:

» Abstraction
Chapter 15

snoc :: Int -> [Int] -> [Int]
snoc x [] = [x]
snoc x (y:ys) = y:snoc x ys

It consists of two cases: the base case says that adding an element to the empty list is a list of just the
element to be added. Adding an element to a non-empty list works by adding the element to the tail of
the list and putting the head of the list in front of the result. By recursively applying snoc to smaller and
smaller lists, we eventually reach the base case of the empty list.

Define the function snocS to count the number of steps that snoc takes for adding an element to a list of
n elements. Note that snocS should have the following type:

snocS :: Size -> Steps

The reason for ignoring the (size of the) first argument is that it does not affect the result. Note that adding
an element at the front of a list with : takes one step.

Linear runtime is only one possible behavior. In the remainder of this section we look at a few
other code examples and their runtime behavior.

22

2.2 Constant Runtime

An algorithm has constant runtime if it always requires a constant number of steps, irrespective
of the input. In other words, the number of steps the algorithm takes does not depend on the
size of the input. In such cases we also talk of a constant-time algorithm.

Examples are all the functions discussed in the introductory section, for example, wakeUp and
positive. Also, the functions moveRightBy, moveTo, and min take only a constant number of
steps. Whether an operation has constant runtime depends on the abilities of the computer to
execute algorithms. For example, it is a fair assumption that today’s PCs and laptops can multiply
integers in constant time. However, that assumption is generally not true for humans: the larger
the two numbers, the longer it usually takes to multiply them.

In the case of Haskell, we can assume for simplicity in the following that any function that
does not employ recursion (either directly or indirectly by calling other recursively defined func-
tions) has constant runtime. Thus we consider functions that perform computations with num-
bers and also simple list functions, such as head and tail, to run in constant time. Moreover, any
(non-recursive) combination of constant-time functions results in a constant-time function.

2.3 Linear Runtime

An algorithm has linear runtime if the number of steps it takes grows proportionally with the
input. For example, an algorithm will take roughly twice as long to process input that is twice
as large. Many algorithms on lists have linear runtime (or worse). As one example we have
already seen the function smallest. As a more complex example, let’s consider the definition of
closestTo (see also page 16).

closestTo :: Pos -> [Pos] -> Pos
closestTo ¢ ps = let d = smallest [distance ¢ p | p <- ps]
in head [p | p <- ps, distance c p == d]

We observe that the computation happens in three phases: first, a list comprehension maps the
argument list of positions into a list of Float values that represent the distance from the parameter
c. This takes as many steps as the list contains elements, that is, linear time with respect to the size
of the list (assuming that the function distance is a constant-time function). Then the function
smallest is applied to this list. As we have seen, this also takes linear time. Finally, another list
comprehension filters out of the argument list all those positions whose distance is equal to the
smallest distance, which again takes linear time. The application of the constant-time function
head does not change the linear-time behavior.

We can capture this analysis in the definition of a function closestToS that works similar to
smallestS. We ignore the first argument, since it doesn’t contribute to the runtime and otherwise
replace expressions with expressions that reflect their runtime. For example, we replace both list
comprehensions by n, since n is the size of the input list and the list comprehensions are linear
in that size, and the application of head is replaced by adding one step. We also pass n as an
argument to smallestS to count the steps for this part of the computation, and we have to add
the number of steps s to the final result to make sure that all the steps in the let expression are
properly counted.??

closestToS :: Size -> Steps
closestToS n = let s = smallestS n + n
inl1 +n + s

#Note that smallestS n + n = (smallestS n) + n because function application has a higher precedence than
binary operations.

23

We can now compute the result of closestToS yields for different input sizes.

> map closestToS [1..25]
(4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76]

Here the relationship is not as obvious as in the case for smallestS. We could create a graphical
plot of the values, which would show that the relationship between input and output is indeed
linear.

Instead of graphing the result or otherwise speculating about the exact relationship, we can
also simplify the function definition, which will reveal the linear relationship.” First, since
we have observed that smallests is the identity function, we can substitute smallestS n by
n. Second, we can substitute the variable s by its definition, which after the simplification of
smallestS n has becomen + n. We obtain the following intermediate result.

closestToS :: Size -> Steps
closestToS n = let s =n +n
inl1+n+ (n+ n)

Finally, we can remove the let expression, since the variable s is not used in the result, and we
can simplify the addition of the three ns.

closestToS :: Size -> Steps
closestToS n = 3*n + 1

This definition clearly reveals the linear relationship between the input size and number of steps.

Exercise 16

Consider the following definition of the function sndSmallest that works by computing the smallest
element of a list from which the smallest element has been removed. (Note that the function definition
works only for list of two or more elements.)

sndSmallest :: [Float] -> Float
sndSmallest xs = smallest (xs \\ [smallest xs])

Define the function sndSmallestS for counting the number of steps that sndSmallest takes for a list of
n elements and simplify it so that it reveals the functional relationship between input size and number of
steps.

2.4 Quadratic Runtime

If finding the next pebble is a constant-time operation, it takes Hansel and Gretel linear time in
the number of pebbles to find their way back home. The assumption that the next pebble can
always be found in constant time may or may not be warranted—it all depends on how densely
Hansel has dropped the pebbles and thus how easy it is for Hansel and Gretel to find the next
pebble in each step.

The different version of the findHome function do not make any assumption about the order
of the pebble locations in their list argument. Therefore, the closest pebble always has to be
identified with the function closestTo. Since closestTo is a linear algorithm that is executed 7

ZHere we make use of the nice property of functional programming that we can always substitute equals for equals.

24

times for a list containing 7 pebbles, we suspect that findHome is a quadratic algorithm.?* In most
cases this level of analysis is sufficient to understand the runtime behavior of a function. But we
can also derive a function for counting the steps as we did for other functions. Concretely, let’s
take the final definition of the function findHome, developed as a solution for exercise 14.

findHome :: Pos -> [Pos] -> [Pos]
findHome ¢ ps | c==home = [home]
| otherwise = let gs=ps \\ [c]
in c:findHome (closestTo c gs) gs

In developing the corresponding step-counting function findHomeS we again first ignore the Pos
argument (since it doesn’t affect the runtime), change the argument list to a Size value, and
the result type to Steps. Without the first Pos argument, we have to change the condition that
distinguishes the base case and the inductive case. Specifically, we have to base the condition on
the newly introduced Size value. For this application, it is reasonable to assume that the position
that equals home will be found last, which means it will be found if the argument list is of size 1.
In that case, the resulting list of findHome can be constructed in one step. Otherwise, we have to
remove an element from a list, which takes linear time (n), compute closestTo for a list of 7 — 1
elements, which takes time closestToS (n-1), then recursively compute findHome on the same
list of 7 — 1 elements, which takes time findHomeS (n-1), and finally add c at the front of the list
for one additional step. Altogether this leads to the following definition:

findHomeS :: Size -> Steps
findHomeS 1 = 1
findHomeS n = n + closestToS (n-1) + findHomeS (n-1) + 1

Computing example values confirms that the runtime of the function is not linear, but the exact
relationship is not easy to see.

> map findHomeS [1..20]
[1,8,19,34,53,76,103,134,169,208,251,298,349,404,463,526,593,664,739,818]

It turns out, however, that the recursive definition of findHomeS is equivalent to the following
definition:

findHomeS :: Size -> Steps
findHomeS n = 2*n~2 + n - 2

This confirms that the findHome is a quadratic algorithm.

More information on runtime (quadratic and others), including exercises, follows in sections
7 d??
5, 22, and 22.

3 The Mystery of Signs

Whenever an algorithm is executed, the resulting computation solves a problem if the represen-
tation is chosen properly, that is, if the symbols that are manipulated by an algorithm stand for
something meaningful in the world. This means a computation becomes meaningful only if the

#*Even though closestTo is applied to shorter and shorter lists, it is on average applied to a list of length 7/2, and
n/2 X n is still quadratic. More precisely, closestTo is applied to lists of lengths 7, » — 1, ..., 1, which means the
total number of steps is proportional to the sum of the first 7 numbers, which is quadratic in 7.

25

results are interpreted by someone. It therefore follows that the same computation can have dif-
ferent meanings under different interpretations and that the question of whether the computation
solves a problem is dependent on such an interpretation.

This aspect can be nicely demonstrated by different number systems. In everyday life we are
used to working with decimal numbers, which are sequences of one or more digits in the range
o to 9. In contrast, a binary number is a sequence of digits that are all either o or 1. In Haskell
the type Int consists of decimal numbers. We can also create our own representation by using
lists to reveal the structure of numbers. Specifically, we can define the following type for positive

Chapter3.hs decimal numbers:

type Digit Int
type Decimal = [Digit]

The idea is that each digit of a number is represented by a separate list element. With this type

we could represent the number 237, for example, by the list [2,3,7], which preserves the order

of digits. This representation is not without problems, because the type Dec contains values,

such as [5,31] or [-3,-5], that do not follow the rules of using only single digits and thus do

not represent a decimal number according to the intended representation. We can, of course,

implement functions to check whether a Dec value represents a proper decimal number and use
Chapter3s.hs those functions to ensure the correctness of the representation wherever needed.

Exercise 17

Define the following two functions that test whether an integer is a digit and whether a Decimal value is
a proper representation of a decimal number. (See also exercises 4 and 5.)

isDigit :: Digit -> Bool
isDecimal :: Decimal -> Bool

Note that the definition of the function isDecimal should contain two base cases: one for the empty list
and one for a list of one digit.

Capturing a representation in Haskell means to identify rwo types: one type T of values that are
to be represented, and one type R of values that do the representing. In other words, R values
represent T values. In the terminology of semiotics the represented type T contains the signifieds,
and the representing type R contains the signifiers. For the decimal number representation, R =
Decimal and T = Int, that is, Decimal is the type for representing Int. For example, the value
[2,3,7] is a signifier for the signified 237.

One way to capture the relationship between the two types of a representation is to define by
two functions rFromT and rToT, which have the following types.

rFromT :: T -> R
rToT :: R ->T

These two functions should satisfy the following equation for all values t of type T:
rToT (rFromT t) =t

This means that converting a value to its representation and then converting it back should yield
the original value.”” We may also want to have a similar relationship for R values. However,

« »

2In Haskell we can form the composition of two functions using the operator “.” so that we can express this
requirement also concisely as an equation between functions: rToT . rFromT = id where id is the identity function.

26

as we have seen, the representation type is sometimes “too big” and contains values that do not
represent any T value. We could restrict a corresponding equation to only valid R values.

validR r => rFromT (rToT r) = r

Alternatively, we could rely on the implementation of the fromT function to only produce valid
representations and write instead:

rFromT (xToT (rFromT t)) = rFromT t

To illustrate these ideas, let us define the two functions for the decimal representation of integers.
First, here is the function definition for converting a positive integer to a Decimal value. The base
case applies to integer values that are single digits and results in a list of that integer. We can use
the function isDigit defined in exercise 17 to implement this test. The inductive case splits the
integer argument by dividing it by 10 into a front part and last digit, extracting the last digit using
the modulus function mod and the number without its last digit using integer division div. For
example, div 237 10 = 23 and mod 237 10 = 7. (Note that the backquotes allow us to write
any binary operation as an infix operator, that is, we can write div 237 10 as 237 ‘div‘ 10.)
The front part can be transformed into a list by recursively calling fromInt, and the last digit is
then appended to this list.

decFromInt :: Int -> Decimal
decFromInt i | isDigit i = [i]
| i>9 = decFromInt (i ‘div‘ 10) ++ [i ‘mod‘ 10]

This function behaves as intended.

> decFromInt 237
[2,3,7]

The idea for conversion in the other direction, from Decimal back to Int, is to multiply each digit
with a power of 10, corresponding to its position in the list and then add all these numbers. For
example, [2,3,7] should result in the computation of 102 x2+ 10! x3 + 10°%x7 = 200+30+7. In
the definition of the function decToInt the base case for a single-digit list needs no computation
at all. For longer lists, the exponent is determined by number of remaining digits, which is the
same as the length of the tail of the digit list.

decToInt :: Decimal -> Int

decToInt [d] =d
decToInt (d:ds) = 10~ (length ds)*d + decTolInt ds

We can now test the two functions on a range of examples using the above-mentioned equation
that requires the two functions be inverses of each other.

> map (decToInt.decFromInt) [0,1,9,13,99,100,101,9999]
[0,1,9,13,99,100,101,9999]

27

Exercise 18

Following the example of Decimal, define the types Bit and Binary for representing integers using list of
Os and 1s. Then define functions to test whether an integer is a bit and whether a Binary value is a proper
representation of a binary number.

isBit :: Bit -> Bool
isBinary :: Binary -> Bool

Then define the following representation functions.

binFromInt :: Int -> Binary
binToInt :: Binary -> Int

Note that the definition of these two functions can be mechanically obtained by exchanging the base 10 of
the decimal representation by a base 2 for the binary representation.

What have we achieved by defining a (decimal or binary) number representation? We can now
implement operations on numbers based on that representation, that is, operation on the type of
represented values T can be realized using values of the T representation. To illustrate, consider the
case of multiplying a decimal number 7 by 10. We all know that this is achieved by appending a 0
at the end of »’s digits. Adding a 0 at the end of a list of numbers can be done using the following

function addZero.?®

addZero :: Decimal -> Decimal
addZero is = is ++ [0]

We now expect that applying addZero to a decimal representation results in a representation of
an integer 10 times as big. In other words, given an integer n, obtaining its decimal representation
using fromInt, applying addZero to it, and turning it back into an integer with toInt should
result in the integer 10%n. We can test this proposition using a number of examples.?”’

> map (decTolInt.addZero.decFromInt) [0,1,9,13,99,100,101,9999]
[0,10,90,130,990,1000,1010,99990]

Similarly, adding a zero to the binary representation means to multiply the represented number
by 2, a fact easily confirmed by using the binary representation functions.

> map (binToInt.addZero.binFromInt) [0,1,9,13,99,100,101,9999]
[0,2,18,26,198,200,202,19998]

These examples demonstrate how we can compute with numbers by manipulating the values of
the representing type. (The same principles apply to the geometric computation of V2 that is
explained in the Introduction of the book.)

% Actually, we could also simply use the expression (++ [0]), which fixes the second argument of the ++ function
and turns it into a function to add the list [0] to any list of numbers it is applied to.

#Note that an application of a composed function (f.g.h) x is the same as applying the functions individually as
in (f (g (h x)). Function composition allows us to pass the function directly as an argument to map. Without it
we had to first define an auxiliary function.

28

Chapter4.hs

We can now implement all kinds of arithmetic functions on decimal and binary representa-
tions. Here is one simple example as an exercise.

Exercise 19

Define a function for division by 10 (without rest) for the decimal representation.
div10 :: Decimal -> Decimal
The function should behave as follows.

> map (decToInt.div10.decFromInt) [0,1,9,13,99,100,101,9999]
[0,0,0,1,9,10,10,999]

4 Detective’s Notebook: Accessory after the Fact

This section explores the relationship between data structures and data types. We have already
seen how lists provide a concrete representation for maintaining collections of elements. Lists are
an example of a data structure. In section 4.1 I discuss more examples of lists and list functions,
which allows the comparison of lists to two other important data structures, arrays and trees,
covered in sections 4.2 and 4.3, respectively.

Different data structures represent information differently and therefore have different strengths
and weakness with respect to different computation tasks. Such tasks are defined by an applica-
tion that employs data structures to represent the information needed by the application. Specific
requirements for data transformations are captured in a data type. A data type (at minimum) lists
the operations together with their types. Only few languages allow the specification of the prop-
erties of the operations, but like most other programming languages, Haskell doesn’t support
this aspect of data types. In Haskell a data type is specified using a so-called type class. The name
“type class” suggests that a type class usually stands for a collection of types, namely for all types
that implement the operations of that class.?

We will explore the set, stack, and queue data types in sections 4.4 through 4.7. Specifically, I
will illustrate in section 4.4 how we can implement one data type with different data structures.

4.1 More on Lists

We have already used lists extensively. The standard lists provided by Haskell are so-called singly-
linked lists, in which each element has a pointer to the next element in the list,”” and a list
is identified by a pointer to its first element. We have seen that we can build lists by adding
elements at the beginning of a list using the cons operator : or by listing all elements enclosed
in square brackets and separated by commas. Here is a list of three suspects from the Sherlock
Holmes adventure The Hound of the Baskervilles.

suspects :: [String]
suspects = ["Mortimer","Beryl","Selden"]

The Haskell list type as well as the type Bool are two examples of types that can be introduced
by a data definition.”® A data definition introduces constructors that have a unique name and

2In other languages, the concept of a type class is often called an interface.

#Doubly-linked lists also have pointers to preceding elements and can be traversed in both directions.

*°In Haskell, these types are actually called data rypes, which should not be confused with the concept of data type
used in the book and in this document, which is often called abstract data rype to distinguish the two.

29

that may carry additional information. One of the simplest data definitions is the type for repre-
senting boolean values.

data Bool = False | True

It consists of two constructors that don’t carry any additional information. The type Bool has
just two values, False and True. Constructors that carry additional information are used to
build data structures. The list type is a good example. The Haskell built-in lists offers a special
syntax and are also polymorphic, which means that we can create and manipulate lists of integers,
people, pairs, and so on Ignoring these two aspects, we can define a simple type of integer lists as
follows.

data List = Empty | Cons Int List

The type List has two constructors. The first constructor, Empty, represents an empty list. Just
as True, this is a constructor that is a constant value that stands for itself and carries no further
information. The second constructor, Cons, has two arguments, an integer x and a list xs, and
represents a list whose first element is x and whose tail is xs. The list [1,2,3] (which is just a
more convenient way of writing 1:2:3: [1) can be represented as a value of type List as follows:

Cons 2 (Cons 2 (Cons 3 Empty))

We could also define a list type for storing strings by simply changing the first argument type of
the Cons constructor.

data List = Empty | Cons String List

Unfortunately, since function, type, and constructor names must be unambiguous, we cannot
use both definitions at the same time. By parameterizing the data definition we can make the list
data structure polymorphic, that is, we can have one type of lists that can store integers or strings
or any other type of information. The list type name is extended by a type parameter a, which
is substituted by the type of elements when a list is built.

data List a = Empty | Cons a (List a)

With this definition of lists, we can represent integer lists as well as string lists or any other
lists. But note that within one list, all elements must be of the same type type. The purpose
of the previous example is to illustrate how data structures can be defined using Haskell’s data
definitions. In the following we continue to use the built-in lists of Haskell.

The elements of the list suspects are so-called strings, which are sequences of characters
enclosed in double quotes. String values stand for themselves, unlike names, which are sequences
of characters without quotes that are defined in Haskell programs and denote values, functions,
or types. Using strings is a good idea whenever the names or text to be manipulated is not clear
in advance. In this case, strings provide the flexibility that is needed to form arbitrary sequences
of characters. On the other hand, using strings prevents the use of some data structures. In
particular, strings cannot be used as indexes for an array. Since I want to illustrate in section 4.4
two implementations of the set data type by lists and arrays, I introduce the names of suspects
here using a an enumeration type.

data People = Mortimer | Desmond | Jack | Beryl | Selden
deriving (Eq,0Ord,Show,Ix)

30

The shown form of a data definition is similar to the type Bool. The deriving clause makes sure
these values can be compared for equality (Eq), can be ordered, that is, compared with < (0rd),
printed (Show), and used as index values for an array (Ix).

With these newly introduced constructors, we can define a list of suspects as a list of People
values as follows.”

suspectsL :: [People]
suspectsL = [Mortimer,Beryl,Selden]

Note that we can only use names that have been declared as constructors of the People type,
whereas with strings we can use any name we like.

A consequence of the singly-linked list representation is that a list is always accessed via its
first element and has to be traversed element by element, front to back, which causes many list
operations to have linear runtime. Consider, for example, the task to find an element in a list,
implemented by the following function find.

find :: People -> [People] -> Bool
find _ [] False
find y (x:xs) | x==y = True

| otherwise = find y xs

We can use the find function to determine if a specific name is a suspect.

> find Selden suspectsL
True

> find Jack suspectsL
False

The runtime of find depends on the position of the sought element in the list. In the worst case,
when the element appears at the end of the list or isn’t contained in the list at all, the list has to
be traversed completely. Similarly, looking up an element that is stored at a particular position
in the list takes time proportional to the position and thus is also linear in the worst case. A
widely used convention is that list positions are numbered starting with 0.’ Since this is rather
counter-intuitive, I start numbering lists element with 1.

index :: Int -> [String] -> String
index 1 (x:x8) = x
index n (x:xs) = index (n-1) xs

In the book I have compared a list to a ring binder into which pages can be inserted and from
which pages can be removed. Correspondingly, we can define functions to insert and remove
elements into/from a list. Inserting at the beginning of a list can easily be done using the cons
operator : that we have used before. Inserting an element at a particular position requires travers-
ing the list to find the position.

insertAt :: String -> Int -> [String] -> [String]
insertAt y 1 xs = y:Xs
insertAt y n (x:xs) = x:insertAt y (n-1) xs

>!'The suffix L after the name indicates that this is the list representation of suspects.
*?Haskell is no exception. It has a predefined infix operation !! that works like index but starts numbering lists
elements at o.

31

Chapter4S.hs

If Sherlock Holmes wants to add Jack as the second member to his list (or ring binder) of suspects,
he can do this as follows.

insert Jack 2 suspects
["Mortimer","Jack","Beryl","Selden"]

Define a function for removing an element from a specific position in a list.

removeAt :: Int -> [People] -> [Peoplel

4.2 Arrays

Unlike lists, arrays have a fixed size and thus cannot grow or shrink, that is, we cannot define
functions insert and remove for arrays. An array is more like a notebook that has a fixed number
of pages. Although the information on each page can be changed, no new pages can be added, and
it is usually assumed that no pages are torn out. Therefore, it does not make much sense to define
a three-element array with the names who are currently suspects if the suspects are expected to
change, since we could not update the array to reflect such a change. Instead, we can define an
array that contains space for each potential suspect, that is, for each element of the type People
and store with it information on whether the person is currently a suspect.

In the following definition, the type says that suspectA is an array that is indexed by values of
type People and that stores in each cell a boolean value. The first argument of the array function
that builds a new array defines the size of the array and the range of its index values. In this
case, the size is 5, and the range includes all element from the type People, from the first to the
last mentioned constructor.”> The second argument is a list of (index, value) pairs that define
the content of the array. Note that the True and False values have been chose so that this array
represents the same people as the list suspectL.

suspectsA :: Array People Bool
suspectsA = array (Mortimer,Selden)
[(Mortimer,True), (Desmond,False), (Jack,False), (Beryl,True), (Selden,True)]

We can “find” people in the array by directly looking up the boolean value stored in the cell
indexed by the corresponding name, which is done using the infix operation !.

> suspectsA ! Selden
True

> suspectsA ! Jack
False

Adding Jack as a suspect now requires changing the value of its array cell to True. This is done
using the infix operation //, which takes a list of (index, value) pairs and updates all mentioned
cells accordingly.

*To construct a three-element array with indexes spanning from Desmond to Beryl, you would use the range
(Desmond,Beryl). Note that ranges taken from the index type must be consecutive, thus it is not possible to con-
struct, say, a two-cell array indexed by Jack and Selden.

32

REFERENTIAL TRANSPARENCY

Referential transparency requires that the definition of variable cannot be changed. For example,
a list on which operations are performed still keeps its original value.

> let xs = [1,2,3]
> 99:tail xs
[99,2,3]

> X8

[1,2,3]

Consequently, if we update a data structure, Haskell has to construct a representation that leaves
the old value unchanged if it is bound to a variable such as xs in the example.

For arrays this creates a problem, since no array implementation can update an array cell in
constant time and at the same time leave an old version of the array with constant time access
to its elements. This means that we either have to give up referential transparency to achieve
constant-time array access and updates, or use a less eflicient array implementation that does sup-
port referential transparency. Haskell has chosen the latter path.

> suspectsA // [(Jack,True)]
array (Mortimer,Selden) [(Mortimer,True), (Desmond,False), (Jack,True),
(Beryl,True), (Selden,True)]

Note that the position of people in the array is fixed when an array is built. Specifically, the
ordering is given by the type definition of the index value, here People.

Although Haskell has ample support for arrays, dealing with arrays is complicated by Haskell’s
steadfast commitment to referential transparency (see also box REFERENTIAL TRANSPARENCY),
which means that we can always substitute a variable in an expression by its definition with-
out changing the meaning of the expression. However, this property cannot be supported by
array implementations that provide constant-time access and update of individual array cells.’*
Thus, you should be aware that some of the array update operations that are mentioned in the
following do not have the theoretically possible optimal runtime.

Define a function for removing a person as a suspect in the array representation of suspects.

clear :: People -> Array People Bool -> Array People Bool

4.3 Trees

Trees come in many different shapes and forms. In general, a tree consists of nodes that are
hierarchically arranged. Specifically, a node can have zero or more child nodes, and all but one
node have exactly one parent. The node without a parent is called the tree’s root, and it provides
the entry point to the elements in a tree, just like the first element in a list. A node without
any children is called a leaf of the tree. The following data definition captures this idea. For
simplicity, I have fixed the type of elements to be strings. As in the example of lists, we could
generalize this definition by using a type parameter if it were needed. Also, since we don’t plan

**It actually can be achieved by using monads, but these are beyond the scope of this document.

33

on using the strings stored in a tree as index values for an array, we don’t need a data definition
and can stick with strings instead.

data Tree = Node String [Treel
deriving Show

This definition looks peculiar, since it is on the one hand recursive and on the other hand, unlike
the list type, doesn’t have a base case. But after considering a few examples it becomes clear that
the base case for the employed list type provides the base case for trees as well. For instance, here
is a tree that consists of only one node that has no children.

Node "Hugo" []
The node is root and leaf at the same time. And here is a tree that has one root and two children.

Node "Hugo" [Node "Charles" [], Node "John" []]

Since it is inconvenient having to write the empty list for each leaf in a tree, one might want to
introduce a function for constructing leaves that does that automatically and thus makes expres-
sions for denoting trees easier to write and read.

leaf :: String -> Tree
leaf s = Node s []

Using this auxiliary function leaf the Baskerville family tree can be represented as follows.

baskervilles :: Tree

baskervilles = Node "Hugo" [leaf "Charles",
Node "John" [leaf "Henry"],
Node "Rodger" [leaf "Stapleton"],
leaf "Elizabeth"]

Exercise 22

Define a function single that takes two strings p and ¢ and constructs a tree in which p is the parent of
c. (Note: You may want to reuse the function leaf in your solution.)

single :: String -> String -> Tree

Give a definition of the Tree value baskervilles that uses the function single.

The inheritance order of a family tree is the list of names obtained by traversing the tree from top
to bottom and left to right. Specifically, to compute the inheritance list for a node with parent
p and a list of children cs, we want to (a) compute the inheritance lists for all the children in
cs from left to right, (b) concatenate them into one list, and (c) add p at the beginning of this
list. Step (a) can be accomplished by a list comprehension that applies the function inheritance
to all elements c of cs. For step (b) we employ the function concat that takes a list of lists and
concatenates them all into one list, and step (c) means to cons p in front of the result of (b). This
leads to the following implementation.

inheritance :: Tree -> [String]
inheritance (Node p cs) = p:concat [inheritance c | ¢ <- cs]

With inheritance we can compute the inheritance list for the Bskerville family as follows.

> inheritance baskervilles
["Hugo","Charles","John","Henry","Rodger","Stapleton","Elizabeth"]

34

4.4 The Set Data Type

A very basic data type is that of a ser. A set needs operations to create an empty set, add and
remove elements from a set, and an operation to test whether a value is an element of a set. A
description of the set data type as a Haskell type class looks as follows:

class PeopleSet s where

empty]

isEmpty :: s -> Bool

member :: People -> s -> Bool
insert :: People -> s -> s
remove :: People -> s -> s

This first line of this definition introduces the name of the data type, PeopleSet, and a variable,
s, that stands for the data structures that implement the data type. Each of the following lines
then presents the name of an operation plus its type to create, manipulate, and inspect the data
type. For example, empty is a value that represents an empty set, and member tests whether a given
value of type People is contained in a set of type s.

This set data type is specialized to representing only sets of People, but of course sets can be
used to represent many other kinds of data. Instead of defining a separate data type for each new
element type, we could generalize the definition by using another type variable instead of the type
People in the definition to make it more general. However, this would raise some technical issues
that would distract from the major point of this section, and having a set for representing sets of
People values is sufficient to illustrate the major points about data types and their relationship to
data structures.

A data type also has a set of equations that specify the required behavior of the operations.
For example, we would expect the set operations to have the following properties.’

isEmpty empty == True
isEmpty (insert p s) == False
member p (insert p s) == True
member p (remove p s) == False
remove p (insert p s) == s

However, only few languages support the specification and enforcement of such properties. In
Haskell, one can express such equations as functions that can then be used for automatic testing
by tools such as QuickCheck.

The important aspect of a data type definition is that it does 7ot prescribe any particular
implementation. In fact, most data types can be implemented in a variety of ways. The imple-
mentation of a data type requires a concrete data structure to represent values of the data type
and an implementation for all operations of the data type.

In Haskell the implementation of a data type through a data structure is accomplished by
using a so-called instance declaration. Just as the name “type class” indicates that a data type can
be implemented by many types, the name “instance declaration” indicates that a data structure
that implements the data type is one of these types.

**The variables p and s stand for arbitrary people and set values, respectively.

35

https://hackage.haskell.org/package/QuickCheck

4-4.1 A List Implementation of Sets

In the following definition, the first line says that the type [People] is the data structure hat
implements the data type PeopleSet. The following lines give the definitions for the functions
based on this list representation: an empty set is represented by an empty list, and a set is empty
when its representation is the empty list. The member function requires behavior that is realized
by the function find that we have defined already, and thus we can use it to implement member.
Inserting an element into a set can be done by simply adding it at the front of the list. With this
implementation it might happen that one element is represented multiple times in a list. This is
the reason why the implementation of the function remove must continue to remove elements
from the list even if it has found and removed the element (second to last line). This illustrates
that assumptions about the representation (here that a list might contain multiple copies of a set
element) affects how the functions need to be implemented.

instance PeopleSet [People] where
empty = []
isEmpty ps = ps==[]
member p ps = find p ps
insert p ps = p:ps
remove q [] (]
remove q (p:ps) | p==q = remove q ps
| otherwise = p:remove q ps

Since we have provided an implementation for the data type, we can now use the data type
operations to build and manipulate sets. However, since the operations are elements of a type
class, they can have multiple different implementations. In fact, we will provide another imple-
mentation based on an array representation shortly. Thus, since one name can refer to different
implementations, we have to indicate which implementation we want to use. This can be done

by adding a type annotation of the form “:: T” to an expression. Since we want to select the

implementation based on lists, the annotation must be “:: [People]”.
> insert Beryl (insert Jack empty) :: [People]
[Beryl, Jack]

Without such an annotation Haskell will report an error because it is not clear, which implemen-
tation it should pick.

The shown implementation allows multiple copies of the same element in a list representing
a set, as can be seen in the following example.

> insert Jack (insert Jack empty) :: [People]
[Jack, Jack]

This is not a problem as far as correctness is concerned, since the only queries on sets, isEmpty
and member, are not affected by it and the implementation of remove ensures to remove all copies.
The only problem with this approach is that the list representation may become too large. The
alternative, to store each element at most once, is easy to implement and requires only a change

of the definitions for insert and remove.

Exercise 23

Give definitions for functions insert2 and remove?2 that maintain the invariant that set elements are
represented only once in the list representation and otherwise work like insert and remove.

insert2 :: People -> [People] -> [People]
remove2 :: People -> [People] -> [Peoplel

Specifically, the insert2 should show the following behavior.

> insert2 Jack (insert2 Jack empty)
[Jack]

4.4.2 An Array Implementation of Sets

The array implementation of sets first specifies the type for representing sets, namely Array
People Bool, an array whose index values are the elements of the People type and that stores
boolean values. The following five lines implement the set operations based on the array repre-
sentation: an empty set is given by an array that has a cell for each element of its index type,
People, which is specified by giving the range (Mortimer,Selden) that spans all elements from
the first to the last. Each cell is defined to be False, which means that none of the index values is
an element of the set, exactly what is required of an empty set. The list of (index, value) pairs is
given by a list comprehension (see page 15). The definition of isEmpty is similar to the list case,
member works by looking up the boolean in the element’s cell, and insert and remove change an
element’s cell to True and False, respectively.

instance PeopleSet (Array People Bool) where
empty = array (Mortimer,Selden) [(p,False) | p <- range (Mortimer,Selden)]
isEmpty s = s==empty
member x s = s ! x
insert x s = s // [(x,True)]
remove x s = s // [(x,False)]

We can observe how this implementation works by executing the same examples as for the list
representation.

> insert Beryl (insert Jack empty) :: Array People Bool
array (Mortimer,Selden) [(Mortimer,False), (Desmond,False), (Jack,True),
(Beryl,True), (Selden,False)]

> insert Jack (insert Jack empty) :: Array People Bool
array (Mortimer,Selden) [(Mortimer,False), (Desmond,False), (Jack,True),
(Beryl,False), (Selden,False)]

The array representation is much harder to read than the list representation, since it shows all
y rep P

potential set elements. One can easily define a function to produce a list representation from an

array representation.

asList :: Array People Bool -> [People]
asList a = [p | (p,b) <- assocs a, b]

37

This definition again uses a list comprehension and employs the predefined Haskell function
assocs that extracts from an array the list of all of its (index, value) pairs. Note that the condition
to filter the returned list elements is the variable b, which is a boolean. Thus, only those pairs
are kept whose boolean value is True. Also, using only p (instead of the pair (p,b)) to the left
of the bar means to only include the People index values in the resulting list and not the boolean
values.

Exercise 24

Define a function asArray that transforms a list representation of a set into a corresponding array rep-
resentation of the same set. (Hint: Use a list comprehension and the // operation to update the empty
set.)

asArray :: [People] -> Array People Bool
The function definition should, for example, satisfy the following condition.

> asArray suspectsL == suspectsA
True

Even though we can convert complete set representations from list to array and back, we cannot
mix the different representation, which means that it is impossible to construct a set as a list and
then modify it using the array operations or vice versa.

4.5 The Dictionary Data Type

The dictionary data type is an extension of the set data type that associates additional information
with the elements stored (which are called keys). Dually, a set can be considered a dictionary
whose entries have no information associate with them; the only information about them is
whether or not they are contained in the set.

Whereas fixing the element type for the set data type is sufficient for the examples covered
in the book, the dictionary data type is used with different key types. Since a formalization as a
Haskell type class would require the introduction of too many type system concepts, I will not do
that here. Instead, in section 5, I will present data structures directly to represent a dictionaries.

4.6 The Stack Data Type

A stack realizes the LIFO (last in, first out) behavior for collections, which means that the ele-
ment inserted last, will be retrieved first. In Haskell we define the stack data type, like in the set
example, as a type class. Since the stack data type behaves like a stack of plates in a cafeteria, the
operation for putting a new element onto the stack is called push. The corresponding operation
for removing an element is called pop. And since we can inspect only the topmost element, the
operation to access that element is called top. In the following definition, we use the suflix S in
emptyS and isEmptyS to distinguish the functions from those of the set data type.

class PeopleStack s where

emptyS -

isEmptyS :: s -> Bool

push :: People -> s -> s
top :: s -> People

pop 1t s -> s

The implementation of the stack data type with lists is straightforward.

instance PeopleStack [People] where
emptyS = []
isEmptyS ps = ps==[]
push p ps = p:ps
top (p:ps) =p
pop (p:ps) = ps

It is striking that push, top, and pop are essentially the basic list operations cons (:), head, and
tail. We could emphasize this relationship by writing the implementation in a slightly different
but equivalent way.

push = (:)
top = head
pop = tail

We can use the stack to simulate the seating arrangement in an airplane. Suppose Jack, Beryl,
and Selden sit in the same row so that Selden has a window seat, Beryl has the middle seat, and
Jack has the aisle seat. While they have to take their seats in the order Selden, Beryl, Jack, when
Selden needs to go to the bathroom, first Jack and then Beryl have to get off the row. Only then
can Selden go.

> let row = push Jack (push Beryl (push Selden emptyS)) :: [Peoplel
> row

[Jack,Beryl,Selden]

> top (pop (pop row))

Selden

4.7 The Queue Data Type

A queue is very similar to a stack, the only difference is that elements are added at one end and
removed at the other. Queues realize the FIFO (first in, first out) behavior for collections. The
operations are named differently from the stack operations to reflect the different behavior.

class PeopleQueue q where

emptyQ 1t q

isEmptyQ :: q -> Bool
enqueue :: People -> q -> q
front :: q -> People
dequeue :: q -> q

As with stacks, the implementation of the queue data type with lists is straightforward. In fact,
the only operation that is different is the function enqueue, which adds element at the end of a
list.

instance PeopleQueue [People] where
emptyQ = []
isEmptyQ ps = ps==[]
enqueue p ps = ps ++ [p]
front = head
dequeue = tail

39

We can use a queue to simulate what happens when people stand in line. Suppose after their long
flight Selden, Beryl, and Jack want to get a coffee. Now they will be served in the order in which
they have entered the line, represented by a queue data structure.

> let queue = enqueue Jack (enqueue Beryl (enqueue Selden emptyQ)) :: [Peoplel
> queue

[Selden,Beryl, Jack]

> front queue

Selden

> front (dequeue queue)

Beryl

> front (dequeue (dequeue queue))

Jack

Exercise 25

Suppose two queues have formed at the coffee shop. The barista wants to serve the people in the two
queues by alternating between the two queues. This can be also achieved by merging two queues into one.
Define a function mergeQ which does that. To avoid the need for dealing with type-class constraints in the
type, define the function for the list implementation of queues.

mergeQ :: [People] -> [People] -> [Peoplel

(Hint: You need two base cases to deal with the case that either queue is empty, and the inductive case
applies when both queues are not empty and can contribute an element to the merged queue.)

5 The Search for the Perfect Data Structure

A general pattern for any search is the repeated reduction of the set of locations that can contain
the sought item until it is found. The linear search through a list does this not very efliciently
since in every step the set of locations is reduced only by one, the first element of the list, which
leads to linear runtime for th search algorithm.

.. binary search

Before Indiana Jones crosses the tile floor over an abyss, he has to decide which tiles to jump
onto. Since the code word that indicates the safe tiles exists in different languages, it is not
immediately obvious by which one he should be guided. He can improve his chances of hitting
a safe tile by computing the frequency of the letters that occur in all the possible words and then
pick letters that occur in most words.

A histogram maps elements that occur in some document or other data source to numbers
that indicate their frequency. It is a data structure that is of direct use for Indiana Jones in this
situation. A histogram can be represented by a dictionary (see section 4.5) that has the elements
as keys and their frequencies as the information stored with the keys.

Section 5.1 demonstrates a simple implementation of the histogram using lists. A more ef-
ficient implementation using binary search trees follows in section 5.2. Finally, the trie data
structure that underlies the tile floor is explained in section 35.3.

5.1 Histograms as Lists

A simple implementation represents a histogram as a list of (letter, counter) pairs. Single letters,
or characters, are represented in Haskell by the type Char. We can use the following implemen-
Chapter5.hs tation of a histogram.

40

type Histogram = [(Char,Int)]

To implement a function for increasing the count of a particular character in a histogram, we
have to distinguish two cases. If the character is not contained in the histogram, we add the
character with a count of 1. Otherwise, we increase the current count of the character by 1.
To find the character to be updated in the histogram we traverse the list until we have found it
(second equation) or until we have reached the end of the list (first equation).

update :: Histogram -> Char -> Histogram

update [] c = [(c,D]

update ((k,n):h) c | k==c = (k,n+1):h
|

otherwise = (k,n):update h ¢

To extend a histogram by the count for all the letters in a word we need a function that applies
the function update repeatedly to a histogram using each letter from that word. A word is
represented as a string. In Haskell a string is the same as a list of characters, a fact we can verify
by inquiring the definition of the type String using the :i command of the interpreter.

> :i String
type String = [Char] -- Defined in GHC.Base

This means that the function to update a histogram by all the letters in a word can process
the string as a list of characters. Like for so many list functions, the definition requires the
consideration of two cases. When the string is empty, the histogram remains unchanged. When
the string contains at least one character, we update its count in the histogram and then update
the resulting histogram by the remaining characters of the word.

extendBy :: Histogram -> String -> Histogram
extendBy h [] =h
extendBy h (c:cs) = update h ¢ ‘extendBy‘ cs

Note that I have used infix notation for the recursive function call of the extendBy function. The
expression is equivalent to extendBy (update h c) cs. If we expand the application of extendBy
to a string "aba", we obtain the following expression.

extendBy [] "aba"
= update [] ’a’ ‘extendBy‘ "ba"
= update (update [] ’a’) ’b’ ‘extendBy‘ "a"
= update (update (update [] ’a’) ’b’) ’a’ ‘extendBy‘ ""
= update (update (update [] ’a’) ’b’) ’a’

This recursion pattern of updating a value x repeatedly by a function £ with the elements of a
list [x1,x2,...,xk] is called folding and is captured in an operation foldl, where the 1 stands
for “left” because the list elements are consumed from left to right. The behavior of foldl is
captured by the following equation.

foldl f x [x1,x2,...,xk] =f ... (f (f x x1) x2) ... xk

By using extendBy for £, the histogram to be extended for x, and the word (that is, list of charac-
ters) for the list [x1,x2,...,xk], we can define the extendBy function using the foldl operation
as follows.

41

extendBy :: Histogram -> String -> Histogram
extendBy h s = foldl update h s

We can also observe that a function definition of the form £ x = e x, which defines a function
with a parameter x by applying an expression e to x, is identical to saying that £ is the same as
e. This means the definition can be simplified to £ = e. This line of reasoning can be applied
repeatedly, and a definition £ x y = e x y can be abbreviated to £ = e. Applying this idea to
the definition of extendBy leads to the following, short definition:

extendBy :: Histogram -> String -> Histogram
extendBy = foldl update

Once one has some experience with how folding operations work, one can understand the latter
definition much faster than the recursive one; it simply says that extendBy repeatedly updates a
histogram with the letters taken from a word from left to right.

Indiana Jones can now use extendBy repeatedly to build a histogram of all the words that
could be code words. In a first attempt, this can be done in a series of explicit definitions, naming
intermediate histograms.

hi = [] ‘extendBy‘ "God"

h2 = hl ‘extendBy‘ "Iehova"

h3 = h2 ‘extendBy‘ "Jehova"

h4 = h3 ‘extendBy‘ (nub "Yahweh")
h5 = h4 ‘extendBy‘ "Yehova"

In computing h4 the function nub gets rid of the second h because counting the h twice for one

word would distort the letter count: it would lead to the incorrect conclusion that h occurs in all

five words, which it doesn’t. In general, the function nub removes all duplicate elements from a
Chapter5S.hs list.

Exercise 26

Define a function remDup that removes all duplicate characters from a string but leaves the characters and
their order otherwise unchanged.

remDup :: String -> String
The function should behave as follows:

> remDup "Mississippi"
IIMiSpll

By inspecting the resulting histogram h5 we can observe that letters o, e, h, and a all occur in four
of the five words and are therefore most likely to identify safe tiles.

> hb

[CG”,1),(0%,4),0d”,1),01’,1),(Ce’,4),(°h?,4),(v’,3),(Ca’,4),(J3",1),

42

Instead of scanning the histogram manually, we can define a function that computes the letters
with the highest frequency.

Exercise 27

Define a function maxCount that computes the list of all characters that have the highest count in a his-
togram. The function should also return the count.

maxCount :: Histogram -> (Int,String)

(Hint: Take another look at the function closestTo defined on page 16. The definition of maxCount can
be defined using a very similar structure.)

With maxCount we can determine the safe tile characters automatically.

> maxCount h5
(4,"oeha")

Another aspect of the example that should be automated is the repeated call to extendBy, which
will also eliminate the intermediate histograms. To this end, we can define a function addWords
that repeatedly adds words to a histogram using the function extendBy.

addWords :: Histogram -> [String] -> Histogram
addWords h [] =h
addWords h (w:ws) = h ‘extendBy‘ (nub w) ‘addWords‘ ws

In the definition the function nub is systematically applied to every word that is being used to
extend the histogram because we don’t know whether a word contains duplicate characters. We
can observe that the definition of addWords employs the same recursion schema as extendBy.

Exercise 28

Give an alternative definition for the function addWords using foldl.

With addWords we can compute the final histogram in one step.

h = addWords [] ["God","Iehova","Jehova","Yahweh","Yehova"]

And we can easily verify that the result is the same as before by comparing h with hs.

> h == hb
True

As mentioned, a histogram is essentially a dictionary data type with characters as keys and num-
bers as entries. An important operation on dictionaries is to find entries by keys. This func-
tionality is actually part of the update function that traverses the list and compares the characters
stored in it. Still, if we want to know about the frequency of a specific character, we do not have a
function that can accomplish that. Such a function is not difficult to define, but it raises the issue
of what to return when we are looking for a character that is not contained in the histogram. In
this particular application, returning 0 for non-existing characters works well, but in general, we
want to distinguish elements that are contained in a dictionary from those that are not. This can
be achieved by using the Maybe type, which contains two constructors, one for returning regular
values of some type a and the other for indicating the absence of a value.

43

data Maybe a = Just a | Nothing

When we find a key in a dictionary, we return the information stored with it using the Just
constructor, otherwise we return Nothing. For the list implementation of dictionaries, the pre-
defined lookup function can be used to find information of type b stored with keys of type a.

> :i lookup
lookup :: Eq a => a -> [(a, b)] -> Maybe b -- Defined in GHC.List

The annotation Eq a => means that the function works only for those types a whose elements
can be compared for equality. This is required to allow lookup to compare the key value to be
found with the keys stored in the list. With lookup we can inquire about the frequencies of
individual characters in the histogram.

> lookup ’a’ h
Just 4
> lookup ’z’ h
Nothing

Using the Maybe type is the right thing to do in many situations, but in the case of histograms it
is appropriate to simply return plain integer values and produce o for characters not contained in
the histogram.

Define the function frequency that computes the frequency of a letter in a histogram.

frequency :: Char -> Histogram -> Int

5.2 Histograms as Binary Search Trees

Using lists to implement dictionaries is inefhicient since one always has to search for keys starting
at the beginning of the list. A binary search tree can improve the runtime of operations for keys
that are ordered, such as numbers characters, strings, enumeration types, or a combination of
those. The efficiency gains are due to the fact that a binary search tree can effectively divide the
search space using its keys.

In the type definition for Tree in section 4.3 a node can have an arbitrary number of children.
By contrast, in a binary tree each node has exactly two children. This is reflected in the following
definition in which the Node constructor takes exactly two tree arguments instead of a list of
trees. The concepts of parent, children, and root also apply to binary trees.

The following definition is parameterized by a type parameter a, which means that we can
use this tree type to store information of different types, just like with the built-in list type or the
type List defined in section 4.1.

data Tree a = Node a (Tree a) (Tree a)
| Empty

deriving Show

The deriving Show clause produces an automatically defined function for printing trees, but
this function might not be adequate, because printing a tree of several levels as a linear sequence

44

of nested Node constructors gets quickly unreadable; we will later have to define a customized
function for that.

A binary search tree is a binary tree that has the additional property that all keys in a left
subtree are smaller than the key in the root and all keys in a right subtree are greater than the
key in the root. The type definition does not guarantee this property in any way; it has to be
established through the functions that build or manipulate binary search trees.

Similar to the list representation, a histogram can be represented as a tree of (letter, counter)
pairs. The trailing T in this and the following definitions indicates that they are based on the
binary search tree representation.

type HistogramT = Tree (Char,Int)

Next we need to adapt the histogram-building functions to work with binary search trees. We
need new functions for updating the count for a single character, all the characters of one word,
and the characters for a list of words. As it turns out, the definitions for the last two are almost
identical to their list counterparts. The most interesting function definition is the one for updat-
ing a histogram-representing binary search tree for a single character. Like its list counter part
it has two cases for an empty and non-empty tree, but the case for non-empty trees consists of
three different parts. The case when the character is found in the node is identical to the list case,
but if the character is not in the current node, the function distinguishes between the two cases
when the character is smaller or larger than the one in the node. Correspondingly, the function
continues to update the left or right subtree, respectively.

updateT :: HistogramT -> Char -> HistogramT

updateT Empty c = Node (c,1) Empty Empty
updateT (Node (k,n) 1 r) c | c==k = Node (k,n+1) 1 r
| c<k = Node (k,n) (updateT 1 c) r
| otherwise = Node (k,n) 1 (updateT r c)

This function definition is fine and does what it’s supposed to. However, the definition distin-
guishes between upper- and lowercase letters. In particular, any uppercase letter is considered to
be smaller than any lowercase letter, a fact we can easily verify.

> 277 < 3y’
True

This letter ordering distorts the arrangements of the entries in the binary search tree. For ex-
ample, the binary search tree we expect to get (following the example in the book) for the word
"God" is balanced, and the root (*G’,1) has both a left and right subtree. However, the above
implementation and the predefined letter ordering produces an unbalanced tree. While this is not
a serious problem, it makes it more difficult to follow the example in the book using the code.
This issue can be addressed in different ways. On the one hand, we could use only lowercase
letters in the example. Then the code doesn’t have to be changed at all. On the other hand, we
could change the code so that it ignores the distinction between uppercase and lowercase letters.
We can achieve this by changing a character to lowercase in all comparisons using the predefined
function toLower.

updateT :: HistogramT -> Char -> HistogramT

updateT Empty C

updateT (Node (k,n) 1 r) c | toLower c==toLower k
| toLower c<toLower k
| otherwise

Node (c,1) Empty Empty
Node (k,n+1) 1 r

Node (k,n) (updateT 1 c) r
Node (k,n) 1 (updateT r c)

45

The extendBy function repeatedly calls update for the characters from its string argument. The
corresponding extendByT function has to do the same thing, except that it has to use the updateT
function. Thus, we can reuse the previous definition almost verbatim.

extendByT :: HistogramT -> String -> HistogramT
extendByT = foldl updateT

At this point let’s construct histograms for the words "God" and "Iehova".

t1
t2

Empty ‘extendByT‘ "God"
tl ‘extendByT‘ "Iehova"

Printing the two histograms illustrates the need for an improved printing strategy.

> t1

Node (°G’,1) (Node (’d’,1) Empty Empty) (Node (’0’,1) Empty Empty)

> t2

Node (°G’,1) (Node (°d’,1) (Node (’a’,1) Empty Empty) (Node (’e’,1) Empty
Empty)) (Node (’0’,2) (Node (°I’,1) (Node (’h’,1) Empty Empty) Empty)
(Node (’v’,1) Empty Empty))

The structure of £2 is very difficult to discern. Producing a nice graphical rendering of a tree is not
a trivial task. In the interest of getting a relatively simple implementation quickly, I will present
an implementation that produces a left-to-right rendering. The idea is to first define a function
that takes an additional string parameter that is used to produce indentations for subtrees so that
all nodes on each level are effectively lined up in columns. Here is the rendering for the tree t1.

(’o’,1)
G,
(Jd7,1)

And this is the output that is produced for t2.

(’V’,l)
(?0?,2)

Cr,0
(’h’,1)
6,1
(Ce’,1)
¢d, 0
(Ca’,1)

If you rotate the displayed text clockwise by 90°, you obtain the figures used in the book (minus
the lines connecting the nodes). Omitting empty subtrees from all leaf nodes and the indentation
makes the tree structure easier to discern. Note also how all entries are sorted alphabetically from
bottom to top.

This output can be produced by the following function showTs, which prints each node on a
separate line.”® It uses the first argument string as a prefix to indent the node by the right amount

**The suflix T stands for “tree”, and the suflix S indicates that the function uses a parameter for printing additional
space at the beginning of each line.

46

of empty space. The first two cases for empty trees and leaves are obvious: they simply con-
catenate the indentation s, the node value, which is turned into a string using the show function
defined for that value’s type,’” and a newline character \n, which has to be turned into a list of
characters using the string quotes. In the case of a node with at least one non-empty subtree, this
function first computes the printable representation of the node value plus its indentation and a
newline character at the end. It then computes with the function 1ength the number of characters
in it, and produces a string of as many space characters > * using the function replicate, which
is the indentation for the subtrees. The function then produces the lines for the right subtree,
followed by the current line c, followed by the lines for the left subtree.

showTS :: Show a => String -> Tree a -> String
showTS s Empty = s++"-\n"
showTS s (Node x Empty Empty) = s++show x++"\n"
showTS s (Node x 1 r) = let c=s++show x++"\n"
s’=replicate (length c) ’ ?
in showTS s’ r++c++showTS s’ 1

X
X

The function showTS will be called with an initially empty indentation "" and the tree to be
printed. This is handled by the function showT. The result of the function is a String value.
Since we don’t want to look at the String representation, but rather have it be printed on the
terminal, we have to use another function putStr.’® The function pT combines putStr and showT
and finally provides us with a way of rendering tree output within the GHC interpreter.

showT :: Show a => Tree a -> String
showT = showTS ""

pT :: Show a => Tree a -> I0 ()
pT t = putStr (showT t)

Coming back to the histogram application, building a histogram through the repeated use of
extendByT can be captured by a function addWordsT, again, just what we did for the list repre-
sentation. And as with extendByT, we can reuse the previous definition and simply rename the
functions that affect the representation.

addWordsT :: HistogramT -> [String] -> HistogramT
addWordsT h ws = foldl extendByT h (map nub ws)

The histogram of character frequencies can now be built using the addWwordsT function.

t = addWordsT Empty ["god","iehova","jehova","yahweh","yehova"]

And we can finally also look at the tree representation of the histogram by applying the function
pT.

*The Show a => annotation in the type restricts the type of showTS to only those types a for which a show
function is defined. This function is defined for all predefined types and can in most cases be automatically derived for
user-defined types.

**The type I0 () says that putStr is a function that does not compute a value but only has an input/output effect.

47

>pT t

¢y’,2)
Cw’,1)
(’V’ ’3)

(’o?,4)
13,10
1,0
(’h?,4)
6,1
(e’ ,4)
a1
(’a’,4)

It is interesting to observe that the structure of the binary search tree depends on the order in
which the elements to be inserted are encountered. This fact is already observable with small
examples.

> pT (Empty ‘extendByT‘ "God")
(’o?,1)

¢G6’,1)
¢Cd, 0

> pT (Empty ‘extendByT¢ "doG")

(507’1)
6,1
(°d?, 1)

Finally, we want to compute letter frequencies for tree-represented histograms as we did for the
list representation. There are several ways of doing this. A quick solution is obtained by convert-
ing a tree into a list and then using the function we have defined for lists.

Exercise 30

Define a function inorder that computes the list of nodes in a tree from left to right, that is, the nodes in
a left subtree should become before the root, and the nodes in the right subtree should follow the root.

inorder :: Tree a -> [a]
The function should produce the following output.

> inorder ti

[(°d’,1),(G6,1),(0%,1)]

> inorder t2
[(Ca’,1),(d’,1),Ce’,1),(°G,1),(°h?,1),(°1°,1),(’0’,2),(v’,1)]

You may have noticed that the output is sorted by characters. This may suggest the use of a

. binary search tree with an insert (see section 5.3) and inorder function to sort data. However,

> Joriing the efficiency of the resulting sorting algorithm depends on the order in which elements appear in
Chapter 6 . y . & . 548 P PP

the input, since the order in which the elements are inserted into a tree determines its structure.

48

And as we have seen, in some cases the tree structure might degenerate to a list, which negatively
affects the efficiency of the search tree.

Exercise 31

Define the function maxCountT that computes the frequencies of letters in the tree representation of a
histogram.

maxCountT :: HistogramT -> (Int,String)

(Hint: simply compose the functions inorder and maxCount.)

Similarly to the list implementation, we may want to have a function for computing frequencies
of individual letters for the trie representation.

Define the function frequencyT that computes the frequency of a letter in a histogram represented as a
binary search tree.

frequencyT :: Char -> HistogramT -> Int

5.3 Tries

A trie is a data structure that is specialized for storing strings or (similarly structured types).
It works particularly well when the strings to be stored have many prefixes in common. For
example, whereas a binary search tree represents the strings "mat", "map", and "max" separately,
a trie will share their common prefix "ma" and represent it only once.

A trie can be realized as a binary search tree that stores individual characters in nodes and
places continuations of strings in left subtrees and alternatives to characters in right subtrees.

type Trie = Tree Char

As an example, this is how the two words "map" and "mat" are stored with the described repre-
sentation using left and right subtrees.

Both words start at the root with the character *m’> and are continued in the left subtree with
the character ’a’. The third character of the first word, ’p’, continues the word in the left
subtree of a’. Since the third character of the second word, *t, is different it occurs in the right
subtree of ’p’, indicating an alternative continuation of "ma". If we add the word "max", the
first two characters will again be shared, and the last character *x’> will appear as an alternative
continuation to both ’p’ and ’t in the right subtree of >t°.

49

Instead of the plain visualization of binary search trees, tries can be a more compactly printed by
aligning chains of left subtrees horizontally (without separating space) and right subtrees verti-
cally, starting in the column where its parent is located. This makes words (and word sufhixes)
much more easy to read. For example, the trie for the words "map" and "mat" looks as follows.

map
..t

The dots indicate that the closest character above should be substituted to complete the word
represented. Adding the word "max" leads to the following output:

map
..t
L.X

A function for printing tries in the shown way can be defined as follows. In addition to the tree
being printed, the function uses one argument s to track the indentation of the current subtree
and a boolean flag b that indicates whether the indentation should be printed or whether it should
be ignored. The indentation should be ignored when the root of the current subtree follows the
last printed character on the current line (in the example, when we print the ’a’ after the *m?).
For all non-empty trees, we print the root using the auxiliary function indent, followed by the
left and right subtrees if they exist. For the left subtree the indentation is increased and the flag
is set to False since left subtrees continue the current word. By contrast, since the right subtree
indicates an alternative word continuation, it has to be printed on a new line, which is why the
newline character is added and the indentation has to be printed to align the subtree horizontally
with the current root.

indent :: String -> Bool -> Char -> String

indent s True c¢ = s++[c]

indent s False c = [c]

showTrS :: String -> Bool -> Trie -> String

showTrS _ _ Empty = ""

showTrS s b (Node c Empty Empty) = indent s b c

showTrS s b (Node c 1 Empty) = indent s b ¢ ++ showTrS (’.’:s) False 1
showTrS s b (Node ¢ 1 r) = indent s b ¢ ++ showTrS (’.’:s) False 1

++ "\n" ++ showTrS s True r

The function showTrs will be called with an initially empty indentation ", the value False, and
the tree to be printed. This is done by the function showTr. As in the case of pT, we don’t want to
look at the String representation, but have it be printed on the terminal. To this end, we define
another function pTr that combines putStr and showTr.

50

showTr :: Trie -> String
showTr = showTrS "" False

pTr :: Trie -> I0 O
pTr = putStrLn . showTr

We can now print tries in the format shown, but how do we insert words into a trie? To this
end, we define a function insertT that takes a string (that 1s, a list of characters) and uses it to
navigate along the trie, inserting only characters that are not yet covered by prefixes in the trie.
In the base case when the string is empty, the trie is not changed. Otherwise, when a word
with first character ¢ is to be inserted into an empty trie, we create a new node with c as its
root and continue inserting the rest of the word cs into its left subtree while the right subtree
remains empty. If the trie is not empty, we have to compare the character to be inserted with the
character in the root. If they are equal, we have to continue to insert the remaining word into
the left subtree, since the current prefix of the word is already represented in the trie. Otherwise,
we have to insert the whole word c:cs as an alternative to the current character into the right
subtree.

insertT :: String -> Trie -> Trie
insertT [] t
insertT (c:cs) Empty
insertT (c:cs) (Node x 1 r) | x==c
| otherwise

t

Node c¢ (insertT cs Empty) Empty
Node x (insertT cs 1) r

Node x 1 (insertT (c:cs) r)

To build a trie from a list of words, we can borrow the definition of the function addWords almost
verbatim to define the function buildT, since the structure is the same: a function for changing
the data structure is applied repeatedly for all elements of a list. However, the arguments of the
function insertT appear in the wrong order to apply the function foldl. If only insertT had
the type Trie -> String -> Trie instead, we could use foldl. We could, of course, redefine
insertT to make the type match, but a simpler solution is to use the built-in function f1lip,
which takes a function and changes the order of its arguments.

build :: [String] -> Tree String
build = foldl (flip insert) Empty

With build we can construct the trie of words "bag", "bat", "beg", and "bet" and check whether
binary tree structure and the improved trie printing match the specifications.

> let tr3 = buildT ["bag",'"bat","beg","bet"]
> pT tr3

7b7

51

> pTr tr3
bag
.t

.eg
.t

Note that we have used a simplified version of tries that cannot distinguish between prefixes
of a word that are elements of a trie and those that are not. For example, inserting the word
"mate" into an empty trie results in a chain of left subtrees, which represent that word, but what
about the word "mat"? Is it also an element of this trie? Since we haven’t inserted it yet, the
answer should be “no.” However, since inserting the word "mat" does not change the trie, we
can’t distinguish these two cases. It is not difficult to extend the trie data structure to allow the
representation of word prefixes as elements of tries. This is left as an exercise.

A ZE, A\, 4
/z\ /!\ /z\

Chapters 6-15 coming soon ...

52

	A Path to Understanding Computation
	Multiple Parameters and Partial Function Application
	Multiple Steps through Composing Function Applications
	Representing Collections with Lists
	Different Ways to Transform Lists
	Repeating Steps through Recursion
	When Computations Don't Terminate

	Walk the Walk: When Computation Really Happens
	How to Measure Runtime
	Constant Runtime
	Linear Runtime
	Quadratic Runtime

	The Mystery of Signs
	Detective's Notebook: Accessory after the Fact
	More on Lists
	Arrays
	Trees
	The Set Data Type
	A List Implementation of Sets
	An Array Implementation of Sets

	The Dictionary Data Type
	The Stack Data Type
	The Queue Data Type

	The Search for the Perfect Data Structure
	Histograms as Lists
	Histograms as Binary Search Trees
	Tries

