
On Learning Linear Ranking Functions for Beam Search

Yuehua Xu XUYU @EECS.OREGONSTATE.EDU

Alan Fern AFERN@EECS.OREGONSTATE.EDU

School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331 USA

Abstract

Beam search is used to maintain tractability
in large search spaces at the expense of com-
pleteness and optimality. We study supervised
learning of linear ranking functions for control-
ling beam search. The goal is to learn rank-
ing functions that allow for beam search to per-
form nearly as well as unconstrained search
while gaining computational efficiency. We first
study the computational complexity of the learn-
ing problem, showing that even for exponen-
tially large search spaces the general consistency
problem is in NP. We also identify tractable
and intractable subclasses of the learning prob-
lem. Next, we analyze the convergence of re-
cently proposed and modified online learning al-
gorithms. We first provide a counter-example
to an existing convergence result and then intro-
duce alternative notions of “margin” that do im-
ply convergence. Finally, we study convergence
properties for ambiguous training data.

1. Introduction

Heuristic search is a powerful problem solving paradigm,
but is often impractical due to memory and time con-
straints. One common way to attempt to maintain tractabil-
ity is to use beam search, which maintains a “beam” of the
heuristically bestb nodes and prunes all other nodes from
the search queue. While beam search is not guaranteed to
be complete nor optimal, if the heuristic is good enough,
good solutions will be found quickly.

This paper studies the problem of learning heuristics, or
ranking functions, that allow beam search to quickly find
solutions, without seriously sacrificing optimality. We con-
sider this problem for linear ranking functions, where each
search nodev is associated with a feature vectorf(v) and

Appearing inProceedings of the24 th International Conference
on Machine Learning, Corvallis, OR, 2007. Copyright 2007 by
the author(s)/owner(s).

nodes are ranked according tow ·f(v) wherew is a weight
vector. Each training instance corresponds to a search
space that is labeled by a set of target solutions, each solu-
tion being a (satisficing) path from the initial node to a goal
node. Our goal is to learn a weight vectorw so that a beam
search of a specified beam width always maintains one of
the target paths in the beam until reaching a goal node. Ide-
ally, if the training set is representative,w quickly guides
beam search to a solution for new problems.

Recent research has demonstrated good empirical results
for learning beam search ranking functions. In the area
of structured classification, Daume III and Marcu (2005)
learned beam search ranking functions for the natural
language processing tasks of chunking and joint chunk-
ing/tagging. In the area of automated planning, Xu et al.
(2007) learned ranking functions to control a state-space
search planner that outperformed state-of-the-art planners
in a number of benchmark domains.

Motivated by those successes, this paper focuses on the
computational complexity of the learning problem and the
convergence properties of various learning algorithms. Our
complexity results show that even for exponentially large
search spaces, the consistency problem (i.e. finding aw
that solves all training instances) is in NP. We also identify
core tractable and intractable subclasses of the problem. In-
terestingly, some of these subclasses resemble more tradi-
tional “learning to rank” problems e.g. (Agarwal & Roth,
2005), with clear analogies to applications.

Despite the hardness results, Daume III and Marcu (2005)
and Xu et al. (2007) obtained good empirical success using
Perceptron-style online learning algorithms, motivatingour
study of their convergence. In this direction, we demon-
strate a counter example to a recent convergence result and
then introduce stronger notions of “problem margin” that
we prove are sufficient to guarantee convergence. Finally,
we extend the analysis to ambiguous training data.

2. Problem Setup

We first define breadth-first and best-first beam search, the
two paradigms considered in this work. Asearch spaceis

On Learning Linear Ranking Functions for Beam Search

a tuple〈I, s(·), f(·), <〉, whereI is the initial search node,
s is a successor function from search nodes to finite sets of
search nodes,f is a feature function from search nodes to
m-dimensional real-valued vectors, and< is a total pref-
erence ordering on search nodes. We think off as defin-
ing properties of search nodes that are useful for evaluat-
ing their relative goodness and< as defining a canonical
ordering on nodes, e.g. lexicographic. In this work, we
usef to define a linear ranking functionw · f(v) on nodes
wherew is an m-dimensional weight vector, and nodes
with larger values are considered to be higher ranked. Since
a givenw may assign two nodes the same rank, we use
< to break ties such thatv is ranked higher thanv′ given
w · f(v′) = w · f(v) andv′ < v, arriving at a total rank or-
dering on search nodes. We denote this total rank ordering
asr(v′, v|w,<), or just r(v′, v) whenw and< are clear
from context, indicating thatv is ranked higher thanv′.

Given a search spaceS = 〈I, s(·), f(·), <〉, a weight
vectorw, and a beam widthb, breadth-first beam search
simply conducts breadth-first search, but at each search
depth keeps only theb highest ranked nodes according to
r. More formally, breadth-first beam search generates a
uniquebeam trajectory(B0, B1, . . .) as follows,

• B0 = {I} is the initial beam;

• Cj+1 = BreadthExpand(Bj , s(·)) =
⋃

v∈Bj
s(v)

is the depthj + 1 candidate setof the depthj beam;

• Bj+1 is the unique set ofb highest ranked nodes in
Cj+1 according to the total orderingr.

Note that for anyj, |Cj | ≤ cb and|Bj | ≤ b, wherec is the
maximum number of children of any search node.

Best-first beam searchis almost identical except that
we replace the function BreadthExpand with
BestExpand(Bj , s(·)) = Bj ∪ s(v∗) − v∗, where
v∗ is the unique highest ranking node inBj . Thus, instead
of expanding all nodes in the beam at each search step,
best-first search is more conservative and only expands
the single best node. Note that unlike breadth-first search
this can result in beams that contain search nodes from
different depths of the search space relative toI.

The training set{〈Si, Pi〉} for our learning problems con-
sists of pairs where theSi = 〈Ii, si(·), fi(·), <i〉 are search
spaces constrained such that eachfi has the same dimen-
sion. ThePi aretarget search pathsthat describe desirable
search paths through the spaceSi. The goal is to learn
ranking functions that can efficiently guide beam search to
keep at least one target path in the beam. For example, Xu
et al. (2007) considered learning in the AI planning domain
where theSi corresponded to AI planning problems, en-
coding the state space and available actions, and thePi en-
coded optimal or satisficing plans for those problems. The

goal was to learn a ranking function that quickly finds at
least one of the target solution plans for each problem.

We represent eachPi = (Pi,0, Pi,1, . . . , Pi,d) as a se-
quence of sets of search nodes wherePi,j contains target
nodes at depthj. Note thatPi,0 = Bi,0 = {Ii}. We will
refer to the maximum sizet of any target node setPi,j as
thetarget widthof Pi. For our hardness results, we need not
assume any special properties of thePi. However, for our
convergence results, we will require that the target trajecto-
ries bedead-end free, which means that for alli andj < d,
eachv ∈ Pi,j has at least one child nodev′ ∈ Pi,j+1.

Intuitively, for a dead-end free training set eachPi repre-
sents a layered direct graph with at least one path from each
target node to a “goal node” inPi,d. Thus, the training set
specifies not only a set of goals for each search space but
also gives possible solution paths to the goals. For simplic-
ity, we assume that all target solution paths have depthd,
but all results easily generalize to non-uniform depths.

For breadth-first beam search we specify a learning
problem by giving a training set and a beam width
〈{〈Si, Pi〉}, b〉. The objective is to find a weight vectorw
that generates a beam trajectory containing at least one of
the target paths for each training instance. More formally,
we are interested in the consistency problem:

Definition 1 (Breadth-First Consistency). Given the in-
put 〈{〈Si, Pi〉}, b〉 wherePi = (Pi,0, Pi,1, . . . , Pi,d), the
breadth-first consistency problem asks us to decide whether
there exists a weight vectorw such that for eachSi, the
corresponding beam trajectory(Bi,0, Bi,1, . . . , Bi,d) using
beam widthb satisfiesBi,j ∩ Pi,j 6= ∅ for eachj?

A weight vector that demonstrates a “yes” answer is guar-
anteed to allow a breath-first beam search of widthb to find
a goal node ind search steps for all training instances.

Unlike for breadth-first beam search, the length of the beam
trajectory required by best-first beam search to reach a goal
node can be greater than the depthd of the target paths.
This is because best-first beam search, does not necessarily
increase the maximum depth of search nodes in the beam
at each search step. Thus, in addition to specifying a beam
width for the learning problem, we also specify a maximum
number of search steps, or horizon,h. The objective is to
find a weight vector that allows a best-first beam search to
find a goal node withinh search steps, while always keep-
ing some node from the target paths in the beam.

Definition 2 (Best-First Consistency). Given the input
〈{〈Si, Pi〉}, b, h〉, wherePi = (Pi,0, . . . , Pi,d), the best-
first consistency problem asks us to decide whether there is
a weight vectorw such that for eachSi there is a beam tra-
jectory(Bi,0, . . . , Bi,k) of beam widthb and lengthk ≤ h
such thatBi,k contains at least one goal node inPi,d and
eachBi,j contains at least one node in

⋃

j Pi,j?

On Learning Linear Ranking Functions for Beam Search

3. Computational Complexity

In this section, we study the computational complexity of
the above consistency problems. We first focus on breadth-
first beam search, and give best-first results at the end. It
is important to note that the size of the search spaces will
typically be exponential in the encoding size of the learn-
ing problem. For example, in planning domains, STRIPS
operators compactly encode exponentially large planning
problems. We measure complexity in terms of the problem
size, not the exponentially larger search space size.

We consider subclasses of breadth-first consistency by
placing constraints on the following problem parameters:
n - the number of training instances,d - the depth of tar-
get solution paths,c - the maximum number of children of
any node,t - the maximum target width of anyPi, andb
- the beam width. We will restrict our attention to prob-
lem classes where the maximum number of childrenc is
polynomial in the problem size, which is true for nearly
all search spaces of interest. We also restrictb to be poly-
nomial in the problem size, which again is a reasonable
assumption since otherwise each beam-search step could
take exponential time. We will also assume that all fea-
ture functions can be evaluated in polynomial time in the
problem size.

We first show that breadth-first consistency is in NP even
for exponentially large search spaces. Given a weight vec-
tor w and beam widthb, we can generate a unique depthd
beam trajectory for each training instance. Here we con-
sider the inverse problem of checking whether a set of
hypothesized beam trajectories, one for each training in-
stance, could have been generated by some weight vector.
The algorithmTestTrajectoriesin Figure 1 efficiently car-
ries out this check. The idea is to construct a linear program
containing constraints onw for generating the trajectories.

Lemma 1. Given a set of search spaces{Si} and a cor-
responding set of beam trajectories{(Bi,0, . . . , Bi,d)} of
width b, the algorithmTestTrajectories(Figure 1) decides
in polynomial time whether there exists a weight vectorw
that can generate(Bi,0, . . . , Bi,d) in Si for all i.

Proof. (Sketch) It can be shown thatw satisfies the con-
straints generated byTestTrajectoriesiff for each i, j,
r(v′, v| <i, w) leads beam search to generateBi,j+1 from
Bi,j . The linear program containsm variables and at most
ndcb2 constraints. Since we are assuming that the maxi-
mum number of children of a nodev is polynomial in the
size of the learning problem, the size of the linear program
is also polynomial and thus can be solved in polynomial
time, e.g. using Karmarkar’s algorithm.

This Lemma shows that we can check certificate beam tra-
jectories efficiently, which implies the following.

Theorem 1. Breadth-first consistency is in NP.

ExhaustiveAlgorithm ({〈Si, Pi〉}, b)
Γ = Enumerate({〈Si, Pi〉}, b)
// enumerates all possible sets of beam trajectories
for eachy = {(Bi,0 . . . , Bi,d)} ∈ Γ

if IsConsistent({Pi}, {(Bi,0 . . . , Bi,d)}) then
if TestTrajectories({Si}, {(Bi,0, . . . , Bi,d)}) then

return w
return false

TestTrajectories({Si}, {(Bi,0, . . . , Bi,d)})
// Si = 〈Ii, si(·), fi(·), <i〉
construct a linear programming problemLP as below

the variables areZ = {z1, z2, . . . , zm}
for i = 1, . . . , n,j = 1, . . . , d

Ci,j =BreadthExpand(Bi,j−1, si(·))
if Bi,j ⊆ Ci,j then

for eachv ∈ Bi,j andv′ ∈ Ci,j − Bi,j

if v′ <i v then
add a constraintZ · fi(v) ≥ Z · fi(v

′)
elseadd a constraintZ · fi(v) > Z · fi(v

′)
else return false

w = LPSolver(LP)// e.g. Karmarkar’s algorithm
if LP is solvedthen

return w
return false

Figure 1.The exhaustive algorithm.

Proof. Given a learning problem〈{〈Si, Pi〉}, b〉 our
certificates correspond to sets of beam trajectories
{(Bi,0, . . . , Bi,d)} each of size at mostO(ndb) which
is polynomial in the problem size. The certificate can
then be checked in polynomial time to see if for eachi,
(Bi,0, . . . , Bi,d) contains a target solution path encoded
in Pi as required by Definition 1. If it is consistent then
according to Lemma 1 we can efficiently decide whether
there is aw that can generate{(Bi,0, . . . , Bi,d)}.

This result suggests an enumeration-based decision proce-
dure for breadth-first consistency as given in Figure 1. The
procedure enumerates sets of beam trajectories, checking
whether they contain target paths and if so callsTestTrajec-
tories. The following gives us the worst case complexity of
this algorithm in terms of the key problem parameters.

Theorem 2. The algorithm in Figure 1 decides breadth-
first consistency and returns a solution weight vector if
there is a solution in timeO

(

(t + poly(m)) (cb)bdn
)

.

Proof. We first bound the number of certificates. Breadth-
first beam search expands nodes in the current beam, re-
sulting in at mostcb nodes, from whichb nodes are se-
lected for the next beam. Enumerating these possible
choices overd levels andn trajectories, one for each
training instance, we can bound the number of certifi-
cates byO

(

(cb)bdn
)

. For each certificate the enumer-
ation process checks consistency with the target paths
{Pi} in time O(tbdn) and then callsTestTrajectories
which runs in time poly(m,ndcb2). The total time com-
plexity then is O

((

tbdn + poly(m,ndcb2)
)

(cb)bdn
)

=

O
(

(t + poly(m)) (cb)bdn
)

.

Not surprisingly the complexity is exponential in the beam

On Learning Linear Ranking Functions for Beam Search

width b, target path depthd, and number of training in-
stancesn. However, it is polynomial in the maximum num-
ber of childrenc and the maximum target widtht. Thus,
breadth-first consistency can be solved in polynomial time
for any problem class whereb, d, andn are constants. Of
course, for most problems of practical interest these con-
stants would be too large to be practical. This leads to the
question of whether we can do better than the exhaustive
algorithm. For at least one problem class we can,

Theorem 3. The class of breadth-first consistency prob-
lems whereb = 1 andt = 1 is solvable in polynomial time.

Proof. (Sketch.) Sincet = 1 each training instance has
exactly one target solution path. In addition, forb = 1
the only beam trajectory consistent with the target path is
the target itself. Thus, we can simply pass the target path
for each instance toTestTrajectoriesand return the result of
that single call in polynomial time.

This problem class corresponds to the case where each
training instance is labeled by exactly a single solution
path and we are asked to find aw that leads a greedy hill-
climbing search, or reactive policy, to follow those paths.

Unfortunately, outside of the above problem classes it ap-
pears that breadth-first consistency is computationally hard
even under strict assumptions. In particular, the following
three results show that if any one ofb, d, or n are allowed
to vary then the consistency problem is hard even when the
other problem parameters are small constants.

First, we show that the problem class whereb is allowed to
vary, butn = 1 , d = 1 andt = 1 is NP-complete. That is, a
single training instance involving a depth one search space
is sufficient for hardness. This problem class, resembles
more traditional ranking problems and has a nice analogy
in the application domain of web-page ranking, where the
depth 1 leaves of our search space correspond to possibly
relevant web-pages for a particular query. One of those
pages is marked as a target page, e.g. the page that a user
eventually went to. The learning problem is then to find
a weight vector that will cause for the target page to be
ranked among the topb pages, where for exampleb may
represent the number of results that can be easily parsed by
a user. Our result shows that this problem is NP-complete.

Theorem 4. The class of breadth-first consistency prob-
lems wheren = 1, d = 1, andt = 1 is NP-complete.

Proof. (Sketch.) We reduce from the Minimum Disagree-
ment problem for linear binary classifiers, which is NP-
complete (Hoffgen et al., 1995). The problem’s input is
a training setS = {x+

1 , · · · , x+
r1

, x−1 , · · · , x−r2
} of positive

and negativem-dimensional vectors and a positive integer
k. We are asked to decide if there is a weight vectorw that
commits at mostk misclassifications, wherew classifies a

x as positive iffw · x ≥ 0 and negative otherwise. GivenS
andk we construct an instance〈〈S1, P1〉, b〉 of breadth-first
consistency as follows. LetS1 = 〈I, s(·), f(·), <〉, where
s(I) = {q0, q1, · · · , qr1+r2

}. For eachi ∈ {1, · · · , r1},
definef(qi) = −x+

i . For eachi ∈ {1, · · · , r2},define
f(qi+r1

) = x−i . Define f(q0) = 0 ∈ Rm, P1 =
({I}, {q0}), and b = k + 1. Define the total ordering
< to be any total ordering in whichqi < q0 for every
i = 1, . . . , r1 andq0 < qi for everyi = r1+1, . . . , r1 +r2.

It can be shown that there exists a linear classifier with at
mostk misclassifications if and only if there exists a so-
lution to the corresponding breadth-first consistency prob-
lem. Intuitively, the target nodeq0 represents zero and the
qi represent positive or negative examples. Anyw that mis-
classifies the example ofqi will rank qi higher thanq0.
Thus, if there are more thank misclassification then the
target nodeq0 will be forced out of the beam.

The next result shows that if we allow the number of train-
ing instances to vary, then the problem remains hard even
when the target path depth and beam width are equal to
one. This problem class can be viewed as a novel form of
multiple-instance learning (Dietterich et al., 1997). Each
training instance can be viewed as a bag ofm-dimensional
vectors, some of which are labeled as positive (i.e. the tar-
get nodes). The learning goal is to find aw that for each
bag, ranks one of the positive vectors as best.

Theorem 5. The class of breadth-first consistency prob-
lems whered = 1, b = 1, c = 6, andt = 3 is NP-complete.

Proof. (Sketch.) We reduce from 3-SAT (Garey & John-
son, 1979). LetQ = {q11∨ q12∨ q13, . . . , qn1∨ qn2∨ qn3}
be the clauses of a 3-SAT instance where theqij are pos-
itive or negative literals over the set of variablesU =
{u1, . . . , um}. We construct a corresponding breadth-first
consistency problem〈{〈Si, Pi〉}, b = 1〉 such that for each
clauseqi1 ∨ qi2 ∨ qi3 there is a single, depth-one train-
ing instance withsi(Ii) = {pi,1, · · · , pi,6}, target paths
Pi = ({Ii}, {pi,1, pi,2, pi,3}), and preference ordering<i

such thatpi,j <i pi,k for j = 1, 2, 3 andk = 4, 5, 6. Let
ek ∈ {0, 1}m denote a vector of zeros except for a 1 in
thek’th component. For eachi = 1, . . . , n, j = 1, 2, 3, if
qij = uk for somek thenfi(pi,j) = ek andfi(pi,j+3) =
−ek/2, if qij = ¬uk for somek thenfi(pi,j) = −ek and
fi(pi,j+3) = ek/2. One can show thatQ is satisfiable
if and only if there exists a solution to the corresponding
breadth-first consistency problem. Intuitively, the numeric
sign of the weight vector components represent truth values
overU and each training instance is constructed so thatw
ranks a target node as best iff a literal in the clause is true
in the corresponding truth assignment.

Finally, we show that when the depthd is variable the con-
sistency problem remains hard even whenb = n = 1.

On Learning Linear Ranking Functions for Beam Search

Theorem 6. The class of breadth-first consistency prob-
lems wheren = 1, b = 1, c = 6, andt = 3 is NP-complete.

Proof. (Sketch.) Given a consistency problemA with
d = 1, b = 1, c = 6 andt = 3, we can construct an equiv-
alent problemB with n = 1, b = 1, c = 6, andt = 3. This
can be done by noting that problemA has multiple depth
one instances and that all of these instances must be satis-
fied to obtain consistency. ProblemB, rather can have only
a single instance but arbitrary depth. We construct problem
B by “stacking” then training instances fromA into a sin-
gle depthn instance. This can be done in a way such that
a w satisfies all of theA instances iff it also satisfies the
singleB instance.

b n d c t Complexity
poly * * poly * NP
K K K poly * P
1 * * poly 1 P

poly 1 1 poly 1 NP-Complete
1 * 1 6 3 NP-Complete
1 1 * 6 3 NP-Complete

Figure 2.Complexity results for breadth-first consistency. Each
row corresponds to a sub-class of the problem and indicates the
computational complexity. K indicates a constant value and
“poly” indicates that the quantity must be polynomially related
to the problem size. * indicates that the quantity is unbounded.

Figure 2 summarizes our main complexity results from this
section for breadth-first consistency. For best-first beam
search, most of these results can be carried over. Recall
that for best-first consistency the problem specifies a search
boundh in addition to a beam width. Using a similar ap-
proach as above we can show that best-first consistency is
in NP assuming thath is polynomial in the problem size,
which is a reasonable assumption. Similarly, one can ex-
tend the polynomial time result for fixedb, n, andd. The
remaining results in the table can be directly transferred
to best-first search, since in each case eitherb = 1 or
d = 1 and best-first beam search is essentially equivalent
to breadth-first beam search in these cases.

4. Convergence of Online Updates

Above we identified a limited set of tractable problem
classes and saw that even very restricted classes remain
NP-hard. We also saw that some of these hard classes had
interesting application relevance. Thus, it is desirable to
consider efficient learning mechanisms that work well in
practice. Below we describe two such algorithms.

4.1. Online Perceptron Updates

Figure 3 gives the LaSO-BR algorithm for learning rank-
ing functions for breadth-first beam search. It is an ex-

tension of the algorithm in Xu et al. (2007) to multiple
target paths and resembles thelearning as search optimiza-
tion (LaSO)algorithm by Daume III and Marcu (2005) for
best-first search. LaSO-BR iterates through each training
instances〈Si, Pi〉, for each one conducting a beam search.
After generating the depthj beam for theith training in-
stance, if none of the target nodes inPi,j are on the beam
then a search error is said to have occurred. In this case, we
perform a Perceptron-style weight update,

w = w + α ·
(
∑

v∗∈Pi,j∩C f(v∗)

|Pi,j ∩ C| −
∑

v∈B f(v)

b

)

where0 < α ≤ 1 is a learning rate parameter,B is the
current beam andC is the candidate set from whichB was
generated (i.e. the beam expansion of the previous beam).
For simplicity we assumef is a feature function for all
training instances. Intuitively this update rule moves the
weights in a direction that increases the rank of the target
nodes that appeared inC, and decreases the rank of non-
target nodes in the beam. Ideally, this will cause at least
one of the target nodes to become preferred enough to re-
main on the beam next time through the search. After the
weight update, the beam is set to the set of target nodes in
C and the search continues. Note that the processing of
each instance is guaranteed to terminate ind search steps.

LaSO-BR ({〈Si, Pi〉}, b)
w ← 0
repeatuntil w is unchangedor a large number of iterations

for everyi
Update-BR(Si, Pi, b, w)

return w

Update-BR (Si, Pi, b, w)
// Si = 〈Ii, si(·), f(·), <i〉 andPi = (Pi,0, . . . , Pi,d)
B ← {Ii} // initial beam
for j = 1, . . . , d

C ← BreadthExpand(B, si(·))
for everyv ∈ C

H(v)← w · f(v) // compute heuristic value ofv
OrderC according toH and the total ordering<i

B ← the firstb nodes inC
if B ∩ Pi,j = ∅ then

w ← w + α ·

P

v∗∈Pi,j∩C f(v∗)

|Pi,j∩C|
−

P

v∈B f(v)

b

!

B ← Pi,j ∩ C
return

Figure 3.Online algorithm for breadth-first beam search.

Figure 4 gives the LaSO-BST algorithm for learning in
best-first beam search, which is a slight modification of
the original LaSO algorithm. The main difference is in
the weight update equation, a change that appears neces-
sary for our convergence analysis. The process is similar to
LaSO-BR except that a best-first beam search is conducted,
which means that termination for each training instance is
not guaranteed to be withind steps. Rather, the number
of search steps for a single training instance remains un-

On Learning Linear Ranking Functions for Beam Search

bounded without further assumptions, which we will ad-
dress later in this section.

LaSO-BST ({〈Si, Pi〉}, b)
w ← 0
repeatuntil w is unchangedor a large number of iterations

for everyi
Update-BST(Si, Pi, b, w)

return w

Update-BST(Si, Pi, b, w)
// Si = 〈Ii, si(·), f(·), <i〉 andPi = (Pi,0, . . . , Pi,d)
B ← {Ii} // initial beam
P̄ = Pi,0 ∪ Pi,2 ∪ . . . ∪ Pi,d

while B ∩ Pi,d = ∅
C ← BestExpand(B, si(·))
for everyv ∈ C

H(v)← w · f(v) // compute heuristic value ofv
OrderC according toH and the total ordering<i

B ← the firstb nodes inC
if B ∩ P̄ = ∅ then

w ← w + α ·

„
P

v∗∈P̄∩C
f(v∗)

|P̄∩C|
−

P

v∈B f(v)

b

«

B ← P̄ ∩ C
return

Figure 4.Online algorithm for best-first beam search.

4.2. Previous Result and Counter Example

Adjusting to our terminology, Daume III and Marcu (2005)
define a training set to belinear separableiff there is weight
vector that solves the corresponding consistency problem.
Also for linearly separable data they defined a notion of
margin of a weight vector, which we refer to here as the
search margin. Intuitively, the search margin ofw is the
maximal value by which all target nodes can be down-
weighted while still maintaining separability of the data.

Definition 3 (Search Margin). The search margin of a
weight vectorw for a linearly separable training set is de-
fined asγ = min{(v∗,v)}(w · f(v∗)−w · f(v)), where the
set{(v∗, v)} contains any pair wherev∗ is a target node
andv is a non-target node that were compared during the
beam search guided byw.

Daume III and Marcu (2005) state that the existence of a
w with positive search margin implies convergence of the
original LaSO. However, we have found that for subtle rea-
sons a positive search margin is not sufficient to guaran-
tee convergence for LaSO, LaSO-BR, or LaSO-BST. Intu-
itively, this is becausew may “by chance” prune parts of
the search space that otherwise would have lead to ranking
errors later in the search. For such coincidental solutions,
the learning algorithms are unable to reliably derive a train-
ing signal that drives them to a solution.

Counter Example 1. We give a training set for which the
existence of a weight vector with positive search margin
does not guarantee convergence to a solution weight vec-
tor for LaSO-BR or LaSO-BST. Consider a problem with a
single training instance with search space shown in Figure
5a, preference orderingC < B < F < E < D < H < G,

and single target pathP = ({A}, {B}, {E}). For b = 2
the weight vectorw = [γ, γ] solves the problem and has
search marginγ. However, tracing through LaSO-BR and
LaSO-BST (or the original LaSO) starting withw′ = 0,
shows that the algorithm converges tow′ = 0 which is not
a solution for this problem.

A

B C D

)0,0()(Bf

E F G H

)0,0()(Ef)0,1()(Ff)0,0()(Gf)0,0()(Hf

)0,1()(Cf)1,1()(Df

)0,0()(Af
A

B C D

)0,0()(Bf

E F G

)1,1()(Ef)5.1,1()(Ff)5.1,1()(Gf

)0,1()(Cf)0,1()(Df

)0,0()(Af

(a) (b)

Figure 5.Counter-examples (a) Search margin (b) Level margin

4.3. Convergence Under Stronger Notions of Margin

Given that linear separability (i.e. a positive search mar-
gin) is not sufficient to guarantee convergence we consider
a stronger notion of margin, thelevel margin, which mea-
sures by how much the target nodes are ranked above (or
below) other non-target nodes at the same search level.

Definition 4 (Level Margin). The level margin of a
weight vectorw for a training set is defined asγ =
min{(v∗,v)}(w · f(v∗)−w · f(v)), where the set{(v∗, v)}
contains any pair such thatv∗ is a target node at some
depthj and v can be reached inj search steps from the
initial search node—i.ev∗ andv are at the same level.

For breadth-first beam search, a positive level margin forw
implies a positive search margin, but not necessarily vice
versa, showing that level margin is a strictly stronger notion
of separability. LetR be a constant such that for all training
instances, for all nodesv andv′, ‖f(v) − f(v′)‖ ≤ R.

Theorem 7. Given a dead-end free training set such that
there exists a weight vectorw with level marginγ > 0 and
‖w‖ = 1, LaSO-BR will converge with a consistent weight
vector after making no more than(R/γ)2 weight updates.

Proof. (Sketch.) First note that the dead-end free property
of the training data can be used to show that unless the cur-
rent weight vector is a solution it will eventually trigger a
“meaningful” weight update (one where the previous can-
didate set contains target nodes).

Let wk be the weights just before thek′th mistake is made
on training instance〈Si, Pi〉, whenB∩Pi,j is empty, where
B is the depthj beam andC is the candidate set from which
B was selected. The occurrence of the mistake indicates
that,∀v∗ ∈ Pi,j ∩C, v ∈ B, wk ·f(v∗) ≤ wk ·f(v), which
lets us derive an upper bound for‖wk+1‖2. DenotingC ′ =
Pi,j ∩ C we get,

On Learning Linear Ranking Functions for Beam Search

‖wk+1‖2 = ‖wk +

P

v∗∈C′ f(v∗)

|C′|
−

P

v∈B
f(v)

b
‖2

= ‖wk‖2 + ‖

P

v∗∈C′ f(v∗)

|C′|
−

P

v∈B
f(v)

b
‖2

+ 2w
k · (

P

v∗∈C′ f(v∗)

|C′|
−

P

v∈B
f(v)

b
)

≤ ‖wk‖2 + R
2

where the inequality follows becausewk ·(f(v∗)−f(v)) ≤
0 for all v∗ ∈ C ′, v ∈ B and our assumptions onR. By
induction we can get‖wk+1‖2 ≤ kR2. We now derive a
lower bound forw · wk+1.

w · wk+1 = w · wk + w · (

P

v∗∈C′ f(v∗)

|C′|
−

P

v∈B
f(v)

b
)

= w · wk +

P

v∗∈C′ w · f(v∗)

|C′|
−

P

v∈B
w · f(v)

b

≥ w · wk + γ

This inequality follows from the definition of the level mar-
gin. By induction we get thatw · wk+1 ≥ kγ. Combining
this result with the above upper bound on‖wk+1‖ and the
fact that‖w‖ = 1 we get that

√
kR ≥ ‖w‖‖wk+1‖ ≥

w · wk+1 ≥ kγ, which implies the mistake bound.

LaSO-BST and LaSO do not have such a guarantee since
their beams can contain nodes from multiple levels.

Counter Example 2. We give a training set for which the
existence of aw with positive level margin does not guar-
antee convergence for LaSO-BST. Consider a single train-
ing example with the search space in Figure 5b, single tar-
get pathP = ({A}, {B}, {E}), and preference ordering
C < B < E < F < G < D. The weight vector
w = [2γ, γ] has a level margin ofγ. However, if we follow
LaSO-BST (or the original LaSO) started with the weight
vectorw′ = 0 andb = 2, the algorithm will converges to
w′ = 0 which is not a solution for this problem.

To guarantee convergence of LaSO-BST, we require an
even stronger notion of margin,global margin, which mea-
sures the rank difference between any target node and any
non-target node, regardless of search space level.

Definition 5 (Global Margin). The global margin of a
weight vectorw for a training set is defined asγ =
min{(v∗,v)}(w · f(v∗)−w · f(v)), where the set{(v∗, v)}
contains any pair such thatv∗ is any target node andv is
any non-target node in the search space.

Note that ifw has a positive global margin then it has a
positive level margin. The converse is not necessarily true.
The global margin is similar to the common definitions of
margin used to characterize the convergence of linear Per-
ceptron classifiers (Novikoff, 1962).

To ensure convergence of LaSO-BST we also assume that
the search spaces are all finite trees. This avoids the possi-
bility of infinite best-first beam trajectories that never ter-
minate at a goal node. Tree structures are quite common
in practice and it is often easy to transform a finite search
space into a tree. The applications in (Daume III & Marcu,
2005) and (Xu et al., 2007) only involved finite trees.

Theorem 8. Given a dead-end free training set of finite
tree search spaces such that there exists a weight vectorw
with global marginγ > 0 and ‖w‖ = 1, LaSO-BST will
converge with a consistent weight vector after making no
more than(R/γ)2 weight updates.

The proof is similar to that of Theorem 7 except that the
derivation of the lower bound makes use of the global mar-
gin and we must verify that the restriction to finite tree
search spaces guarantees that each iteration of LaSO-BST
will terminate with a goal node being reached. We were un-
able to show convergence for the original LaSO algorithm
even under the assumptions of this theorem.

In summary, we introduced three different notions of mar-
gin here: search margin, level margin, and global mar-
gin. Both algorithms converge for a positive global mar-
gin, which implies a positive search margin and a positive
level margin. For LaSO-BR, but not LaSO-BST, conver-
gence is guaranteed for a positive level margin, which im-
plies a positive search margin. Finally, a positive search
margin corresponds exactly to linear separability, but is not
enough to guarantee convergence for either algorithm. This
is in contrast to results for classifier learning, where linear
separability implies convergence of Perceptron updates.

5. Convergence for Ambiguous Training Data

Here we study convergence for linearly inseparable train-
ing data. Inseparability is often the result of training-data
ambiguity, in the sense that many “good” solution paths
are not included as target paths. For example, this is com-
mon in AI planning where there can be many (nearly) opti-
mal solutions, many of which are inherently identical (e.g.
differing in the orderings of unrelated actions). It is usu-
ally impractical to include all solutions in the training data,
which can make it infeasible to learn a ranking function that
strictly prefers the target paths over the inherently identical
paths not included as targets. In these situations, the above
notions of margin will all be negative. Here we consider
the notion ofbeam marginthat allows for some amount of
ambiguity, or inseparability. The following generalizes the
analysis in (Xu et al., 2007) to our setting where multiple,
rather than single, target paths are allowed per search space.

For each instance〈Si, Pi〉, whereSi = 〈Ii, si(·), f(·), <i〉
andPi = {Pi,1, Pi,2, . . . , Pi,di

}, letDij be the set of nodes
that can be reached inj search steps fromIi. That is,Dij

On Learning Linear Ranking Functions for Beam Search

is the set of all possible non-target nodes that could be in
beamBi,j . A beam margin is a triple(b′, δ1, δ2) whereb′

is a non-negative integer, andδ1, δ2 ≥ 0.

Definition 6 (Beam Margin). A weight vectorw has beam
margin(b′, δ1, δ2) on a training set{〈Si, Pi}〉}, if for each
i, j there is a setD′ij ⊆ Dij such that|D′ij | ≤ b′ and

∀v
∗ ∈ Pi,j , v ∈ Dij − D

′
ij , w · f(v∗) − w · f(v) ≥ δ1 and,

∀v
∗ ∈ Pi,j , v ∈ D

′
ij , δ1 > w · f(v∗) − w · f(v) ≥ −δ2

A weight vectorw has beam margin(b′, δ1, δ2) if at each
search depth it ranks the target nodes better than most other
nodes (those inDij − D′ij) by a margin of at leastδ1, and
ranks at mostb′ nodes (those inD′ij) better than the target
nodes by a margin no greater thanδ2. Whenever this con-
dition is satisfied we are guaranteed that a beam search of
width b > b′ guided byw will solve all of the training prob-
lems. The case whereb′ = 0 corresponds to the level mar-
gin, where the data is separable. By consideringb′ > 0 we
can consider cases where there is no “dominating” weight
vector that ranks all targets better than all non-targets atthe
same level. For large enough beam widths, dependent on
the beam margin, we can show convergence of LaSO-BR.

Theorem 9. Given a dead-end free training set such
that there exists a weight vectorw with beam margin
(b′, δ1, δ2) and ‖w‖ = 1, then for any beam width
b > (1 + δ2/δ1) b′ = b∗, LaSO-BR will converge with
a consistent weight vector after making no more than
(R/δ1)

2 (
1 − b∗b−1

)−2
weight updates.

Proof. Let wk be the weights before thek′th mistake is
made. Thenw1 = 0. Suppose thek′th mistake is made
whenB∩Pi,j = ∅ whereB is the beam generated at depth
j for the ith training instance. We can derive the upper
bound of‖wk+1‖2 ≤ kR2 as the proof in Theorem 7.

Next we derive a lower bound onw · wk+1. Denote by
B′ ⊆ B the set of nodes in the beam such thatδ1 > w ·
(f(v∗) − f(v)) ≥ −δ2 and letC ′ = Pi,j ∩ C. By the
definition of beam margin, we have|B′| < b′.

w · wk+1 = w · wk + w · (

P

v∗∈C′ f(v∗)

|C′|
−

P

v∈B
f(v)

b
)

= w · wk + w ·
X

v∈B−B′

P

v∗∈C′ f(v∗)

|C′|
− f(v)

b

+ w ·
X

v∈B′

P

v∗∈C′ f(v∗)

|C′|
− f(v)

b

≥ w · wk +
(b − b′)δ1

b
−

b′δ2

b

By induction, we get thatw·wk+1 ≥ k (b−b′)δ1−b′δ2

b
. Com-

bining this result with the above upper bound on‖wk+1‖
and the fact that‖w‖ = 1 we get that1 ≥ w·wk+1

‖w‖‖wk+1‖ ≥

√
k δ1(b−b′)−δ2b′

bR
. The mistake bound follows by noting that

b > b∗ and algebra.

When there is a positive level margin (i.e.b′ = 0), the mis-
take bound reduces to(R/δ1)

2, which does not depend on
the beam width and matches the result for separable data.
This is also the behavior whenb >> b′. Whenδ1 = δ2 and
we use the minimum beam width allowed by the theorem
b = 2b′+1, the bound is((2b′ + 1)R/δ1)

2, which is a fac-
tor of (2b′+1)2 larger than whenb >> b′. This shows that
as we increaseb (i.e. the amount of search), the mistake
bound decreases, suggesting that learning becomes easier.
This agrees with the intuition that the more computation
we put into search the less we need to learn. Indeed, in the
case of exhaustive search no learning is needed at all.

6. Summary

We studied the computational complexity of learning rank-
ing functions for beam search and the convergence of
online Perceptron updates. The results identified core
tractable and intractable subclasses and clarified conver-
gence issues. We also considered convergence in the case
of ambiguous training data, giving a result that highlights
the trade-off between the amount of allowed search and the
difficulty of the resulting learning problem.

Acknowledgments

We thank the reviewers and Hal Daume III for useful com-
ments/discussions. This work was supported by NSF grant
IIS-0307592 and DARPA contract FA8750-05-2-0249.

References
Agarwal, S., & Roth, D. (2005). Learnability of bipartite ranking

functions.COLT-05.

Daume III, H., & Marcu, D. (2005). Learning as search opti-
mization: Approximate large margin methods for structured
prediction.ICML-05.

Dietterich, T., Lathrop, R., & Lozano-Perez, T. (1997). Solv-
ing the multiple-instance problem with axis-parallel rectangles.
Artificial Intelligence, 89, 31–71.

Garey, M. R., & Johnson, D. S. (Eds.). (1979).Computers and
intractability: A guide to the theory of np-completeness. New
York: W. H. Freeman and Company.

Hoffgen, K.-U., Simon, H.-U., & Horn, K. S. V. (1995). Robust
trainability of single neurons.Journal of Computer and System
Sciences, 50, 114–125.

Novikoff, A. (1962). On convergence proofs on perceptrons.Sym-
posium on the Mathematical Theory of Automata.

Xu, Y., Fern, A., & Yoon, S. (2007). Discriminative learning of
beam-search heuristics for planning.IJCAI-07.

