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Abstract

Beam search is used to maintain tractability
in large search spaces at the expense of com-
pleteness and optimality. We study supervised
learning of linear ranking functions for control-
ling beam search. The goal is to learn rank-
ing functions that allow for beam search to per-
form nearly as well as unconstrained search
while gaining computational efficiency. We first
study the computational complexity of the learn-
ing problem, showing that even for exponen-
tially large search spaces the general consistency
problem is in NP. We also identify tractable
and intractable subclasses of the learning prob-
lem. Next, we analyze the convergence of re-
cently proposed and modified online learning al-
gorithms. We first provide a counter-example
to an existing convergence result and then intro-
duce alternative notions of “margin” that do im-
ply convergence. Finally, we study convergence
properties for ambiguous training data.

nodes are ranked accordinguo f(v) wherew is a weight
vector. Each training instance corresponds to a search
space that is labeled by a set of target solutions, each solu-
tion being a (satisficing) path from the initial node to a goal
node. Our goal is to learn a weight vectoso that a beam
search of a specified beam width always maintains one of
the target paths in the beam until reaching a goal node. Ide-
ally, if the training set is representative, quickly guides
beam search to a solution for new problems.

Recent research has demonstrated good empirical results
for learning beam search ranking functions. In the area
of structured classification, Daume 1l and Marcu (2005)
learned beam search ranking functions for the natural
language processing tasks of chunking and joint chunk-
ing/tagging. In the area of automated planning, Xu et al.
(2007) learned ranking functions to control a state-space
search planner that outperformed state-of-the-art ptanne
in a number of benchmark domains.

Motivated by those successes, this paper focuses on the
computational complexity of the learning problem and the

convergence properties of various learning algorithms. Ou
complexity results show that even for exponentially large
search spaces, the consistency problem (i.e. findiag a
that solves all training instances) is in NP. We also idgntif
Heuristic search is a powerful problem solving paradigm,cOre tractable and intractable subclasses of the problem. | _
but is often impractical due to memory and time con- terestingly, some of these subclasses resemble more tradi-

straints. One common way to attempt to maintain tractabilliona! “learning to rank” problems e.g. (Agarwal & Roth,
ity is to use beam search, which maintains a “beam” of the?005), With clear analogies to applications.

heuristically best nodes and prunes all other nodes from Despite the hardness results, Daume Il and Marcu (2005)
the search queue. While beam search is not guaranteed §xd Xu et al. (2007) obtained good empirical success using
be complete nor optimal, if the heuristic is good enough,perceptron-style online learning algorithms, motivatiog
good solutions will be found quickly. study of their convergence. In this direction, we demon-
This paper studies the problem of learning heuristics, ofIaté a counter example to a recent convergence result and
ranking functions, that allow beam search to quickly find then introduce stronger notions of “problem margin” that
solutions, without seriously sacrificing optimality. Weneo W€ Prove are sufficient to guarantee convergence. Finally,
sider this problem for linear ranking functions, where eachV® €xtend the analysis to ambiguous training data.

search node is associated with a feature vectffv) and

1. Introduction

- 2. Problem Setup
Appearing inProceedings of the2/*" International Conference
on Machine LearningCorvallis, OR, 2007. Copyright 2007 by We first define breadth-first and best-first beam search, the

the author(s)/owner(s). two paradigms considered in this work. s&arch spacis
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atuple(l, s(-), f(-), <), whereI is the initial search node, goal was to learn a ranking function that quickly finds at
s is a successor function from search nodes to finite sets déast one of the target solution plans for each problem.
search nodeg is a feature function from search nodes to
m-dimensional real-valued vectors, ardis a total pref-
erence ordering on search nodes. We think afs defin-
ing properties of search nodes that are useful for evalual
ing their relative goodness and as defining a canonical
ordering on nodes, e.g. lexicographic. In this work, we

usef to define a linear ranking functian - f(v) on nodes . . X
. . : : convergence results, we will require that the target ttajec
wherew is an m-dimensional weight vector, and nodes . ) )
: : : -~ ries bedead-end freavhich means that for allandj < d,
with larger values are considered to be higher ranked. Since .
. . gachv € P, ; has at least one child nodéc P, ;.
a givenw may assign two nodes the same rank, we use k ’
< to break ties such thatis ranked higher than’ given Intuitively, for a dead-end free training set eaBhrepre-
w- f(v') =w- f(v) andv’ < v, arriving at a total rank or-  sents a layered direct graph with at least one path from each
dering on search nodes. We denote this total rank orderingarget node to a “goal node” ift; 4. Thus, the training set
asr(v',v|w, <), or justr(v’,v) whenw and < are clear specifies not only a set of goals for each search space but
from context, indicating that is ranked higher than'. also gives possible solution paths to the goals. For simplic
ity, we assume that all target solution paths have dédpth

but all results easily generalize to non-uniform depths.

We represent eact®; = (P;o,Pi1,...,Pq) as a se-
guence of sets of search nodes wh&yg contains target
nodes at depthi. Note thatP; o = B, o = {I;}. We will
refer to the maximum sizeof any target node se® ; as
thetarget widthof P;. For our hardness results, we need not
assume any special properties of the However, for our

Given a search spacé€ = (I,s(-), f(:),<), a weight
vectorw, and a beam widtlh, breadth-first beam search
simply conducts breadth-first search, but at each seardhor breadth-first beam search we specify a learning
depth keeps only thé highest ranked nodes according to problem by giving a training set and a beam width
r. More formally, breadth-first beam search generates &{(S;, P;)},b). The objective is to find a weight vectar
uniquebeam trajectoryBy, By, . . .) as follows, that generates a beam trajectory containing at least one of
the target paths for each training instance. More formally,
we are interested in the consistency problem:

e Cj;1 = BreadthExpand(B;, s(-)) = U, 5(v) Definition 1 (Breadth-First Consistency)Given the in-

is the deptly + 1 candidate saif the depthj beam; ~ PUt ({(Si, F)},b) where P, = (P, Py, ..., P;a), the
breadth-first consistency problem asks us to decide whether

e B, is the unigue set of highest ranked nodes in there exists a weight vectar such that for eactd;, the

Cj41 according to the total ordering corresponding beam trajectofyB; o, Bi.1, - - -, Bi.a) using
beam widthb satisfiesB; ; N P; ; # 0 for each;?

e By = {I} is the initial beam;

Note that for anyj, |C;| < c¢b and|B;| < b, wherec is the
maximum number of children of any search node. A weight vector that demonstrates a “yes” answer is guar-
anteed to allow a breath-first beam search of widihfind

Best-first beam searcis almost identical except that a goal node inl search steps for all training instances.

we replace the function BreadthExpand with
BestExpand(B;,s(-)) = B; U s(v*) — v*, where Unlike for breadth-first beam search, the length of the beam
v* is the unique highest ranking nodefy. Thus, instead trajectory required by best-first beam search to reach a goal
of expanding all nodes in the beam at each search stepode can be greater than the degtbf the target paths.
best-first search is more conservative and only expand§his is because best-first beam search, does not necessarily
the single best node. Note that unlike breadth-first searcincrease the maximum depth of search nodes in the beam
this can result in beams that contain search nodes frorat each search step. Thus, in addition to specifying a beam
different depths of the search space relativé.to width for the learning problem, we also specify a maximum
number of search steps, or horizén, The objective is to

find a weight vector that allows a best-first beam search to
find a goal node withirh search steps, while always keep-
ing some node from the target paths in the beam.

The training se{(S;, P;) } for our learning problems con-
sists of pairs where th&; = (I;, s;(-), fi(+), <;) are search
spaces constrained such that eggchas the same dimen-
sion. TheP; aretarget search patflsat describe desirable . ) . ) .
search paths through the spage The goal is to learn Definition 2 (Best-First Consistency)Given the input
ranking functions that can efficiently guide beam search td (i £i) }: 0, h), where Py = (Pio, ..., Piq), the best-
keep at least one target path in the beam. For example, xflljrst gonsstency problem asks us to deC|d_e whether there is
et al. (2007) considered learning in the Al planning domain weight vectow such that for eac_b’i there is a beam tra-
where theS; corresponded to Al planning problems, en- J€€tOrY (Bio, ..., Bi ) of beam widtrb and length < £
coding the state space and available actions, anétea-  SUCh thatB; , contains at least one goal node i, ; and
coded optimal or satisficing plans for those problems. Th§@chBi,; contains at least one node iy, 7 ;?
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3. Computational Complexity ExhaustiveAlgorithm ({(S;, P;)},b)

I’ = Enumerate({(S;, .PL'>}’ b) ) )

In this section, we study the computational complexity of | { Flaerates & possivle sets Sfbeam tajectories

the above consistency problems. We first focus on breadth- if IsConsistent({ P; }, {(Bi.o - . . , Bi.a)}) then

first beam search, and give best-first results at the end. It T Testajectories({5:}, {(Bi.o, - Bi,a)}) then
is important to note that the size of the search spaces will| retun faise

typically be exponential in the encoding size of the learn- TestTrajectories (511, {(Brorr ... Biod)

ing problem. For example, in planning domains, STRIPS | #1s; = (I;,s:(-), fi(-), <i) -
operators compactly encode exponentially large planning| censtructalinear programming probleiri” as below

= the variables areZ = {z1,22,...,2m}
problems. We measure complexity in terms of the problem fori=1,..., ni=1,..., d
size, not the exponentially larger search space size. Ci j =BreadthExpand(Bi,j 1, 5i(-))

if B; ; C Cj; jthen
for eachw € B; j andv’ € C; j — By ;

We consider subclasses of breadth-first consistency by if v <; v then

placing constraints on the following problem parameters: add a constraing - f; (v) > Z - fi(v')
n - the number of training instances,- the depth of tar- else retur oadd a constraing - fi(v) > 2 - fi(v)
get solution paths; - the maximum number of children of w = LPSolver{ P)// e.g. Karmarkar’s algorithm

any node - the maximum target width of ang;, andb " Llje'tsufr? '\fmhen

- the beam width. We will restrict our attention to prob- return false

lem classes where the maximum number of childres
polynomial in the problem size, which is true for nearly
all search spaces of interest. We also restrict be poly-
nomial in the problem size, which again is a reasonable
assumption since otherwise each beam-search step coufdoof. Given a learning problem({(S;, P;)},b) our
take exponential time. We will also assume that all fea-certificates correspond to sets of beam trajectories
ture functions can be evaluated in polynomial time in the{(B; ,..., B; )} each of size at mosO(ndb) which
problem size. is polynomial in the problem size. The certificate can

We first show that breadth-first consistency is in NP eventhen be checked in polynomlal time to_ see if for edgh

for exponentially large search spaces. Given a weight vec.(Bi’O’ o Bivd.) contains a 'Farget so!u'qon pat.h encoded
tor w and beam widtth, we can generate a unique depith in P; as required by Definition 1. _If_ it is cons.|stent then
beam trajectory for each training instance. Here we Congccoerg to Lemma 1 we can efficiently decide whether
sider the inverse problem of checking whether a set offhere is aw that can generatf(Bio, .- -, Bia)}- =
hypothesized beam trajectories, one for each training inThis result suggests an enumeration-based decision proce-
stance, could have been generated by some weight vectature for breadth-first consistency as given in Figure 1. The
The algorithmTestTrajectoriesn Figure 1 efficiently car- procedure enumerates sets of beam trajectories, checking
ries out this check. The idea is to construct a linear programwvhether they contain target paths and if so céistTrajec-
containing constraints om for generating the trajectories. tories The following gives us the worst case complexity of
this algorithm in terms of the key problem parameters.

Figure 1.The exhaustive algorithm.

Lemma 1. Given a set of search spacés;} and a cor-
responding set of beam trajectori¢éB, o, ..., B; 4)} of  Theorem 2. The algorithm in Figure 1 decides breadth-
width b, the algorithmTestTrajectorie¢Figure 1) decides first consistency and returns a solution weight vector if
in polynomial time whether there exists a weight veetor there is a solution in timé ((t + poly(m)) (cb)"*").

that can generatéB,; o, ..., B; 4) in S; for all 4. ) -
Proof. We first bound the number of certificates. Breadth-

Proof. (Sketch) It can be shown that satisfies the con-  first beam search expands nodes in the current beam, re-
straints generated byestTrajectoriesff for each i,j,  sulting in at mostch nodes, from whichh nodes are se-
r(v',v| <;, w) leads beam search to generatg; 1 from  |ected for the next beam. Enumerating these possible
B,;. The linear program containa variables and at most  cnhojces overd levels andn trajectories, one for each
ndcb? constraints. Since we are assuming that the maXitraining instance, we can bound the number of certifi-
mum number of children of a nodeis polynomial in the  cates byO ((cb)*™). For each certificate the enumer-
size of the learning problem, the size of the linear programytion process checks consistency with the target paths
is also polynomial and thus can be solved in polynomialf p.1 in time O(tbdn) and then callsTestTrajectories

time, e.g. using Karmarkar’s algorithm. L) which runs in time polym, ndcb?). The total time com-
This Lemma shows that we can check certificate beam tra!€Xity then isO ((ti‘jn + poly(m, ndcb?)) (cb)*™") =
jectories efficiently, which implies the following. O ((t + poly(m)) (cb)**"). O

Theorem 1. Breadth-first consistency is in NP. Not surprisingly the complexity is exponential in the beam
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width b, target path deptld, and number of training in- x as positive iffw - > 0 and negative otherwise. Giveh
stances:. However, it is polynomial in the maximum num- andk we construct an instangéS;, P; ), b) of breadth-first
ber of childrenc and the maximum target width Thus, consistency as follows. Lef; = (I, s(-), f(-), <), where

breadth-first consistency can be solved in polynomial times(1) = {qo,q1, " ,Gry+r, }- FOr eachi € {1,--- 1},
for any problem class whete d, andn are constants. Of define f(¢;) = —x;. For eachi € {1,---,r2},define
course, for most problems of practical interest these conf(¢;4+,,) = ;. Define f(qo) = 0 € R™, P =

stants would be too large to be practical. This leads to thé{l},{q0}), andb = k + 1. Define the total ordering
guestion of whether we can do better than the exhaustive: to be any total ordering in which; < ¢o for every
algorithm. For at least one problem class we can, 1=1,...,rrandqy < g; foreveryi = ri+1,...,r1 +7rs.

Theorem 3. The class of breadth-first consistency prob- It can be shown that there exists a linear classifier with at

lems wheré = 1 andt = 1 is solvable in polynomial time. most & misclassifications if and only if there exists a so-
lution to the corresponding breadth-first consistency prob

Proof. (Sketch.) Since = 1 each training instance has |em. Intuitively, the target nodg, represents zero and the

exactly one target solution path. In addition, for= 1 ¢, represent positive or negative examples. Anthat mis-

the only beam trajectory consistent with the target path iglassifies the example af will rank ¢; higher thang.

the target itself. Thus, we can simply pass the target patfrhus, if there are more thah misclassification then the
for each instance tdestTrajectorieand return the result of  target nodey, will be forced out of the beam. O
O

that single call in polynomial time.
The next result shows that if we allow the number of train-

This problem class corresponds to the case where eaghg instances to vary, then the problem remains hard even
training instance is labeled by exactly a single solutionyhen the target path depth and beam width are equal to
path and we are asked to findiathat leads a greedy hill-  one. This problem class can be viewed as a novel form of
climbing search, or reactive policy, to follow those paths. muyltiple-instance learning (Dietterich et al., 1997). Eac

Unfortunately, outside of the above problem classes it ap{@ining instance can be viewed as a bagneflimensional
pears that breadth-first consistency is computationalig ha VEctors, some of which are labeled as positive (i.e. the tar-
even under strict assumptions. In particular, the follgvin 9€t nodes). The leaming goal is to findwathat for each
three results show that if any onelgfd, orn are allowed ~ P2d. ranks one of the positive vectors as best.

to vary then the consistency problem is hard even when th&heorem 5. The class of breadth-first consistency prob-
other problem parameters are small constants. lems wherel = 1,b = 1, ¢ = 6, andt = 3 is NP-complete.

First, we show that the problem class wheis allowed to

vary, butn = 1,d = 1andt = 1is NP-complete. Thatis, a Proof. (Sketch.) We reduce from 3-SAT (Garey & John-
single training instance involving a depth one search spacg®™ 1979). LeQ = {q11 Vqi2V i3, ., 1 V qn2 V g3}

is sufficient for hardness. This problem class, resembleB€ the clauses of a 3-SAT instance wheredfyeare pos-
more traditional ranking problems and has a nice analogyf'Vé Of negative literals over the set of variables =

in the application domain of web-page ranking, where thett1s = ,um }. We construct a corresponding breadth-first
depth 1 leaves of our search space correspond to possibfpnsistency probleni{(Si, 7;)},b = 1) such that for each
relevant web-pages for a particular query. One of thosé&'@US€di1 V g2 V ¢i3 there is a single, depth-one train-
pages is marked as a target page, e.g. the page that a u&d instance withs;(1;) = {pi1,---,pic}, target paths
eventually went to. The learning problem is then to findZ% = (11i}: {Pi,1,Pi2, pis}), and preference ordering,

a weight vector that will cause for the target page to beSUch thai,; <i pi forj =1,2,3 andk = 4,5,6. Let
ranked among the top pages, where for examplemay ¢+ € {0,1}™ denote a vector of zeros except for a 1 in

represent the number of results that can be easily parsed i€ #'th component. For each=1,...,n, j = 1,2,3, if
a user. Our result shows that this problem is NP-completedii = ux for somek then fi(p;,;) = ex and fi(pij+3) =
—er/2, if ¢;; = —uy for somek then f;(p; ;) = —ei and

Theorem 4. The class of breadth-first consistency prob- fi(pij+s) = ex/2. One can show thaf is satisfiable

lems where: = 1, d = 1, andt = 1 is NP-complete. if and only if there exists a solution to the corresponding
o ) breadth-first consistency problem. Intuitively, the nuimer

Proof. (Sketch.) We reduce from the Minimum Disagree- gjgn, of the weight vector components represent truth values

ment problem for linear binary classifiers, which is NP- gyer 17 and each training instance is constructed so that

complete (Hoffgen et al., 1995). The problem’s input is a5 4 target node as best iff a literal in the clause is true

atraining setS = {1, -~ 2,7, a7, } of positive i the corresponding truth assignment. O

and negativen-dimensional vectors and a positive integer

k. We are asked to decide if there is a weight veatdhat  Finally, we show that when the depitis variable the con-

commits at mosk misclassifications, where classifies a  sistency problem remains hard even wiea n = 1.
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Theorem 6. The class of breadth-first consistency prob-tension of the algorithm in Xu et al. (2007) to multiple

lemswherex = 1,b = 1, ¢ = 6, andt = 3is NP-complete. target paths and resembles tbharning as search optimiza-
tion (LaSO)algorithm by Daume Ill and Marcu (2005) for

Proof. (Sketch.) Given a consistency probles with  best-first search. LaSO-BR iterates through each training

d=1,b=1,c=6andt = 3, we can construct an equiv- instancess;, P;), for each one conducting a beam search.

alent problemB withn = 1,b = 1,c = 6, andt = 3. This  After generating the deptj beam for theith training in-

can be done by noting that probleshas multiple depth  stance, if none of the target nodesf; are on the beam

one instances and that all of these instances must be satigren a search error is said to have occurred. In this case, we

fied to obtain consistency. Probleff) rather can have only perform a Perceptron-style weight update,

a single instance but arbitrary depth. We construct problem

B by “stacking” then training instances froml into a sin- N (Z,U*Epi .nC fv*) Sen f(v))
w=w-+a«- .

gle depthn instance. This can be done in a way such that |P;NC]| N b
a w satisfies all of thed instances iff it also satisfies the ’

single B instance. L where0 < a < 1is a learning rate parametes, is the
current beam and' is the candidate set from whidh was

b n S c f Complexity generated (i.e. the beam expansion of the previous beam).
pﬁly TR pg:y - NPP For simplicity we assumg is a feature function for all

1 - Sog 1 p training instances. Intuitively this update rule moves the
poly | 1 | 1 | poly | 1 | NP-Complete weights in a direction that increases the rank of the target

1 * 11 6 | 3 | NP-Complete nodes that appeared @, and decreases the rank of non-

1 [1)°* 6 | 3 | NP-Complete target nodes in the beam. Ideally, this will cause at least

one of the target nodes to become preferred enough to re-
Figure 2.Complexity results for breadth-first consistency. Eachmain on the beam next time through the search. After the
row corresponds to a sub-class of the problem and indicates th\ﬁ/eight update, the beam is set to the set of target nodes in
computational complexity. K indicates a constant value and (v and the search continues. Note that the processing of

“poly” indicates _that the guantity must be po_lyn_omially related each instance is guaranteed to terminaté $earch steps.
to the problem size. * indicates that the quantity is unbounded.

. . . . . LaSO-BR ({{S:, Pi)}, b)
Figure 2 summarizes our main complexity results from this | w —o

section for breadth-first consistency. For best-first beam | "PeRUIT W s unchangear alarge number of feraons

search, most of these results can be carried over. Recal Update-BR(S;, P;, b, w)
that for best-first consistency the problem specifies a kearc | ™ ©
bound’ in addition to a beam width. Using a similar ap- Update-BR (S, P;, b, w)

proach as above we can show that best-first consistency ig /5 = (1, si(), 7(). <i)andPs = (Pio, -, Pia)
«— {I;} /l'initial beam

in NP assuming that is polynomial in the problem size, forj=1,..., d
which is a reasonable assumption. Similarly, one can ex- fco,g,fr?jdemgxpand(Bysi('))
tend the polynomial time result for fixdd n, andd. The H(v) — w - f(v) /f compute heuristic value af
remaining results in the table can be directly transferred OrderC according toff and the total ordering:;
A X ) X B « the firstb nodes inC
to best-first search, since in each case eithet 1 or if BN P;; = 0then

d = 1 and best-first beam search is essentially equivalent
to breadth-first beam search in these cases.

we—w+ -

Torer; ;nc f) v b p)
[P; ;NC] - b

B «— PL',J' nc
return

4. Convergence of Online Updates

Above we identified a limited set of tractable problem Figure 3.0nline algorithm for breadth-first beam search.
classes and saw that even very restricted classes remain ] ) S
NP-hard. We also saw that some of these hard classes h&#uré 4 gives the LaSO-BST algorithm for learing in
interesting application relevance. Thus, it is desirable t Pest-first beam search, which is a slight modification of
consider efficient learning mechanisms that work well inthe original LaSO algorithm.  The main difference is in

practice. Below we describe two such algorithms. the weight update equation, a change that appears neces-
sary for our convergence analysis. The process is similar to

LaSO-BR except that a best-first beam search is conducted,
which means that termination for each training instance is
Figure 3 gives the LaSO-BR algorithm for learning rank- not guaranteed to be withit steps. Rather, the number
ing functions for breadth-first beam search. It is an ex-of search steps for a single training instance remains un-

4.1. Online Perceptron Updates
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bounded without further assumptions, which we will ad-and single target patt? = ({A},{B},{E}). Forb = 2

dress later in this section. the weight vectow = [v,~] solves the problem and has
search marginy. However, tracing through LaSO-BR and
';UaSObBST(“SﬂPl)}vb) LaSO-BST (or the original LaSO) starting withh = 0,
repeatuntil w is unchangedr a large number of iterations shows that the algorithm convergeswd = 0 which is not
for every: i i
Update-BSTS:, Py, b, w) a solution for this problem.
return w
o f(A)=(0.0) o f(A)=(0,0)
Update-BST(S;, P, b, w)
I1'S; = (I, s:(), f(-),<i)andP; = (P; 0, .., P a)
B — {I,;} I initial beam
P=P,oUPsU...UP; 4
while BN P; g =0 (B)=(0.0) <C)=<m) ®.I<D):(L1) <3):<o,0) (L'):(I,O) @./(m:(l.w
C — BestExpand B, s;(-))
for everyv € C
H(v) < w - f(v) /l compute heuristic value af ® ® @ O ® ® @

OrderC according toH and the total ordering;
B « the firstb nodes inC'
if BN P = @then
*xcp F(v* v a b
wewta (Eeepag/CD _ Suepi) @) (b)

fE)=(00) f(F)=(1,0) f(G)=(0.0)f(H)=(0,0) fE)=(L]) FFE)=(LLS)  f(G)=(L5)

B—PncC Figure 5.Counter-examples (a) Search margin (b) Level margin
return

4.3. Convergen nder Stronger Notions of Margin
Figure 4.0nline algorithm for best-first beam search. 3. Convergence Under Stronger Notions of Marg

_ Given that linear separability (i.e. a positive search mar-
4.2. Previous Result and Counter Example gin) is not sufficient to guarantee convergence we consider
Adjusting to our terminology, Daume Ill and Marcu (2005) a stronger notion of margin, thievel margin which mea-
sures by how much the target nodes are ranked above (or

define a training set to bmear separabléf there is weight | th ¢ t nod tth h level
vector that solves the corresponding consistency problenp.e ow) other non-target nodes at the same search level.

Also for linearly separable data they defined a notion ofDefinition 4 (Level Margin) The level margin of a
margin of a weight vector, which we refer to here as theweight vectorw for a training set is defined ag =
search margin Intuitively, the search margin af is the ~ ming(- v} (w- f(v*) —w- f(v)), where the sef(v*,v)}
maximal value by which all target nodes can be down-contains any pair such that* is a target node at some
weighted while still maintaining separability of the data. depth;j and v can be reached i search steps from the

Definition 3 (Search Margin) The search margin of a initial search node—i.e* andv are at the same level.

weight vectorw for a linearly separable training set is de-
fined asy = ming(,- o)y (w - f(v*) —w - f(v)), where the
set{(v*,v)} contains any pair where* is a target node
andw is a non-target node that were compared during the
beam search guided hy.

For breadth-first beam search, a positive level margimsfor
implies a positive search margin, but not necessarily vice
versa, showing that level margin is a strictly strongeramoti

of separability. LefR be a constant such that for all training
instances, for all nodesandv’, || f(v) — f(v")]| < R.

Daume Il and Marcu (2005) state that the existence of ar’heorem 7. Given a dead-end free training set such that
w with positive search margin implies convergence of thethere exists a weight vectar with level marginy > 0 and
original LaSO. However, we have found that for subtle rea-|w|| = 1, LaSO-BR will converge with a consistent weight
sons a positive search margin is not sufficient to guaranvector after making no more thg/~)* weight updates.

tee convergence for LaSO, LaSO-BR, or LaSO-BST. Intu- .

itively, this is because may “by chance” prune parts of Proof. (S_ke_ztch.) First note that the dead-end free property
the search space that otherwise would have lead to rankirfgf the training data can be used to show that unless the cur-
errors later in the search. For such coincidental solutiond €Nt Weight vector is a solution it will eventually trigger a
the learning algorithms are unable to reliably derive atrai  Mmeaningful” weight update (one where the previous can-

ing signal that drives them to a solution. didate set contains target nodes).

Counter Example 1. We give a training set for which the Lettw’f be the ;Neiggsgs J]gs;t b(ﬁor%tr?%h mistak? is rﬂade
- . : o . on training instanceés;, P;), when ;.7 IS empty, where
existence of a weight vector with positive _search_ marging s oo depthy beam and” is the candidate set from which
does not guarantee convergence to a solution weight vecp \ a5 selected. The occurrence of the mistake indicates
tor for LaSO-BR or LaSO-BST. Consider a problem with athat,vo* € P, ;NC,v € B, w” - f(v*) < wk- f(v), which
single training instance with search space shown in Figurelets us derive an upper bound flap®*1||2. DenotingC’ =

5a, preference ordering < B< F< E <D < H <G, P; ;N C we get,
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w* % = lw”® + Z”*Eglf(v ) 2wenl®) ? To ensure convergence of LaSO-BST we also assume that
<] . b the search spaces are all finite trees. This avoids the possi-
— ™2 + | 2orecr FV)  Xen f) 12 bility of infinite best-first beam trajectories that never-te
| b minate at a goal node. Tree structures are quite common
+owk . (Zv*ec/ f) Yies f(v)) in practice and it is often easy to transform a finite search
|C| b space into a tree. The applications in (Daume Il & Marcu,
< [Jw"||® + R? 2005) and (Xu et al., 2007) only involved finite trees.

) ) Theorem 8. Given a dead-end free training set of finite
where the inequality follows becaugé (f(v*)—f(v)) < tree search spaces such that there exists a weight vector
0forall v® € C",v € B and our assumptions o. By iy glohal marginy > 0 and ||w|| = 1, LaSO-BST will
induction we can ge]’li’lfl I < kR". We now derive a converge with a consistent weight vector after making no
lower bound forw - w™*". more than(R/~)? weight updates.

2rec J(0) e F(V)

w-w =w- w4+ w-( Il - b ) The proof is similar to that of Theorem 7 except that the
. derivation of the lower bound makes use of the global mar-
=w-wt+ Lo u,) SO Xeepw f) gin and we must verify that the restriction to finite tree
<l b search spaces guarantees that each iteration of LaSO-BST
>w-w® +y will terminate with a goal node being reached. We were un-

o ] o able to show convergence for the original LaSO algorithm
This inequality follows from the definition of the level mar- oy en under the assumptions of this theorem.

gin. By induction we get that - w**! > k+. Combining

this result with the above upper bound fm*+1|| and the N summary, we introduced three different notions of mar-

fact that||w| = 1 we get thatV/kR > |wl||w*T!| >  9in here: search margin, level margin, and global mar-

w - wk+! > kv, which implies the mistake bound. [  9gin. Both algorithms converge for a positive global mar-
gin, which implies a positive search margin and a positive
level margin. For LaSO-BR, but not LaSO-BST, conver-

LaSO-BST and LaSO do not have such a guarantee singgence is guaranteed for a positive level margin, which im-

their beams can contain nodes from multiple levels. plies a positive search margin. Finally, a positive search

Counter Example 2. We give a training set for which the Margin corresponds exactly to linear separability, bubis n -
existence of a with positive level margin does not guar- €nough to guarantee convergence for either algorithm. This
antee convergence for LaSO-BST. Consider a single trainiS in contrast to results for classifier learning, wheredine
ing example with the search space in Figure 5b, single tar-Separability implies convergence of Perceptron updates.
get pathP = ({4}, {B},{E}), and preference ordering
C < B <E<F <G < D. The weight vector 5. Convergence for Ambiguous Training Data
w = [2v,7] has a level margin of. However, if we follow ) ) _
LaSO-BST (or the original LaSO) started with the weightHere we study convergence for linearly inseparable train-
vectorw’ = 0 andb = 2, the algorithm will converges to Ng data. Inseparability is often the result of trainingeda
w' = 0 which is not a solution for this problem. ambiguity, in the sense that many “good” solution paths
are not included as target paths. For example, this is com-
To guarantee convergence of LaSO-BST, we require afon in Al planning where there can be many (nearly) opti-
even stronger notion of margiglobal margipwhich mea- ~ mal solutions, many of which are inherently identical (e.g.
sures the rank difference between any target node and arijffering in the orderings of unrelated actions). It is usu-
non-target node, regardless of search space level. ally impractical to include all solutions in the trainingtda
which can make it infeasible to learn a ranking function that
strictly prefers the target paths over the inherently iabaht
aths not included as targets. In these situations, theeabov
min (e o)} (w- f(0") —w- f(v)), where the sef(v", v)} Eotions of margin will allgbe negative. Here we consider
contains any pair sugh that" is any target node and is the notion ofbeam marginhat allows for some amount of
any non-target node in the search space. ambiguity, or inseparability. The following generalizégt
analysis in (Xu et al., 2007) to our setting where multiple,
rather than single, target paths are allowed per searcle spac

Definition 5 (Global Margin) The global margin of a
weight vectorw for a training set is defined ay =

Note that ifw has a positive global margin then it has a
positive level margin. The converse is not necessarily. true
The global margin is similar to the common definitions of For each instancés;, P;), whereS; = (I;, s;(), f(+), <;)
margin used to characterize the convergence of linear PeandP; = {P; 1, P, 2, ..., P; 4, }, let D;; be the set of nodes
ceptron classifiers (Novikoff, 1962). that can be reached jnsearch steps fromy. That is,D;;



On Learning Linear Ranking Functions for Beam Search

is the set of all possible non-target nodes that could be irl/EM

¥4 . The mistake bound follows by noting that
beamB, ;. A beam margin is a tripl€V’, 1, 62) whereb/ b > b* and algebra. O
is a non-negative integer, aig, o > 0.

Definition 6 (Beam Margin) A weight vectorw has beam
margin (¥, 41, 02) on a training set{(S;, P, })}, if for each
i,j there is a seD;; C D;; such thayD;;| < v’ and

When there is a positive level margin (i#é.= 0), the mis-

take bound reduces t@?/4,)*, which does not depend on

the beam width and matches the result for separable data.
This is also the behavior whérn>> b'. Whend; = d, and

we use the minimum beam width allowed by the theorem

b = 2b + 1, the bound ig (20’ + 1)R/8,)*, which is a fac-

tor of (20’ + 1) larger than wheh >> v'. This shows that

A weight vectorw has beam margif¥’, d1,2) if at each a5 we increasé (i.e. the amount of search), the mistake
search depth it ranks the target nodes better than most othgpund decreases, suggesting that learning becomes easier.
nodes (those iD;; — D;;) by a margin of at least, and  This agrees with the intuition that the more computation

ranks at most’ nodes (those iD;;) better than the target we put into search the less we need to learn. Indeed, in the
nodes by a margin no greater th&n Whenever this con-

Yo" € P j,v € Dij — Dij, w- f(v") —w- f(v) > & and,
Vo € Pyj,v € Dij, 61>w- f(v°)—w- f(v) > —6

case of exhaustive search no learning is needed at all.

dition is satisfied we are guaranteed that a beam search of

width b > b’ guided byw will solve all of the training prob-
lems. The case wheté = 0 corresponds to the level mar-

gin, where the data is separable. By considebing 0 we

6. Summary

We studied the computational complexity of learning rank-

can consider cases where there is no “dominating” weigh;ng functions for beam search and the convergence of

vector that ranks all targets better than all non-targetseat

online Perceptron updates. The results identified core

same level. For large enough beam widths, dependent afactable and intractable subclasses and clarified conver-
the beam margin, we can show convergence of LaSO-BRgence issues. We also considered convergence in the case
Theorem 9. Given a dead-end free training set such of ambiguous training data, giving a result that highlights

that there exists a weight vectar with beam margin
(t/,01,02) and ||w| =

the trade-off between the amount of allowed search and the

1, then for any beam width difficulty of the resulting learning problem.
b > (1+d/61) = b*, LaSO-BR will converge with

a consistent weight vector after making no more tha”AcknowIedgments

(R/81)% (1 — b*b*l)72 weight updates.

Proof. Let w* be the weights before the'th mistake is

made. Thenv! = 0. Suppose thé’th mistake is made
whenBN P, ; = () whereB is the beam generated at depth

We thank the reviewers and Hal Daume Il for useful com-
ments/discussions. This work was supported by NSF grant
[1S-0307592 and DARPA contract FA8750-05-2-0249.

j for the ith training instance. We can derive the upper References

bound of||w**+1||? < kR? as the proof in Theorem 7.

Next we derive a lower bound om - w**!. Denote by
B’ C B the set of nodes in the beam such that> w -

(f(v*) = f(v)) > —02 and letC’ = P, ; n C. By the
definition of beam margin, we hay®’| < v'.

. k+1 _ X k . Zu*ecf f(’U*) _ ZUEB f(’U)
w - w =w-w +w-( Ted A )
Zowecr F(0F)
:w-wk—l—w- Z E\gq **f(v)
b
veEB—B’
veec! £(v7)
Tw Z = e‘g/l - f(v)
b
veEB'
/ /
Zw-wk—l— (b bb)51 _ blfz

By induction, we get tha-wh+1 >  0=0%0=t"% ' com.
bining this result with the above upper bound |an*+1||
and the fact thafjw|| = 1 we get thatl > W >

Agarwal, S., & Roth, D. (2005). Learnability of bipartite ranking
functions.COLT-05

Daume Ill, H., & Marcu, D. (2005). Learning as search opti-
mization: Approximate large margin methods for structured
prediction.ICML-05.

Dietterich, T., Lathrop, R., & Lozano-Perez, T. (1997). Solv-
ing the multiple-instance problem with axis-parallel rectangles.
Artificial Intelligence 89, 31-71.

Garey, M. R., & Johnson, D. S. (Eds.). (1979¥omputers and
intractability: A guide to the theory of np-completenebew
York: W. H. Freeman and Company.

Hoffgen, K.-U., Simon, H.-U., & Horn, K. S. V. (1995). Robust
trainability of single neuronslournal of Computer and System
Sciencesb0, 114-125.

Novikoff, A. (1962). On convergence proofs on perceptr@ysn-
posium on the Mathematical Theory of Automata

Xu, Y., Fern, A., & Yoon, S. (2007). Discriminative learning of
beam-search heuristics for planningCAI-07.



