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Abstract

The multiple instance problem arises in tasks where the training examples are
ambiguous� a single example object may have many alternative feature vectors �in�
stances� that describe it� and yet only one of those feature vectors may be responsi�
ble for the observed classi�cation of the object� This paper describes and compares
three kinds of algorithms that learn axis�parallel rectangles to solve the multiple�
instance problem� Algorithms that ignore the multiple instance problem perform
very poorly� An algorithm that directly confronts the multiple instance problem �by
attempting to identify which feature vectors are responsible for the observed classi�
�cations� performs best� giving 	
� correct predictions on a musk�odor prediction
task� The paper also illustrates the use of arti�cial data to debug and compare these
algorithms�

� Introduction

Consider the following learning problem� Suppose there is a keyed lock on
the door to the supply room in an o�ce� Each sta� member has a key chain
containing several keys� One key on each key chain can open the supply room
door� For some sta� members� their supply room key opens only the supply
room door� while for other sta� members� their supply room key may open one
or more other doors �e�g�� their o�ce door� the mail room door� the conference
room door��

Preprint submitted to Elsevier Science � November ����



Suppose you are a lock smith and you are attempting to infer the most general
required shape that a key must have in order to open the supply room door�
If you knew this required shape� you could predict� by examining any key�
whether that key could unlock the door� What makes your lock smith job
di�cult is that the sta� members are uncooperative� Instead of showing you
which key on their key chains opens the supply room door� they just hand you
their entire key chain and ask you to 	gure it out for yourself
 Furthermore�
you are not given access to the supply room door� so you can�t try out the
individual keys� Instead� you must examine the shapes of all of the keys on
the key rings and infer the answer�

We call this kind of learning problem the multiple instance problem� It arises
in complex applications of machine learning where the learning system has
partial or incomplete knowledge about each training example� In traditional
supervised learning problems� the learning system is given training examples
of the form fhobjecti� resultiig� This situation is depicted in Figure ��a�� Each
object is typically represented as a 	xedlength vector of attribute values �usu
ally called a �feature vector���

However� as machine learning applications become more complex� the situation
shown in Figure ��b� can arise� Here� the learner has incomplete information
about each training example� Rather than knowing that each training exam
ple can be represented as a feature vector� the learner only knows that each
example can be represented by one of a set of potential feature vectors� In our
lock smith problem� instead of knowing which key �from each key chain� opens
the supply room� the learning system only knows that one of the keys on the
key chain opens the door�

An early example of this learning situation arose in the MetaDENDRAL
project ������� In MetaDENDRAL� the goal was to learn rules that could pre
dict the behavior of molecules inside a mass spectrometer� A mass spectrome
ter bombards a molecule with high energy particles� which causes the molecule
to break into fragments� These fragments are then analyzed to produce a his
togram of their masstocharge ratio� which is called a mass spectrum� The
main problem in MetaDENDRAL was to predict which bonds would break�
Each molecule is analogous to a key chain� and each bond is analogous to an
individual key� By observing several molecules �and the resulting fragments��
MetaDENDRAL was able to formulate a small number of bondbreakage rules
that accounted for the observed fragments�

A similar situation arises in explanationbased learning with a �promiscuous�
domain theory ����� Given an input example� the domain theory can construct
multiple explanations that account for the observed result� The learning task
is to examine several training examples and 	nd one explanation that can
account for all of the observed results� In this case� each example is like the
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key chain� and each alternative explanation is like an individual key�

The multiple instance problem also arises in the application domain of drug
activity prediction� which is of central importance in this paper� In this do
main� the input object is a molecule� and the observed result is a measurement
of the degree to which the molecule binds to a target �binding site�� A binding
site is a cavity or pocket �part of a much larger molecule� into which the input
molecule binds� A good drug molecule will bind very tightly to the desired
binding site� while a poor drug molecule will not bind well� The variant in
stances are alternative �conformations� of the molecule�alternative shapes
that the molecule can adopt by rotating its bonds� One �or a few� of these
shapes actually bind to the binding site and produce the observed result� The
other conformations typically have no e�ect on binding� The learning task is
to infer the requirements for the observed drug activity�

This is directly analogous to the lock smith problem� Each molecule is like
a key chain� The di�erent shapes that it can adopt �the conformations� are
like individual keys� The goal is to infer the most general shape required for
binding to the binding site �opening the lock��

Drug activity can be measured in many ways� In some settings� a laboratory
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assay can measure the kinetics of the binding reaction and determine the
binding strength directly� In other settings� activity is measured by its observed
biological e�ect� For example� in the musk odor prediction task described
below� activity is measured by human subjects who characterize a chemical
compound as �active� or �inactive��

The availability of �inactive� molecules is one aspect of the drug activity
problem that extends beyond the lock smith problem� For an inactive molecule�
we know that none of its possible conformations �shapes� can bind to the
binding site� In the lock smith problem� this would be analogous to having
some key chains from people in other businesses where we know that none of
the keys on their key chains open the supply room door�

In this paper� we will let M be the set of possible objects mi� Each object mi

has an observed result� f�mi�� Because our musk data is labeled as �active�
or �inactive�� we will treat f�mi� as a binary quantity� f�mi� � � for �active�
molecules� and f�mi� � � for �inactive� molecules� The function f represents
the unknown process� The goal of learning is to 	nd a good approximation �f
to f by analyzing a set of training examples drawn from M and labeled by f �

In ordinary supervised learning� we would usually represent each object mi �
M by a vector of n realvalued features� V �mi� � Rn� Indeed� most machine
learning papers make no distinction between the objects and their feature
vectors because of this onetoone correspondence� A labeled training example
thus has the form

hV �mi�� f�mi�i�

However� in the setting of Figure ��b�� each object mi may have �i variant in
stances denoted mi��� mi��� � � � � mi��i� Each of these variants will be represented
by a �usually� distinct feature vector V �mi�j�� A complete training example is
therefore written as

hfV �mi���� V �mi���� � � � � V �mi��i�g� f�mi�i�

In other words� the representation for each training example is ambiguous� and
a machine learning algorithm must overcome this ambiguity� We will assume
that the complete set of variants is 	nite and known to the learning algorithm�

It is a property of all of the domains described above that if the observed result
is �positive� �e�g�� �active� in drug design� �present� in mass spectrometry��
then at least one of the variant instances must have produced that positive
result� Furthermore� if the observed result is �negative�� then none of the
variant instances could have produced a positive result� We can model this by
introducing a second function g�V �mi�j�� that takes a single variant instance
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and produces a result� The externallyobserved result� f�mi�� can then be
de	ned as follows�

f�mi� �

���
��
� if � j g�V �mi�j�� � �

� otherwise�

In short� object mi is predicted to be a positive example if and only if there
exists at least one feature vector formi �one variant instance� that is predicted
to be positive according to g� This de	nition allows for the possibility that
more than one variant is predicted positive by g�

We will refer to all of the variants of positive examples as positive instances�
even though only one of them may have produced the positive result� Similarly�
we will refer to all of the variants of a negative example as negative instances�

In the remainder of the paper� the goal of the machine learning algorithm will
be to construct an approximation �g to the internal function g� An hypothesis �g
is consistent with a set of training examples if it classi	es every feature vector
of every negative example as negative and if it classi	es at least one feature
vector of every positive example as positive�

We call this learning problem the �multiple instance problem�� because each
training example is represented by multiple instances �or feature vectors��
The goal of this paper is to demonstrate that the multipleinstance problem
is an important problem and to compare the e�ectiveness of three general
approaches to solving the problem in the case where an axisparallel rectangle
bias is appropriate�

The paper begins by describing an application domain�drug activity prediction�
in which the multiple instance problem arises� We then describe a feature
representation for this application for which a good bias would appear to be
axisparallel hyperrectangles �APRs�� We consider three general designs for
APR learning algorithms�

� A noisetolerant �standard� algorithm� The naive APR algorithm just forms
the smallest APR that bounds the positive examples� We explore a noise
tolerant version of this algorithm that ignores the multipleinstance prob
lem�

� An �outsidein� algorithm� This algorithm is a variation on the �standard�
algorithm� It constructs the smallest APR that bounds all of the positive ex
amples and then shrinks this APR to exclude false positives� The �shrinking
process� addresses the multipleinstance problem�

� An �insideout� algorithm� This algorithm starts with a seed point in feature
space and �grows� a rectangle with the goal of 	nding the smallest rectangle
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that covers at least one instance of each positive example and no instances
of any negative example� We found it necessary to expand the resulting
APR �via a statistical technique� in order to get good performance�

Our results show that the �insideout� algorithm performs much better than
either of the others� We will present evidence that this is because the �inside
out� algorithm can identify the relevant features better than the �outsidein�
algorithm� The results will also demonstrate that the �standard� algorithm
performs much worse than either of the others�this will argue that the multi
ple instance problem cannot be ignored but instead must be considered during
the design of learning algorithms�

To conduct this research and obtain these results� we found it extremely valu
able to develop an arti	cial data set that mimics the behavior of the real data�
This was valuable for several reasons�

� The two real data sets under study contained only �� and ��� examples each�
Hence� there was a great danger of over	tting on these data sets� Over	tting
could occur during a single run� An even greater risk was that the entire
algorithm development process would over	t the data as we attempted to
improve crossvalidated accuracy�

� An arti	cial data set allowed us to develop and debug our algorthms with
data for which the �right answer� was known� This substantially improved
the e�ciency of our research�

� To construct the arti	cial data set� we were forced to carefully analyze our
real data sets in order to understand how they might have been generated�
This provided many ideas for new algorithms�

The remainder of the paper is therefore organized as follows� After describing
the application domain� we present an analysis of the data sets under study�
Based on this analysis� we then describe our arti	cial data set�

Next� we present each of the three algorithm designs and compare their per
formance on the arti	cial data� Runs on the arti	cial data help determine
parameter values for the learning algorithms� Finally� we run the learning
algorithms on our two realworld data sets and summarize the results�

� Drug Activity Prediction

The algorithms described in this paper were motivated by the task of drug
activity prediction�
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��� Background

Most drugs are small molecules that work by binding to much larger protein
molecules such as enzymes and cellsurface receptors� The potency of a drug is
determined by the degree to which it binds to the larger� target molecule� Drug
molecules typically do not bind covalently to target molecules� Instead� they
exploit a variety of weak interactions including �a� hydrogen bonds� �b� van der
Waals attractions� �c� electrostatic �charge� interactions� and �d� hydrophobic
interactions� The �right� molecular shape conforms closely to the shape of
the binding site �which enables van der Waals attractions and hydrophobic
interactions over large surface areas� and presents electronically active surface
atoms near complementary binding site atoms �which enables electrostatic
and hydrogen bond interactions�� An analogy is often drawn to a lock and
key� A key will operate a lock only if its shape is complementary to the shape
of the lock�

The goal of drug activity prediction is to predict the activity of new �notyet
synthesized� molecules by analyzing a collection of training examples con
sisting of previouslysynthesized molecules and their observed activities when
binding to a binding site of medical interest� By focusing the expensive and
timeconsuming e�orts of chemists on synthesizing the most promising candi
date molecules� accurate drug activity predictions could yield large savings in
time and money for pharmaceutical companies�

An even greater bene	t of applying machine learning to drug activity predic
tion would be to guide the process of drug design� If chemists could obtain
a three dimensional model of the requirements for drug activity� they would
be able to design better drugs� Sometimes the shape of the binding site can
be inferred from Xray crystallography and used to guide drug design �����
In many practical cases� however� the shape of the binding site is unknown�
and machine learning methods might be able to provide a three dimensional
shape hypothesis to support drug design� Such �rational� drug design could
cut years o� the time required to discover new drugs� It could also result in
drugs with higher potency and fewer sidee�ects�

��� The Multiple Instance Problem

The multiple instance problem arises in drug activity prediction because of
our choice of representation for the drug molecules� Hence� we must describe
why we selected a representation that creates the multiple instance problem�

Because binding strength is largely determined by the shape of drug molecules�
a good representation must capture the shape of each molecule� Unfortunately�
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Rotated Bond

Fig� � The shape of a molecule changes as it rotates internal bonds� �Thin lines
indicate molecular surface��

molecules can adopt multiple shapes by rotating some of their internal bonds
as shown in Figure �� Hence� any representation that captures the shape of a
molecule will produce multiple feature vectors as the shape changes�

Every combination of angles of the rotatable bonds of a molecule de	nes a
�conformation�� Each conformation has a potential energy that is determined
by the interactions between the atoms making up the molecule� �This is analo
gous to the gravitational potential energy between two objects separated by a
speci	ed distance�� At ordinary temperatures� the conformation of a molecule
in solution is rapidly changing� The probability that the molecule will adopt
a particular conformation depends exponentially on the potential energy of
that conformation according to the Boltzmann distribution�lowenergy con
formations are much more probable than highenergy conformations� Hence�
in practice� the only conformations in which the molecule is likely to bind to
the binding site are conformations of low energy �i�e�� within � kcals of the
lowest possible energy for any conformation of the molecule��

We make the �standard� assumption that only conformations that correspond
to local energy minima are possible candidates for binding� For a molecule
with n rotatable bonds� one can usually expect to 	nd O��n� local minimum
conformations� Fortunately� only a fraction of these will be of su�ciently low
energy� These low energy conformations can be computed by several meth
ods including Monte Carlo search of bondangle space� systematic bondangle
search� and molecular dynamics �which simulates the motions of the atoms us
ing Newtonian mechanics�� In the remainder of this paper� we will restrict our
attention to these low energy conformations� Each low energy local minimum
conformation will create a distinct feature vector for input to the learning
algorithm�

There are some approaches to drug activity prediction that avoid the multiple
instance problem� One approach is to employ a representation that is invariant
to changes in bond angles� Previous research in drug activity prediction has
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attempted to use such representations �e�g�� notably methods derived from
the work of Hansch �������� and some success has been reported for simple
molecules or for families of molecules having large amounts of shared structure
������ For diverse molecules of the type studied in this paper� these methods
have not been very successful ����

Another approach is to employ a shapeoriented representation� but to attempt
to guess in advance which conformation of each molecule is the biologically
active one� The CoMFA method ��� has shown the promise of shapebased
representation� but it has di�culty picking the right conformations� Other
methods that employ some form of shape representation include Koehler�
RowbergSchaefer  Hop	nger ����� Good� So�  Richards ����� and Vedani�
Zginden  Snyder �����

A method that confronts the multipleinstance problem directly is the elegant
distancegeometry approach of Crippen ���� Unfortunately� combinatorial ex
plosions in the search space of their approach limit the complexity of their
bindingsite hypotheses to constraints on the positions of four or 	ve key
atoms� The approach that we describe can learn detailed constraints on the
position of the entire molecular surface�

��� A ray�based representation for molecular shape

Figure � shows the representation that we employed to capture the shape of
molecules� We constructed a set of ��� rays emanating from the origin so
that they sample space approximately uniformly� To extract features from a
molecule� the molecule is placed in a standard position and orientation so that
the origin lies inside it� From these ��� rays� ��� feature values are measured�
Each feature value is the distance from the origin to the molecule surface� We
computed the molecular surface by Connolly�s ��� method with a probe radius
of ���!A� In addition to these ��� �shape� features� we also computed four
domainspeci	c features that represented the position of a designated atom
�an oxygen atom� on the molecular surface �see below��

To determine the standard position and orientation of each molecule� all of
the molecules were aligned to one another via translation and rotation� These
alignments were carried out by an ad hoc algorithm that superimposed the
atoms in the benzene rings of the molecules � and then attempted to place
the designated oxygen atom at one of two positions that could support the
formation of a hydrogen bond�

�A benzene ring is a planar ��member ring of carbon atoms with a very strong
de�localized bonding structure� It is denoted by a hexagon with alternating single
and double bonds� Every one of our molecules contains at least one benzene ring�
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Fig� �� A schematic diagram of the ray�based representation �only 	 rays are shown��
Thick curve indicates molecular surface�

This raybased representation is su�cient for molecules that have a com
pact� spheroidal shape� Similar representations could easily be constructed
for molecules with other shapes such as long columns� curved segments� or
even loops� This representation was su�cient for the molecules studied in this
paper�

Note that as the shape of a molecule changes from one conformation to an
other� the distances measured along the rays will change� Hence� di�erent con
formations will be represented by distinct feature vectors� Also note that the
measured feature values are locally correlated� values measured along adjacent
rays will be quite similar� This suggests that the actual number of features re
quired to characterize active molecules�the number of relevant features�will
probably be substantially less than ����

The raybased representation immediately suggests a representation for hy
potheses� Let us suppose that the binding site requires that the surface of
the molecule be in certain locations� Then� by placing an upper and lower
bound along each ray� we can describe the allowed positions of the molecular
surface along each ray� For wellseparated rays� it is likely that the allowed
positions along each ray are independent� because each surface patch of the
molecule interacts with a di�erent surface patch on the binding site� Hence�
the bounds along the rays correspond to an axisparallel hyperrectangle in
the ���dimensional feature space� Figure � shows that these bounds can be
twosided or onesided� they can require that the molecule �stick out� beyond
a certain distance �via a lower bound on the ray�� they can require that the
molecule not �stick out� too far �via an upper bound on the ray�� Both of
these conditions re"ect important domain interactions� A lower bound may
require the molecule to extend far enough to make critical van der Waals or
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Fig� �� A schematic diagram of a binding hypothesis represented as bounds along
the rays� If the molecular surface satis�es the bounds� then the molecule is predicted
to be active� Rays x� and x� have two�sided bounds� x� has an upper bound only�
x� has a lower bound only� and rays x�� x�� and x� are unconstrained �irrelevant
for binding��

hydrophobic interactions with the binding site� An upper bound may prohibit
the molecule from colliding with the wall of the binding site�

��� Predicting musk strength

To develop our learning methods for drug activity prediction� we chose to
study the problem of predicting the strength of synthetic musk molecules�
This problem had several attractive aspects� �a� it is nonproprietary� �b� a
large number of musk compounds and similar nonmusk compounds have been
published in the open literature� �c� the identity and shape of the binding site
or sites is unknown� and �d� the molecules are similar in size and composi
tion to orallyactive drug molecules� The only aspect of the musk problem
that is substantially di�erent from typical pharmaceutical problems is that
musk strength is measured qualitatively by expert human judges� whereas
drug activity is usually measured quantitatively through biochemical assays�
This makes the musk problem somewhat more di�cult�

We surveyed the literature on musk compounds ����������������� and selected
two �overlapping� data sets of musk molecules� Because of the subjective na
ture of the test for musk strength� there is quite a bit of variation from one
paper to another� We considered only compounds that appeared in at least
� publications and for which all published musk judgements agreed� Data set
� contains �� musk molecules and �� similar nonmusk molecules� Data set �
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Table �
The musk data sets

Data Set Musks Non�Musks Total Low�energy conformations

� �� �� 
 ���

 �
 �� �� ��
	

O O

O O

Fig� �� Four musk molecules

contains �� musks and �� nonmusks� �� of the molecules are shared between
the two data sets�

Once the molecules had been identi	ed and their bond graphs entered into the
computer� it was necessary to search the space of possible conformations of
each molecule to 	nd lowenergy minima� For both data sets� we employed the
Monte Carlo search algorithm implemented in the MacroModel program ������
to minimize the AMBER force 	eld �������� For Data Set �� a subset of the
resulting lowenergy conformations for each molecule was chosen to maximize
the pairwise rootmeansquare distances between the atom positions of each
pair of conformations� The goal was to obtain a small set of diverse lowenergy
conformations for each molecule�

For data set �� we selected the molecules more carefully� We are more cer
tain that the molecules have been properly classi	ed� and the conformational
searching was much more thorough� All conformations produced by Macro
Model were retained� Despite the larger number of molecules� this second data
set has been more di�cult for learning algorithms because it contains many
more conformations� This is indirect evidence of the di�culties created by the
multiple instance problem� Table � summarizes the two data sets�

Figure � shows four molecules from our training data set� The molecules are
made up entirely of carbon and hydrogen atoms with the exception of one
oxygen� Previous authors have concluded that the oxygen is critical for musk
strength� Hence� we added four oxygen features to the ��� shape features�
Three of these features measure the X� Y� and Z displacements of the oxy
gen atom from a designated point in space� The fourth feature measures the
Euclidean distance between the oxygen atom and the designated point� These
features were chosen so that the axisparallel rectangle method of representing
binding requirements could still be employed�
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��� Related Work

The research reported in this paper grew out of initial e�orts at Arris Phar
maceutical Corporation to apply machine learning to drug activity prediction�
Subsequent work at Arris has produced an APRlike neural network algorithm�
called COMPASS �������� that improves upon the algorithms reported here�
One advantage of COMPASS is that it is more robust to errors in the initial
alignment of the molecules�during the learning process� COMPASS automat
ically optimizes the relative alignment of the molecules� Another advantage
is that COMPASS can handle activity prediction tasks in which the activi
ties are continuous quantities� while the work reported here can make only
active#inactive classi	cations�

The primary contribution of the work reported here is that it demonstrates the
critical importance of solving the multiple instance problem� and it shows how
to solve this problem for hypotheses represented as axisparallel rectangles�
Axisparallel rectangles are generally easier to interpret than neural networks�
and we expect that there will be new applications for the algorithms described
in this paper�

� Data Analysis of Musk Data Set �

In any application problem� it is important to analyze the data to assess what
biases might be appropriate and to gain other insights that can help guide the
choice of learning algorithms� Hence� we performed a fairly detailed analysis
of the 	rst musk data set� which is presented in this section�

An additional motive for data analysis was to help us design an arti	cial data
set with properties similar to the musk data� but where we could specify the
�right answer�� This has been extremely helpful during algorithm debugging
and sensitivity testing� It also was critical in helping us reduce �over	tting� to
the real musk data set� Arti	cial data sets have also proven useful in the devel
opment of DNA sequence assembly algorithms ������� and in the comparison
of learning algorithms ����

We began by constructing a hyperrectangle that tightly contains all of the
data� We then computed the width of the bounds along each ray and plot
ted the histogram shown in Figure �� All feature values are measured in hun
dredths of angstroms �!A��centiangstroms �c!A�� Note that there is substantial
variation �e�g�� at least �!A and typically ���!A� along nearly every ray� Only a
few rays have tight bounds� and many of these correspond to regions of the
musk molecule above and below the benzene ring where there is essentially no
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Fig� �� Histogram of the width of the bounds of an APR that tightly contains all
feature vectors in Musk Data Set �

variation in the data set�

Figure � shows the actual lower and upper bounds for an APR enclosing all of
the data and an APR enclosing only the positive feature vectors� All variant
instances of each molecule are included� The features are sorted in ascending
order of the width of the positiveonly APR bounds� Note that there is only a
small separation between the positiveonly APR and the alldata APR� This
suggests that bounds on any single ray will not eliminate very many negative
molecules�

Figure � shows an enlarged view of the left end of Figure � where the positive
only bounds are tight� Notice that the positiveonly upper bounds give better
separation from the alldata upper bounds in this region� This suggests that
features with narrow bounds are better at discriminating between positive and
negative examples than features that have wide bounds�

Figure � shows a kernel density estimate of the positive and negative feature
vectors along feature ��� which is typical of other features� A kernel density
estimate is constructed by placing a small gaussian at each observed feature
value and then summing those gaussians to construct a probability distribution
����� We used gaussians with a standard deviation of ��c!A�

From Figure � we can see that the distribution of positive and negative ex
amples is very similar� It appears that we could separate a few negatives from
the positives by placing a bound at ���� Note also that there is a large central
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Fig� 	� Expanded view of the �� tightest bounds from Figure ��

peak� Most features have one� two� or at most three such central peaks� and
the peaks of the positive and negative densities nearly always coincide� Hence�
we can see that this is a very di�cult learning problem�

To get a crude idea of how hard it will be to exclude all of the negative
instances� we can compute the number of bounds along which each negative
instance lies outside the positiveonly APR� Figure �� shows a histogram of the
number of bounds that can exclude each negative� Note that several negative
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instances cannot be excluded at all by the positiveonly APR� However� for
those that can be excluded� the number of excluding bounds is distributed
roughly exponentially with mean ����
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Fig� ��� Display of multiple instances along feature �� Musk Data Set �� The
horizontal axis shows the value of feature � for each instance� The vertical axis
is an arbitrary numbering of the molecules such that all positive molecules appear
below all negative molecules� Each molecule is represented by a horizontal line with
vertical ticks� The ticks mark the feature values for each of the multiple feature
vectors representing a single molecule� The horizontal line joins these ticks� The
horizontal dashed line separates the negatives from the positives�

In our analysis so far� we have ignored the multiple instance problem� Figure ��
is a display that helps us visualize the multiple instances of each molecule
along one ray� From this display� we can see that most molecules exhibit a
wide range of feature values �e�g�� molecules � and ���� Furthermore� we can
see that bounds in the neighborhood of ��� and ��� would cover at least one

��



instance of every positive molecule and exclude all instances of several negative
molecules� More precisely� we can guarantee that at least one instance of every
positive molecule will be included in the bounds along dimension d if we set
the lower bound lbd and the upper bound ubd to be

lbd � min
i� positive molecules

�
max

j
Vd�mi�j�

�

ubd � max
i� positive molecules

�
min
j

Vd�mi�j�
�
�

where j ranges over the variant instances of molecule mi and Vd�mi�j� is the
value of feature d for variant instance mi�j� We will call these bounds the
minimax bounds for dimension d� If we construct minimax bounds along all
dimensions for either musk data set� the resulting �minimax APR� does not
include any positive molecules� unfortunately� This is because di�erent in
stances of each molecule are chosen along di�erent dimensions� However� we
can prove the following lemma�

Lemma � Any APR that covers at least one instance of all positive molecules

must contain the minimax APR�

Proof� Suppose there was an APR that covered at least one instance of all
positive molecules� but whose upper bound was less than the minimax bound
along feature d� This is impossible� because by de	nition� there exists at least
one positive molecule m for which the minimax upper bound is equal to the
smallest value of feature d for any instance of that molecule� Any smaller value
would not cover any instances of molecule m� The same argument applies to
lower bounds� �

We can summarize this data analysis as follows� The distributions of positive
and negative feature values are very similar� and they are �very� approximately
gaussian with rather long tails� However� if we explicitly consider the multiple
instance problem� we can construct fairly tight bounds that exclude many neg
ative instances� If we take the positiveonly APR as a crude approximation to
the true APR� we can conclude �from Figure ��� that most negative instances
are excluded along relatively few dimensions �mean �����

� An arti�cial data set

Based on the data analysis of the preceding section� we constructed an arti	cial
data set as follows� First� we chose the arti	cial �correct� APR by forcing
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the 	rst �� features to have twosided bounds and forcing the remaining ���
features to be irrelevant� We then applied this APR to generate random feature
values� which were used to replace the feature values of Musk Data Set ��
Hence� the number of molecules and feature vectors in the arti	cial data set
is the same as in Musk Data Set ��

More precisely� the arti	cial APR� denoted fakeAPR� was constructed as
follows� Let allAPR be the alldata APR that exactly includes all of the feature
vectors in Musk Data Set �� To set the bounds for feature d �on each of the
	rst �� features�� we 	rst chose the width of the bounds by taking a random
fraction �uniformly between ���� and ����� of the width of allAPR along
feature d� We then positioned an interval of this width uniformly randomly
within the bounds of allAPR along feature d�

The process of constructing arti	cial feature vectors involved 	rst construct
ing two gaussian probability distributions for each feature d�one for positive
feature vectors and one for negative feature vectors� The two distributions
had identical means� but the standard deviation of the negative gaussian was
��$ larger than the standard deviation of the positive gaussian� The standard
deviation of the positive gaussian was chosen to be ���� times the width of
fakeAPR �along the 	rst �� features� and ���� times the width of allAPR
�along the remaining ��� features�� The mean was chosen �uniformly ran
domly� to lie at least one standard deviation inside fakeAPR �along the 	rst
�� features� or allAPR �along the remaining ��� features��

Note that because the gaussian distribution has nonzero probability every
where� it is possible for a positive feature vector generated at random by this
procedure to lie outside fakeAPR and for a negative feature vector to lie inside
fakeAPR� Hence� additional steps were taken to ensure that the arti	cial data
was consistent with fakeAPR� When generating the feature vectors for a pos
itive molecule mi� we repeatedly generated features for the 	rst feature vector
of mi until all generated feature values lay within the bounds of fakeAPR�
This ensured that at least one instance of every positive molecule satis	ed
fakeAPR� When generating features vectors for a negative molecule mi� we
	rst determined which bounds of fakeAPR would be violated �by sampling
at random from an exponential distribution 	tted to the data in Figure ����
We then ensured �by repeated random generation� that the feature values
generated along those violated bounds did in fact lie outside fakeAPR�

Figure �� shows a gaussian kernel density estimate of the positive and negative
probability densities along feature �� in the arti	cial data set� Note that there
is a small amount of negative density beyond the positive density and that the
estimated distributions have nearly identical means� It is not surprising that
from data like this it is quite di�cult to discriminate the positive molecules
from the negative molecules�
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Fig� �� Arti�cial Data Set� Positive and negative probability densities along feature
�

After constructing this arti	cial data set� we used it to guide the development
and testing of a large variety of learning algorithms� some of which are de
scribed below� Since the arti	cial data set was developed from Musk Data Set
�� what is the risk that we have over	tted the musk data sets by using this
arti	cial data set% The answer can be determined by examining the ways in
which the arti	cial data set is an accurate replication of the musk data sets�
Certainly� the number of features� the range of feature values� and the number
of conformations of each molecule are faithfully reproduced by the arti	cial
data set� Hence� there might be some opportunities here for over	tting to
Musk Data Set �� However� for Musk Data Set �� the range of feature values
and the number of conformations of each molecule are very di�erent� so there
is little chance of over	tting to that data set�

The feature values in the arti	cial data set are entirely di�erent from either
musk data set� In particular� the correlations among features are not captured
at all by the arti	cial data set� In the real data set� the features are highly
redundant� because the molecular surface does not change too much between
adjacent rays� In the arti	cial data set� each feature value is chosen indepen
dently� so there is no correlation� Furthermore� in the musk data sets� four
of the features describe the important oxygen atom� whereas in the arti	cial
data set� there are no special features relating to the oxygen atom� For the
arti	cial data set� we know that there exists a lowdimensional axisparallel
rectangle consistent with the data� for the real musk data sets� there could
very well be no such APR�
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Fig� ��� Relationships among the various axis�parallel rectangle algorithms described
in this paper� Boxes with heavier lines mark the best algorithm of each type�

We believe� therefore� that there is little risk of over	tting �particularly for
Musk Data Set �� from doing too many experiments with the arti	cial data
set�

� Three Learning Algorithms

We now present three learning algorithms and compare their performance on
the arti	cial data set� Each algorithm illustrates a general approach to con
structing APRs in the presence of the multiple instance problem� To help
the reader keep track of the various algorithms presented in this section� Fig
ure �� gives a derivation tree that shows how the algorithms are related to
one another�

Figure �� is a schematic diagram of the multiple instance problem in two
dimensions� The two coordinate axes represent the measured values of two
features �i�e�� measured at the point where each ray intersects the molecular
surface as in Figure ��� The un	lled shapes represent feature vectors of active
molecules� The 	lled shapes represent feature vectors of inactive molecules�
All points with the same shape �e�g�� all diamonds� denote feature vectors
�variant instances� of the same molecule� The goal of the learning algorithms
described in this section is to 	nd a rectangle that includes at least one un	lled
point of each shape �i�e�� at least one feature vector of each positive molecule�
and does not include any 	lled points �i�e�� no feature vectors of any negative
molecule��

It should be noted that in addition to the algorithms described here� we have
experimented with a large number of variations of these methods� Each method

��



x2

x1

Fig� ��� A multiple instance learning problem� Un�lled shapes represent feature vec�
tors of active molecules� �lled shapes represent feature vectors of inactive molecules�
All points of the same shape denote feature vectors of the same molecule�

shown here was the best representative chosen from several algorithms having
the same fundamental approach�

��� 	Standard
 APR algorithms

An axisparallel hyperrectangle can be viewed as a conjunction of tests on the
feature values� A simple algorithm can be designed by analogy with the stan
dard algorithm for learning boolean conjunctions ����� We simply construct the
APR that exactly covers all of the positive feature vectors �the �allpositive�
APR�� This is the maximallyspeci	c conjunctive generalization of the posi
tive instances� We will call this algorithm the �allpositive APR� algorithm�
Figure �� shows the resulting allpositive APR as a solid line boundingbox
of the un	lled points�

However� this APR treats every feature as relevant� This is unlikely to be
a good hypothesis in this domain� because feature values from nearby rays
are highly correlated and because not all parts of the molecular surface are
likely to be involved in binding� The obvious next step is to choose a subset
of the bounds of this APR that are su�cient to exclude all of the negative
instances� This is analogous to the method described by Haussler �������� The
process of removing bounds from the APR is best organized as a process

��



1

1

2

4

2 2
3

2

x2

x1

Fig� ��� The Elim�Count procedure for identifying the negative instance that is
easiest to exclude� The solid rectangle is the smallest rectangle that includes all
un�lled points �the all�positive APR�� The line next to each included �lled point
indicates which side of the solid box will be tightened to exclude that point� The
number indicates how many un�lled points will also be excluded when the box is
tightened� The dashed box indicates the �nal APR produced by Elim�Count�

of adding bounds to an APR that covers the entire feature space� A greedy
algorithm considers each bound from the allpositive APR and chooses the
bound that eliminates the most negative instances� This bound is then added
to the solution� the negative instances are eliminated� and the process repeated
until no negatives remain to be eliminated� We will call this the �GFS all
positive APR� algorithm� since it performs Greedy Feature Selection�

One di�culty with this algorithm is that the allpositive APR may contain
several negative examples� Figure �� shows the allpositive APR as a solid
line boundingbox of the un	lled points� Note that � 	lled shapes �� negative
instances� are included in this APR� Greedy feature selection to choose a sub
set of the bounds cannot eliminate any negative examples that were already
covered by the allpositive APR� To eliminate these negative instances� we can
apply the following greedy algorithm prior to selecting relevant features� For
each negative instance� count the minimum number of positive instances that
must be excluded from the APR in order to exclude the negative instance�
In the 	gure� these counts are shown next to small lines that indicate which
�side� of the APR would be tightened in order to exclude the negative in
stance� For example� to eliminate the black circle at the top of the APR� we
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would also need to eliminate the one white diamond in the upper right corner
of the APR� The greedy algorithm iteratively chooses to eliminate the nega
tive instance that is easiest to eliminate �i�e�� requires eliminating the fewest
covered positive instances� until all negatives are eliminated� The resulting
APR is the inner� dashed� box in Figure ��� Note that in this example� the
resulting APR covers at least one instance of each positive example� but in
general� this need not be the case� All instances of a positive example might
be excluded by this greedy algorithm� After constructing this APR� we can
apply the greedy feature selection algorithm described above to obtain an
APR that is guaranteed to have no false positives� We will call this the �GFS
elimcount APR� algorithm� because it eliminates negative instances based
on counting the number of positive instances that also need to be eliminated
�and it performs greedy feature selection��

��� An 	outside�in
 multiple�instance APR algorithm

We can modify the GFS elimcount algorithm to address the multiple instance
problem� Instead of merely counting the number of positive instances that
must be excluded in order to exclude a negative instance� we can consider
excluding positive instances that are �expendable� in the sense that every
positive molecule still has at least one positive instance covered by the APR�
We implement this by de	ning a �cost� of excluding each positive instance
and choosing to exclude cheap positive instances� as necessary� in order to
exclude a covered negative instance�

The cost of excluding a positive instance mi�j of molecule mi must therefore
depend on the other notyetexcluded positive instances of molecule mi� If
there are many other such surviving positive instances� then the cost of ex
cluding mi�j can be small� because it is less likely that subsequent decisions
will end up excluding all instances of mi�

Furthermore� if the other surviving positive instances have feature values that
are frequently observed among the positive molecules� then it is likely that
those survivors are the most relevant instances and that instance mi�j should
be eliminated�

Finally� if variant instance mi�j is very isolated so that few other positive
instances have feature values similar to it� then it is probably not an instance
that should be included in the APR�

To develop a cost function that incorporates these properties� we employed
an estimate of the probability density Dd of all surviving positive instances
along feature d� As before� we applied gaussian kernel density estimation to
estimate this density� A small gaussian kernel is centered at each value Vd�mi�j�
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of feature d for each surviving instance mi�j of each positive molecule i� These
gaussians are then summed to obtain the probability density function Dd� The
notation Dd�mi�j� indicates the probability �according to Dd� of observing the
value Vd�mi�j� of feature d�

Let mi��� � � � � mi��i be the surviving variant instances of positive molecule mi�
The cost of eliminating instance mi�j along feature d is de	ned as

�
��

�iX
l	��l �	j

Dd�mi�l�

	
A& �Dd�mi�j�� ���

The 	rst term gives a very low cost if there are many other instances �indexed
by l� of the same molecule and they have high probability according to the
density estimate Dd� The 	nal term �Dd�mi�j� measures the degree to which
instance j is isolated from the other positive instances� If Dd�mi�j� is small�
instance j is very isolated� In our experiments� we used � � ����� If an instance
is the only remaining instance of a molecule� then it receives a cost of �����
which is very high� �We experimented with a few other cost functions� but this
one worked slightly better than the others��

We can now apply the same algorithm as �elimcount�� except that at each
point we choose the negative instance that is cheapest to eliminate �because
it eliminates inexpensive positive instances�� The algorithm will avoid elimi
nating the last covered instance of a positive molecule unless the alternative
would be even more expensive� We call this algorithm �GFS elimkde�� be
cause it eliminates negative instances based on a kernel density estimate �kde�
of the positive instances�

One drawback of GFS elimkde is that it is quite expensive to compute all of
the required kernel density estimates� Let n be the number of features� � be the
number of instances of each positive molecule�N
 andN� be the total number
of positive and negative instances �respectively�� and p be the number of times
we must compute the cost with Equation ���� Then the computational cost is
bounded by O�p�N
�� because we must compute � kernel density estimates�
and each such estimate must process each positive instance� However� p can
be quite large itself� since each negative instance may exclude several positive
instances along each of the n dimensions� On average in Musk Data Set ��
���� positive instances are excluded along each dimension� in Musk Data Set
�� ���� positive instances are excluded along each dimension �these numbers
re"ect the application of a heuristic to avoid wasting e�ort on �bad� features��
In either case� this means p is still O�N�n�� so the overall computational cost
is approximately O�n�N�N
�� which is immense� For Musk Data Set �� this
is approximately ���� ���� For Musk Data Set �� this is ���� ����
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��� An 	inside�out
 multiple�instance APR algorithm

An alternative to the �outsidein� approach is to construct an APR by starting
with a single positive instance and �growing� the APR by expanding it to
cover additional positive instances� We have constructed a somewhat complex
algorithm based on this approach� We call it the �Iterated Discrimination�
algorithm� and it has three basic procedures�

� Grow� An algorithm for growing an APR with �tight� bounds along a
speci	ed set of features�

� Discrim� An algorithm for choosing a set of discriminating features by
analyzing an APR�

� Expand� An algorithm for expanding the bounds of an APR to improve
its generalization ability�

The algorithm works in two phases� In the 	rst phase� the Grow and Discrim
procedures are iteratively applied to simultaneously choose a set of discrim
inating features and construct an APR that has �tight� bounds along those
features� In the second phase� the Expand procedure is applied to expand
these tight bounds�

We describe each of these procedures in turn�

����� An algorithm for growing a tight APR

The goal of this algorithm is to 	nd the smallest APR that covers at least one
instance of every positive molecule� Let us de	ne the size of an APR as the
sum of the widths of all of its bounds�

Size�APR� �
X
d

ubd � lbd�

Many di�erent optimization methods can be applied to this problem� and
we have tested simulated annealing� a greedy algorithm� and a back	tting
algorithm� We describe the greedy and back	tting procedures here�

We begin the optimization by choosing an initial �seed� positive instance�
The greedy procedure then grows the APR by a series of greedy steps� In each
greedy step� it identi	es the positive instance �of a notyetcovered positive
molecule� that when added to the APR would least increase its size� The APR
is then expanded to include that positive instance� This procedure is continued
until at least one instance of each positive molecule is covered� Surprisingly�
in all of our experiments� the resulting APR was consistent �i�e�� it covered no
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instances of any negative molecules�� although this is not required for any of
our algorithms�

The back	tting algorithm� which is an extension of the greedy procedure� was
	rst employed in the Projection Pursuit method ����� It begins like the greedy
algorithm by choosing a seed positive instance and then taking a series of
greedy steps� However� after each greedy step� it revisits all previous decisions
to consider whether they would be made di�erently�

Suppose the algorithm has just taken a greedy step to make the lth decision�
Let Id be the positive instance chosen in step t� The back	tting procedure re
visits each of the previous decisions �� � � � � l� When previous decision t is revis
ited� the algorithm constructs the APR that covers fI�� � � � � It��� It
�� � � � � Ilg�
We will call this APR A�t� It then considers all instances of the same molecule
as It and identi	es the instance that would least increase the size of A

�t� This
chosen instance replaces It in the list of choices made by the algorithm�

The back	tting algorithm then reconsiders choice t & � and so on� It makes
repeated passes through the 	rst l choices until progress ceases �i�e�� no deci
sions are changed�� It then makes a greedy step to choose the l & �st positive
instance�

To choose the initial positive instance� we select the positive instance that is
closest �in Euclidean distance� to the minimaxAPR de	ned earlier�

Experiments with Musk Data Set � and the Arti	cial Data Set showed that
the back	tting procedure always found smaller� tighter APRs than either the
greedy procedure or a simulated annealing method� Hence� we have applied
the back	tting procedure in all of the experiments reported in this paper�

����� An algorithm for selecting discriminating features

Once a tight APR has been constructed� it can be applied to select discrimi
nating features� We employed the following greedy algorithm� Let us say that
feature d of the tight APR strongly discriminates against a negative instance
if either �a� that instance lies more than �!A outside the bounds of the APR
along feature d or �b� that instance lies beyond the bounds of the APR� and it
lies further outside the bounds along feature d than along any other feature�

With this de	nition of �strongly discriminate�� we then choose features itera
tively by selecting in each step the feature that strongly discriminates against
the largest number of negative instances� Those negative instances are then
removed from further consideration� and the process is repeated until enough
bounds have been selected so that all negative instances are excluded�
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The rationale for the �!A �margin� beyond the APR is that in our experiments
with the Arti	cial Data Set� irrelevant features were found to discriminate
many trainingset negative instances� but by only small margins� Hence� small
values for the margin do not robustly identify the relevant features� Various
other margins were considered� and the results are relatively insensitive to this
parameter� as long as it is larger than ���!A�

����� Iterative selection of positive instances and discriminating features

The Iterated Discrimination algorithm alternates the application of these 	rst
two algorithms as follows� First� the back	tting algorithm is applied to con
struct a tight APR with bounds on all features� Then a subset of those features
is selected as discriminating features� The back	tting algorithm is applied
again to construct a tight APR� but this time� it only measures the size of the
APR along the discriminating features� This can cause it to choose di�erent
positive instances �and hence� di�erent bounds�� The feature selection proce
dure is again invoked to further narrow the set of discriminating features� This
backandforth loop continues until it converges �which typically requires ���
iterations��

It is interesting to compare the behavior of the back	tting algorithm on the
	rst iteration with its behavior in subsequent iterations� During the 	rst it
eration� more than half of the features are irrelevant� and yet the back	tting
algorithm is trying to minimize the total size of the APR� The APR bounds
tend to be wider along the irrelevant features than along the relevant ones
�because the surface of the positive molecules is more variable along those
rays�� Hence� when the irrelevant features are discarded� the back	tting algo
rithm can alter its choices quite substantially� During subsequent iterations�
the choice of relevant features hardly changes at all� As a result� the choice
of positive instances does not change much either� so that the algorithm con
verges rapidly� We expect this to be generally true for this kind of algorithm
�more details are given below in Section �����

����� Expanding the APR to improve generalization

Experiments on the Arti	cial Data Set showed that using the tight APR
resulting from the previous two methods does not generalize well� It is typically
so tight that it excludes most positive instances in the test set �as well as
all negative instances�� The problem is that the APR was constructed to be
exactly big enough to cover at least one positive instance of each molecule in
the training set� but no bigger�

To overcome this problem� we once more turned to kernel density estimation�
For each relevant feature of the tight APR� we apply kernel density estimation
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to estimate the probability that a positive instance will satisfy the bounds on
that feature� Our goal is to expand the bounds so that with high probability�
new positive instances will fall inside the APR�

This algorithm is controlled by two userspeci	ed parameters� � and � � The
� parameter speci	es the amount of probability that should lie outside the
expanded bounds of the APR along each feature dimension� The � parameter
determines the width of the gaussian kernel� The width of the kernel is set so
that if all of the positive instances were centered between the APR bounds�
the kernel density estimator would conclude that � of the probability lay
within the bounds� Hence� if the positive instances were normally distributed�
� & � � ��

For each relevant dimension d of the APR� the algorithm 	rst computes the
width of the kernel using � � It then expands the lower and upper bounds of the
APR along d so that ��� probability lies below the lower bound �according to
the kernel density estimate� and ��� probability lies above the upper bound�
If the tail of the kernel density estimate contains less than ��� probability�
then that bound is not changed�

This is illustrated in Figure ��� Here� the tall vertical lines show the initial�
tight bounds of the APR� The mediumheight vertical lines show the expanded
bounds�they have moved outward so that the probability under each tail of
the density estimate is exactly ��� � ����� Note that the lower bound has
expanded considerably� because there are many positive instances very close
to the tight lower bound �and consequently a larger tail�� The upper bound
has hardly expanded at all� because the positive instances were already quite
sparse near the tight bound�

	 Experimental Results

��� Results on the Arti�cial Data Set

Table � shows the results of running each of these APR algorithms on the
Arti	cial Data Set� In addition� we show the results of the C��� decision tree
algorithm and the backpropagation neural network algorithm� both of which
ignored the multipleinstance problem and treated all of the positive instances
as positive examples�

To evaluate the generalization performance� we constructed ��� additional
molecules� Each new molecule was generated by randomly choosing �with re
placement� a molecule from Musk Data Set � and replacing its feature vectors
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Fig� ��� Expanding APR bounds via kernel density estimation �Musk Data Set ���
Small vertical lines mark the value of one feature for each positive feature vector�
Curve shows an estimate of the probability density of these values� Tall vertical
lines show bounds of initial� tight APR� Thicker medium vertical lines show the
expanded bounds�

with arti	cial feature vectors� Hence� the proportion of positive and negative
molecules� and the number of feature vectors per molecule are the same in the
arti	cial test set as in the arti	cial training set�

For algorithms that require the user to specify various parameters� we chose
the parameters that gave the best test set performance� For Iterated Dis
crimination� the best parameter values were � � ����� and � � ������ For
backpropagation� we conducted a systematic search for good parameters us
ing an Adaptive Solutions CNAPS computer with ��� processors �in ��bit
mode�� The best parameters employed a single hidden layer of ��� sigmoid
units� learning rate ���� momentum ��� �with weight updates applied once
every �� patterns�� and trained for ��� epochs�

The results clearly show that the IteratedDiscrimination algorithm is far su
perior to all of the other algorithms tested� The performance of Iterated Dis
crimination is statistically signi	cantly di�erent from all of the other algo
rithms �p 	 ������ binomial test for the di�erence of two proportions�� None
of the other algorithms can be distinguished statistically from each other �at
p 	 ������

It is not surprising that the �allpositive APR� and the �GFS elimcount
APR� algorithms did poorly� since neither of these addresses the multiple in
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Table 
Arti�cial Data Set performance� 
 training set molecules� ��� test set molecules�

True False False True �

Algorithm Positives Negatives Positives Negatives Errors Correct

iterated�discrim APRa ��  �� �
� �� 	���

backpropagationb �	 �� �� �� ��� ���	

GFS elim�count APR �� �� �� ��� ��� ���	

C��� �pruned� �
 �� �� ��
 �� ����

GFS elim�kde APR �
 � �� ��� ��� ���

all�positive APR �	� � �� ��� ��� ����

GFS all�positive APR �	 � ��� 	� ��	 �	��

a
� � ��


� � � ����

b �� hidden units� learning rate ���� momentum ���� ��� epochs

Table �
Arti�cial Data Set� Success in identifying the correct relevant features�

True False False True �

Algorithm Relevants Irrelevants Relevants Irrelevants Errors Correct

iterated�discrim APR �	  �	 ��	 � 		��

GFS all�positive APR �	  � ��� �� �
��

GFS elim�kde APR � �� �� 	� �� ���


GFS elim�count APR � �� �� 	
 �� �	��

all�positive APR �� � �� � �� ���

stance problem� However� it is somewhat surprising that the �GFS elimkde
APR� algorithm did so badly� since it does explicitly consider the multiple in
stance problem in deciding which positive instances to remove from its APR�
We experimented with many variations of the �GFS elimkde APR� algorithm�
For example� one variation required that each negative instance be discrimi
nated from the positive instances by a �margin of safety�� This hurt perfor
mance �false negatives increased without decreasing false positives�� Another
variation we explored was to employ various methods of expanding or shrink
ing the APR both before and after feature selection� None of these worked as
well as the GFS elimkde algorithm described above�

An advantage of arti	cial data is that we can measure more than generalization
performance� Table � shows how well each algorithm did at choosing the ��
correct features� We can see that the Iterated Discrimination algorithm was
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the most successful at identifying relevant features� All of the other algorithms
�except the allpositive APR�� could only correctly identify about half of the
relevant features� whereas Iterated Discrimination found �� of the �� features�

From this data we conclude that the superior performance of �Iterated Dis
crimination APR� is primarily explained by its ability to 	nd the relevant
features� This in turn appears to be the result of its approach of 	rst 	nding
a very tight APR that covers at least one positive instance of every positive
molecule� Along the relevant features� this tight APR is much tighter than
along the irrelevant dimensions� In contrast� the bounding box of all of the
positive examples�which is the starting point for all of the other algorithms�
has wide bounds along both the relevant and irrelevant dimensions� Figure ��
shows the widths of the bounds for the allpositive APR �as a percentage of
the widths of the bounds of all the feature vectors�� The 	rst �� features are
the true relevant features� Some of them clearly have tighter bounds than the
irrelevant features� but most of them have wide bounds indistinguishable from
the irrelevant features�

In contrast� Figure �� shows the widths of the bounds for the tight APR
constructed by the back	tting algorithm during the 	rst iteration of Iterated
Discrimination� The relevant features are clearly identi	ed� It should be noted�
however� that on the real musk data sets� the analogous plot does not separate
the features nearly so clearly�
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A drawback of the Iterated Discrimination algorithm is the need to choose
values for � and �� Figure �� shows how performance on the Arti	cial Data Set
varies as a function of these two parameters� In general� as � increases� the best
choice for � decreases� This is what we would expect� large values of � mean
that the gaussian kernel is smaller� and hence� the probability under the tails of
the distribution decreases� To su�ciently widen the APR bounds� the desired
probability under the tails ��� must decrease too� The peak performance of
Iterated Discrimination on the arti	cial data was obtained with � � �����
and � � ������

Unfortunately� these parameter values cannot be con	dently extrapolated to
Musk Data Set �� because the arti	cial data were generated using gaussian
distributions� and these match the gaussian kernel density estimator very well�
Hence� we need to look at Musk Data Set � to choose the best parameters�

We can summarize our analysis of the Arti	cial Data Set as follows�

� The arti	cial data pose a di�cult learning problem� Neither backpropaga
tion nor C��� can perform well on this data set�

� Algorithms that ignore the multiple instance problem do not perform well�
� The �insideout� approach to constructing APR�s performs best� This is a
result of its superior ability to identify discriminating features�
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Fig� �
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function of its parameters � and � �

��� Results on Musk Data Set �

We now turn to the 	rst of the two musk data sets� Table � summarizes
the performance of the algorithms on this data as measured by ��fold cross
validation� A ��$ con	dence interval is shown in the last column� From this�
we can see that the top three methods are statistically indistinguishable� This
probably re"ects the di�erence between the Arti	cial Data Set� where features
are either relevant or irrelevant� and the musk data sets� where more features
are �probably� measuring relevant parts of the molecular surface� but where
these measurements are redundant�

As with the Arti	cial Data Set� we have chosen parameter values for Iterated
Discrimination and Backpropagation to optimize crossvalidated accuracy� For
backpropagation� we found that it was exceedingly di�cult to train a network�
Parameters that worked for the Arti	cial Data Set did not work for Musk Data
Set �� We believe this primarily re"ects the fact that the bias of standard multi
layer sigmoid units is not appropriate for learning axisparallel rectangles� Note
that all of the APR methods performed better than the nonAPR methods�

The real musk data in Table � demonstrate even more clearly than the ar
ti	cial data in Table � the importance of not ignoring the multiple instance
problem� The top two algorithms in the table are the two methods that ex
plicitly attempt to solve the multipleinstance problem� As with the Arti	cial
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Table �
���fold cross�validation performance on Musk Data set � �
 molecules�

True False True False �

Algorithm Positives Negatives Positives Negatives Errors Correct

iterated�discrim APRa � �  �� � 
�� �	����
��	�

GFS elim�kde APR �� � � �	 	 
��� �	����
����

GFS elim�count APR �� � 	 �� 
 
�� �	���
����

GFS all�positive APR �� � �� �� �� 	��� �����
���

all�positive APR �� �� � �	 �	 	��� �����		���

backpropagationb ��  � � � ���� �����	��	�

C��� �pruned� � � � � 
 �	�� ��
����	���

a
� � ����� � � ��


 or � � ��� and � � ��

��

b �� hidden units� learning rate ������ no momentum� 
�� epochs�

Data Set� the best algorithm is Iterated Discrimination� which makes only �
errors on test molecules� Note that all of the nonmultipleinstance algorithms
�except the allpositive APR� have high false positive rates� This is to be ex
pected� since if they mistakenly classify any feature vector of a molecule as
positive� then the molecule is classi	ed as positive�

This partly explains the particularly poor performance of backpropagation and
C���� Additionally� those algorithms do not have the advantage of knowing
that good hypotheses should take the form of axisparallel rectangles� Hence�
even though both C��� and backpropagation can represent APR�s� they choose
other� less appropriate� hypotheses in this domain�

Table � gives some insight into the behavior of the Iterated Discrimination
algorithm� For each fold of the ��fold crossvalidation� this table shows how
the number of relevant dimensions and the set of selected positive instances
changes� First note that only two or three iterations are performed by the algo
rithm in each fold� The choice of relevant dimensions is essentially unchanged
after the 	rst iteration� This shows the critical importance of the heuristic
for selecting relevant dimensions� The choice of relevant dimensions has a big
in"uence on which positive instances are chosen by the back	tting algorithm
to be the �active� variants� In the second iteration� the algorithm changes its
choice for �����$ of the positive molecules�

Figure �� shows the sensitivity of Iterated Discrimination to the choice of
parameter values� There are several things to note� First� larger values of �
give better performance� Second� the values of � giving peak performance are
quite wide� especially for � � ������ When we compare this 	gure to Figure ���
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Table �
Musk Data Set �� ���fold cross�validation� For each fold� the left half of the ta�
ble indicates the change in the number of relevant dimensions �starting with ����
with each iteration of the Iterated Discrimination algorithm� The right half of the
table indicates how many of the instances selected by back�tting changed in each
iteration� The values for iteration � show the number of positive molecules in the
training set �and hence� the total number of selected instances��

Change in Relevant Dimensions Change in Selected Instances

Iteration� Iteration�

Fold �  � �  �

� ��� �� � � � �

� ���� � � ��

 ���� � � 

� ���� � � �

� ���� � � 	

� ���� � � 	

� ��� � � �

� ��� �� � �� � 

	 ���� � �� �


 ���� � �� 	

we see that unfortunately� the Arti	cial Data Set does not accurately predict
the point of peak generalization�it suggests much smaller values for � �which
correspond to much wider APR bounds�� Similarly� we will see below that
Musk Data Set � does not accurately predict the point of peak generalization
for Musk Data Set ��

What values of � and � shall we choose for Musk Data Set �% Based on the
wide plateau for � � ������ it is an obvious choice� However� with the wide
plateau� it isn�t clear what value of � to choose� One thing to consider is that
Musk Data Set � has only �� positive molecules instead of the �� positive
molecules in Musk Data Set �� This will mean that the tight APR produced
by back	tting will have narrower bonds on Musk Data Set � than on Musk
Data Set �� This suggests that we choose smaller values of �� because those
will produce wider APR bounds� Hence� we will choose � � ����� since it is
the smallest value giving peak performance on Musk Data Set ��

Note that any method of choosing parameters for Musk Data Set � based on
experiments with Musk Data Set � risks some over	tting� because the two
data sets share many molecules� However� because Musk Data Set � has many
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more conformations and� as we shall see below� because the best parameters
turn out not to be those that worked best for Musk Data Set �� we believe
the degree of �contamination� is small�

��� Results on Musk Data Set �

Table � shows the 	nal results for running all algorithms on the very large
Musk Data Set �� Again we have shown a ��$ con	dence interval for the per
centage of correct classi	cation by each algorithm� Once again we encountered
extreme di�culty in training a multilayer sigmoid net on this data set� None
of the parameter values that worked for either Musk Data Set � or the Arti	
cial Data Set resulted in any e�ective training for this data set �e�g�� squared
error did not decrease or else behaved chaotically�� The parameters employed
here ���� hidden units� �� epochs� learning rate ���� no momentum� where
chosen by performing a crossvalidation within the training set of the 	rst fold
of the ��fold crossvalidation� This is not strictly fair� since the parameter
choice should have been repeated within the training set of each fold of the
crossvalidation� In any case� however� the performance is very poor�

The relative ranking of the algorithms is almost the same as with Musk Data
Set � �the �GFS allpositive APR� has dropped below �backpropagation���
However� the gap between Iterated Discrimination and the other algorithms
has increased so that it is now statistically signi	cant �p 	 ������ All of
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Table �
���fold cross�validation performance on Musk Data Set  ��� molecules�

True False True False �

Algorithm Positives Negatives Positives Negatives Errors Correct

iterated�discrim APRa �� 
  �� �� 	
� �	���
���

GFS elim�kde APR � � �� �� � 	��� �����		���

GFS elim�count APR �� 	 �� �� � ���� ������	��	�

all�positive APR �� � � �� 	 ��� ����
�	���

backpropagationb �� � �� �� �� ���� ��	��������

GFS all�positive APR ��  � �� �� ���� ���������	�

most frequent class � �
 � �� �
 ���	 ���������

C��� �pruned� � � �� 	 � �	�	 ��
����	���

a
� � ��


� � � ����

b �� hidden units� learning rate ���� no momentum� �� epochs

the APR algorithms except for �GFS allpositive APR� outperform the non
APR algorithms �C��� and backpropagation�� C��� even performed worse �on
percentcorrect basis� than the trivial strategy of guessing the most frequent
class� although the di�erence is not statistically signi	cant�

Figure �� shows the crossvalidated performance of Iterated Discrimination
for various values of the � and � parameters� Note that the values of � � ����
and � � ����� chosen on the basis of Musk Data Set � do not give the peak
performance� Peak performance of ����$ is attained for any of the following
parameter values� �� � ����� � � ������� �� � ����� � � ������� and �� � ������
� � ������� This matches the best performance reported for an APRlike neural
network algorithm on this same data set ����� where parameter values were
also chosen after crossvalidation� Performance of at least ����$ is robust over
a wide range of parameter values�

Figure �� shows a visualization of the binding hypothesis learned from the
entire Musk Data Set � applied to classify conformation �� of a molecule
named ����� �a true musk� the molecule names are drawn from Bersuker� et al�
����� Each of the two stereo pairs in the 	gure can provide a threedimensional
picture if viewed through a stereo viewer or by converging your eyes at a point
beyond the page so that the two images fuse and come into focus� All of the
bounds in Figure �� are satis	ed� so ����� is correctly classi	ed as a musk
molecule�

Figure �� shows the same APR applied to classify conformation � of a molecule
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Fig� �� Performance of Iterated Discrimination on Musk Dat Set  as a function of
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named ������ which is a nonmusk� Here� all but two bounds ��� and ��� are
satis	ed� The two violated bounds both identify a region of the molecule that
does not �stick out� far enough� All other conformations of molecule �����
are also classi	ed as nonmusk� so ����� is correctly classi	ed as a nonmusk�

Figure �� shows the APR surrounding a bondgraph �structure diagram� of
conformation �� of molecule ������ This helps us visualize which regions of
the molecule were more important for musk activity� We can see that the
preponderance of the bounds are testing the shape of the end of the molecule
opposite the oxygen atom� This is a region of hydrophobic �bulk�� and previous
chemical studies had also emphasized the importance of this region for musk
activity ����� There is also a notable absence of any APR bounds on the middle
left side of the molecule� which suggests that the molecules have some shape
freedom in this area� Finally� note that only a few� tight bounds are needed
to test the position of the rings along the axis orthogonal to the plane of the
paper� This probably re"ects the fact that all conformations are aligned so
that their aromatic rings are superimposed� so there is very little variation
between musk and nonmusk molecules along this axis�

Displays such as these could be employed by chemists to suggest changes in
the molecules to improve binding� For example� molecule ����� could be made
to satisfy the APR by adding an ethyl �C�H�� group to the molecule in the
region of bounds �� and ��� This would change it from a nonmusk into a
musk� In fact� it becomes molecule �����
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Fig� � The Musk Data Set  APR binding hypothesis applied to classify conforma�
tion �	 of molecule ���� �a true musk�� Dashed lines depict the Connolly surface
of the molecule� The heavily shaded area at the bottom is the surface of the oxygen
atom� Line segments depict the APR bounds along selected rays� and the index
number of each ray is given� The upper two frames give a stereo pair showing a
�front view�� the lower two frames show the �back view� of the same molecule� All
APR bounds are satis�ed�


 Discussion

In a standard problem of learning axisparallel rectangles� the learning algo
rithm must solve two problems� select the relevant features and set bounds
along those features� The multiple instance problem adds a third di�culty� the
algorithm must choose which positive instances to treat as genuine positives�
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Fig� �� The Musk Data Set  APR binding hypothesis applied to classify conforma�
tion � of molecule ���� �a non�musk�� The upper two frames give a �front view��
the lower two frames give a �back view� of the same molecule� Note that bounds
�
 �in the �front view�� and 
 �in the �back view�� are violated�

From the experiments presented above� we can see that setting the bounds
along the features is the easiest of these three problems� In Iterated Discrim
ination� we postponed setting the exact bound values until we had already
determined the relevant features and the genuine positive instances�

On the other hand� we found it essential to coordinate the choice of relevant
features and positive instances� For example� in data not shown� we stopped
Iterated Discrimination after one iteration� and the resulting performance was
substantially worse�
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Fig� �� The Musk Data Set  APR and a structure diagram �bond graph� for
conformation �	 of molecule ����� All APR bounds are shown in this single stereo
pair� The oxygen atom is at the bottom on the image�

The Arti	cial Data Set was critical to helping us debug and understand our
algorithms� In particular� note that while the performance of the �GFS elim
kde APR� algorithm on Musk Data Set � was indistinguishable from Iterated
Discrimination� the arti	cial data revealed it to be much worse� because it
was not selecting relevant features very well� This was borne out in the Musk
Data Set � experiments� where GFS elimkde performed much worse� Similar
behavior was observed for the �GFS elimcount APR� algorithm� We strongly
recommend the arti	cial data set approach to algorithm development and
evaluation�

The signi	cance of these results for drug design is limited by three factors�
First� the algorithms in this paper address only twoclass qualitative data�
While the e�ect of some drugs can only be measured by qualitative response�
there are usually quantitative measures of drug e�cacy in human subjects
and in laboratory assays� Hence� medicinal chemists are primarily interested
in algorithms for predicting realvalued activites� As we mentioned above�
Jain� Dietterich� Lathrop� et al� ���� and Jain� Koile� Bauer  Chapman ����
describe an APRlike neuralnetwork based method� called COMPASS� that
can make quantitative activity predictions�

Second� the algorithms in this paper assume that a conjunction of conditions
must be satis	ed for binding� This is not always the case� For example� many
drugs of medical importance are �antagonist� drugs�their job is to prevent
the natural compound from binding �e�g�� by blocking access to the binding
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site�� Di�erent antagonist drugs may operate by 	tting in di�erent binding
sites or by binding in di�erent modes to the same general binding site� It
is easy to conceive of extensions to the algorithms reported here that could
handle multiple binding modes� and hence� have broader applicability in drug
design� This is an important direction for further research�

The third limitation of the algorithms discussed here is that they are based
on placing each molecule in a standard position and orientation with respect
to the ��� rays� For many classes of molecules� it is not di�cult to choose
a standard position and orientation� However� for highly "exible molecules
or very diverse sets of molecules� it can be much more di�cult� Dietterich�
Jain� Lathrop  LozanoP'erez ���� and Jain� Dietterich� Lathrop� et al�� ����
describe a method called dynamic reposing that permits the relative orienta
tions of the molecules to change slightly during learning� In comparisons with
other stateoftheart methods� Jain� Koile� Bauer  Chapman ���� show that
dynamic reposing permits more accurate and robust activity predictions� We
have conducted initial experiments with dynamic reposing using APRs� but
because the APR gives only a yes#no response� it does not provide the quan
titative signal needed to control reposing� Attempts to de	ne such a signal for
APRs have not yet succeeded�

The need for dynamic reposing raises another interesting direction for research�
In this paper� we have considered what might be called the discrete multiple
instance problem� each input object can be represented as a 	nite set of pos
sible instances� While there are many applications that exhibit this problem�
there are other applications where the space of possible instances is continuous
and in	nite� The alternative positions and orientations of molecules provide
an example of this continuous multipleinstance problem� Related problems
arise in optical character recognition �����

� Conclusions

The multiple instance problem is an important problem that arises in real
world tasks where the training examples are ambiguous� a single example
object may have many alternative feature vectors that describe it� and yet only
one of those feature vectors may be responsible for the observed classi	cation
of the object� In particular� the problem arises in drug activity prediction�
where each training example is a molecule �and its observed binding strength��
but where each feature vector describes a possible shape �conformation� of the
molecule� Because binding strength is most likely the result of a single shape
	tting into a binding site� usually only one of the feature vectors properly
represents the active molecular shape�
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We presented a representation for molecular shape and a representation for
binding hypotheses� In feature space� each hypothesis corresponds to an axis
parallel rectangle �APR�� We presented three general approaches to designing
APR algorithms� �a� ignore the multiple instance problem� �b� start with the
bounding APR of all positive examples and shrink it while attending to mul
tiple instances �the �outside in� approach�� and �c� start with a singlepoint
APR and grow it while considering multiple instances �the �inside out� ap
proach�� Experiments clearly show that the �inside out� approach is the best�
Ignoring the multiple instance problem�either with APR algorithms� neural
networks� or decision trees�gives quite poor performance� The �outsidein�
approach has great di�culty identifying relevant features of the APR�

Even when the multipleinstance problem is ignored� APR algorithms gener
ally outperform neural networks and decision trees on this task even though in
principle networks and trees can both represent APRs� This is a good illustra
tion of the importance of choosing an appropriate bias for inductive learning
algorithms�

Drug activity prediction and the multiple instance problem are both important
subjects for future research� A particularly interesting issue is how to design
multipleinstance modi	cations for decision trees� neural networks� and other
popular machine learning algorithms�
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