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Sustainable Management of the 

Earth’s Ecosystems 

 The Earth’s Ecosystems are complex 

 

 We have failed to manage them in a sustainable 

way 

 Example: 

 Species extinction rate of mammals ≈ 10-100 times 

historical rates 

 Mammalian populations are dropping rapidly worldwide 
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Why? 

1. We did not think about ecosystems 

as a management or control problem 

 

 

2. Our knowledge of function and 

structure is inadequate 

 

 

3. Optimal management requires 

spatial planning over horizons of 

100+ years 
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Computer Science can help! 
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1. We did not think about ecosystems 

as a management or control problem 

 

 

2. Our knowledge of function and 

structure is inadequate 

 

 

3. Optimal management requires 

spatial planning over horizons of 

100+ years 

 



Computational Sustainability 

NIPS 2012 

The study of computational 

methods that can contribute 

to the sustainable 

management of the earth’s 

ecosystems 

 

Data  Models  Policies 

Data 

Integration 

Data 

Interpretation 

Model Fitting 

Policy 

Optimization 

Data 

Acquisition 

Policy 

Execution 
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Outline 

Illustrative Research 

Challenges for each stage 

Drill down on three projects 

at Oregon State University 

Discussion: What are the 

distinctive aspects of 

computational sustainability 

problems? 

NIPS 2012 
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Example Research Challenges 

Data Acquisition 

NIPS 2012 

Data 

Acquisition 
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Africa is very poorly sensed 

 Only a few dozen weather stations reliably 

report data to WMO (blue points in map) 

Project TAHMO (tahmo.org) 

 TU-DELFT & Oregon State University 

 Design a complete meteorology sensor 

station at a cost of EUR 200 

 Deploy 20,000 such stations across Africa 

 Where should sensors be placed? 

 Accuracy of reconstructed fields for precipitation, 

temperature, relative humidity, wind, etc. 

 Robustness to sensor failure, station loss 



Data Interpretation 
 Insect identification for population counting 

 Raw data: image 

 Interpreted data: Count by species 

 Challenge: Fine-Grained Image Classification 
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Species Count 

Limne 3 

Taenm 15 

Asiop 4 

Epeor 25 

Camel 19 

Cla 12 

Cerat 21 



Data Integration 
 Virtually all ecosystem prediction problems 

require integrating heterogeneous data sources 

 Landsat (30m; monthly) 

 land cover type 

 MODIS (500m; daily/weekly) 

 land cover type 

 Census (every 10 years) 

 human population density 

 Interpolated weather data (15 mins) 

 rain, snow, solar radiation, wind speed & direction, 
humidity 

 

 Challenge: 

 Learn from heterogeneous data  

 without losing fine-grained information 

 without losing uncertainty in the data 
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 http://ivm.cr.usgs.gov/viewer/  
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Model Fitting 
 Species Distribution Models 

 create a map of the distribution of a species 

 Meta-Population Models 

 model a set of patches with local extinction and 

colonization 

 Migration and Dispersal Models 

 model the trajectory and timing of movement 

 

 Challenges 

 The variables of interest are all latent 

 Latent distribution of species 

 Latent dynamics 

 The data are very messy 
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State of the Art: STEM Model of 

Bird Species Distribution 

slide courtesy of Daniel Fink 

Indigo Bunting 
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Policy Optimization 

Challenges 

 Long time horizons (100+ years) 

 The system model is uncertain, so the 

optimization needs to be robust to this 

uncertainty 

 The state of the system covers large spatial 

regions (scales exponentially in region size) 

 System dynamics only available via simulation 

or sampling 
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State of the Art: Reserve Design from a 

Species Distribution Model 

Leathwick et al, 2008 

Observations 

Data 

Integration 

Data 

Interpretation 

Model Fitting 
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Optimization 

Data 
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State of the Art: Reserve Design from a 

Species Distribution Model 

Leathwick et al, 2008 

Observations Fitted Model 
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Leathwick et al, 2008 

Disregarding costs  

to fishing industry 

Full consideration of costs  

to fishing industry 
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Policy Execution 

 Repeat 

 Observe Current State 

 Choose and Execute Action 

 

 Need to continually improve our models 

and update our policies 

 

 Challenge: We must start taking actions 

while our models are still very poor.  

 How can we make our models robust to both 

the “known unknowns” (our known 

uncertainty) and the “unknown unknowns” 

(things we will discover in the future) 
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Drill Down:  

Three Projects at Oregon State 

NIPS 2012 

 Species Distribution Modeling with 

Imperfect Observations 

 Explicit Observation Models 

 Flexible Latent Variable Models 

 

 Models of Bird Migration 

 Collective Graphical Models 

 

 Policy Optimization 

 Controlling Invasive Species 

 Algorithms for Large Spatial MDPs 

 

Data 

Integration 

Data 

Interpretation 

Model Fitting 

Policy 

Optimization 

Data 

Acquisition 

Policy 

Execution 
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Project eBird 

www.ebird.org 

 Volunteer Bird Watchers 

 Stationary Count 

 Travelling Count 

 Time, place, duration, distance travelled 

 Species seen 

 Number of birds for each species or ‘X’ which means ≥ 1 

 Checkbox: This is everything that I saw 

 

 8,000-12,000 checklists per day uploaded 

 

NIPS 2012 
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Species Distribution Modeling from 

Citizen Science Data: 

NIPS 2012 

 eBird data issues 

 imperfect detection 

variable expertise 

sampling bias 

 ... 
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Partial Solution: Multiple visits: Different birds hide on different visits Problem: Some birds are hidden 

Imperfect Detection 

NIPS 2012 
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Multiple Visits to the Same Sites 

Detection History 

 

Site 

True 

occupancy 

(latent) 

Visit 1 

(rainy day, 

12pm) 

Visit 2 

(clear day, 

6am) 

Visit 3 

(clear day, 

9am) 

A  

(forest, 

elev=400m) 

 

1 

 

0 

 

1 

 

1 

B  

(forest, 

elev=500m) 

 

1 

 

0 

 

1 

 

0 

C  

(forest, 

elev=300m) 

 

1 

 

0 

 

0 

 

0 

D  

(grassland, 

elev=200m) 

 

0 

 

0 

 

0 

 

0 
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Occupancy-Detection Model 

 𝑌𝑖𝑡  𝑍𝑖 

𝑖 = 1,… ,𝑀 

𝑡 = 1,… , 𝑇 

 𝑋𝑖 𝑊𝑖𝑡 
𝑜𝑖 𝑑𝑖𝑡 

𝑍𝑖~𝑃(𝑍𝑖|𝑋𝑖): Species Distribution Model 

 𝑃 𝑍𝑖 = 1 𝑋𝑖 = 𝑜𝑖 = 𝐹(𝑋𝑖)  “occupancy probability” 

 

𝑌𝑖𝑡~𝑃(𝑌𝑖𝑡|𝑍𝑖 ,𝑊𝑖𝑡): Observation model 

 𝑃 𝑌𝑖𝑡 = 1 𝑍𝑖 ,𝑊𝑖𝑡 = 𝑍𝑖𝑑𝑖𝑡 
 𝑑𝑖𝑡 = 𝐺(𝑊𝑖𝑡)  “detection probability” 

NIPS 2012 

MacKenzie, et al, 2002 
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Standard Approach: Log Linear 

(logistic regression) models 

NIPS 2012 

 log
𝐹 𝑋𝑖

1−𝐹 𝑋𝑖
= 𝛽0 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝐽𝑋𝑖𝐽 

 log
𝐺 𝑊𝑖𝑡

1−𝐺 𝑊𝑖𝑡
= 𝛼0 + 𝛼1𝑊𝑖𝑡1 +⋯+ 𝛼𝐾𝑊𝑖𝑡𝐾 

Fit via maximum likelihood 
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Results on Synthetic Species with 

Nonlinear Dependencies 

NIPS 2012 

Predictions exhibit high 

variance because model 

cannot fit the nonlinearities 

well 
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A Flexible Predictive (non-Latent) 

Model 

NIPS 2012 

Predict the observation 𝑦𝑖𝑡 from the combination of 

occupancy covariates 𝑥𝑖 and detection covariates 𝑤𝑖𝑡 

Boosted Regression trees 

 log
𝑃 𝑌𝑖𝑡=1 𝑋𝑖,𝑊𝑖𝑡

𝑃 𝑌𝑖𝑡=0 𝑋𝑖,𝑊𝑖𝑡
= 𝛽1𝑡𝑟𝑒𝑒1 𝑋𝑖 ,𝑊𝑖𝑡 +⋯+ 𝛽𝐿𝑡𝑟𝑒𝑒𝐿(𝑋𝑖 ,𝑊𝑖𝑡) 

 Fitted via functional gradient descent (Friedman, 2001, 2010) 

Model complexity is tuned to the complexity of the data 

 Number of trees 

 Depth of each tree 
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Predictive Model Results 

NIPS 2012 

Systematically biased 

because it does not capture 

the latent occupancy 

 Underestimates occupancy at 

occupied sites to fit detection 

failures 

Much lower variance than the 

Occupancy-Detection model, 

because it can handle the 

non-linearities 

P
(Z

) 
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Two Approaches: Summary 

NIPS 2012 

 Advantages 

 Supports latent variables 

 

 

 Disadvantages 

 Hard to use 

 Model must be carefully designed 

 Data must be transformed to 
match model assumptions 

 Model has fixed complexity so 
either under-fits or over-fits 

 Advantages 

 Model complexity adapts to data 

complexity 

 Easy to use “off-the-shelf” 

 

 Disadvantages 

 Do not support latent variables 

Probabilistic 

Graphical 

Models 

Flexible 

Nonparametric 

Models 
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The Dream 

Probabilistic 

Graphical 

Models 

Flexible 

Nonparametric 

Models 

Flexible 

Nonparametric 

Probabilistic 

Models 

12/5/2012 
NIPS 2012 
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A Simple Idea: 

Parameterize 𝐹 and 𝐺 as boosted trees 

NIPS 2012 

log
𝐹 𝑋

1−𝐹 𝑋
= 𝑓0(𝑋) + 𝜌1𝑓

1(𝑋)  + ⋯+ 𝜌𝐿𝑓
𝐿(𝑋) 

log
𝐺 𝑊

1−𝐺 𝑊
= 𝑔0 𝑊 + 𝜂1𝑔

1 𝑊 +⋯+ 𝜂𝐿𝑔
𝐿(𝑊) 

Perform functional gradient descent in 𝐹 and 𝐺 

 
 See also... 

 Kernel logistic regression 

 Non-parametric Bayes 

 RKHS embeddings of probability distributions 
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NIPS 2012 

Occupancy probabilities are 

predicted very well 

Results: OD-BRT 
(Hutchinson, Liu & Dietterich, AAAI 2010) 
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Handling Variable Expertise 

NIPS 2012 
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𝑌𝑖𝑡  𝑍𝑖 

𝑖 = 1,… ,𝑀 

𝑋𝑖 𝑊𝑖𝑡 

𝑜𝑖 𝑑𝑖𝑡, 𝑓𝑖𝑡 

𝑡 = 1, … , 𝑇 

𝑗 = 1,… ,𝑁 

𝑣𝑗 Observer 

covariates 

Expert/novice observer Expertise probability (function of 𝑈) 

Observers 

𝑑’𝑖𝑡, 𝑓’𝑖𝑡 

 𝐹𝑗 𝑈𝑗 



-0.05

0.00

0.05

0.10

0.15

0.20

Average Difference in True Detection Probability 

Expert vs. Novice Differences 

33 

Hard-to-detect 

birds 

Common birds 

Yu, et al, 2010 



Drill Down:  

Three Projects at Oregon State 
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 Species Distribution Modeling with 

Imperfect Observations 

 Explicit Observation Models 

 Flexible Latent Variable Models 

 

 Models of Bird Migration 

 Collective Graphical Models 

 

 Policy Optimization 

 Controlling Invasive Species 

 Algorithms for Large Spatial MDPs 

 

Data 

Integration 

Data 

Interpretation 

Model Fitting 

Policy 

Optimization 

Data 

Acquisition 

Policy 

Execution 
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BirdCast: Understanding and 

Forecasting Bird Migration 

 Available data: 

 eBird observations 

 NEXRAD weather radar 

 acoustic monitoring stations 

 weather data 

 weather forecast 

 Goals: 

 predict spatial distribution of each 
species 24- and 48-hours in advance 

 understand what factors drive bird 
migration 

 wind speed and direction? 

 temperature? 

 relative humidity? 

 absolute or relative timing? 

 food availability? 

NIPS 2012 
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Modeling Goal:  

Spatial Hidden Markov Model 

 Define a grid over the US 

 Let 𝑛𝑖
𝑡 be the number of birds in cell 𝑖 at 

time 𝑡 

 Learn a probability transition matrix that 

depends on the features 

 wind, temperature, time, etc. 

 

NIPS 2012 
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Problem:  

We have only aggregate data 

The data we wish we had: 

 tracks of individual birds 

 

The data we have: 

 ebird: aggregate counts of 

anonymous birds 

 radar: birds per km3 summed 

over all species 

 ... 

 

NIPS 2012 
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Solution:  

Collective Graphical Models 

NIPS 2012 
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  𝑋1   𝑋2   𝑋𝑇 … Individual model: 

Markov chain on grid 

cells 

  𝑋1
𝑚   𝑋2

𝑚   𝑋𝑇
𝑚 … 

𝑚 = 1,… ,𝑀 

Population model:  

iid copies of individual 

model 

Derive aggregate 

observations 

…   𝐧1   𝐧2   𝐧𝑇 

  𝑋1
𝑚   𝑋2

𝑚   𝑋𝑇
𝑚 … 

𝑚 = 1,… ,𝑀 



Solution:  

Collective Graphical Models (2) 

NIPS 2012 
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  𝐧1,2   𝐧2,3   𝐧𝑇−1,𝑇 … 
Marginalize out individuals: 

chain-structured model on 

sufficient statistics  

Transition 

counts 

…   𝐧1   𝐧2   𝐧3   𝐧𝑇 

Derive aggregate 

observations 

…   𝐧1   𝐧2   𝐧𝑇 

  𝑋1
𝑚   𝑋2

𝑚   𝑋𝑇
𝑚 … 

𝑚 = 1,… ,𝑀 

Note: MAP estimates of 𝐧𝒊𝒋 are sufficient statistics of the 

individual model 

We don’t need to reconstruct individual tracks to fit the 

individual model 



Inference in Collective Graphical 

Models (Sheldon & Dietterich, NIPS 2011) 

Model Fitting via EM 

 Requires sampling from 

𝑃(𝒏𝑡,𝑡+1|𝒏1, … , 𝒏𝑇) 

 posterior distribution of “flows” 

through the HMM trellis 

 

 Fast Gibbs Sampler that 

respects Kirchoff’s laws 

 running time is independent of 

population size 

NIPS 2012 
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Best exact method 

(cubic in M) 

Our method   

(to 2% relative error) 



The Migration Model 

NIPS 2012 

𝒏𝑡
𝑠 𝒏𝑡,𝑡+1

𝑠  

𝑥𝑡
𝑠(𝑖, 𝑜) 

𝑠 = 1,… , 𝑆 

𝑎𝑡,𝑡+1
𝑠 (𝑘) 

𝑦𝑡,𝑡+1
𝑠 (𝑘) 

𝑟𝑡,𝑡+1
 (𝑣) 

𝑧𝑡,𝑡+1
 (𝑣) 

… … 

𝑜 = 1,… , 𝑂(𝑖, 𝑡) 
𝑠 = 1,… , 𝑆 

𝑖 = 1,… , 𝐿 

𝑠 = 1,… , 𝑆 

𝑘 = 1,… , 𝐾 𝑣 = 1,… , 𝑉 

eBird acoustic radar 

b
ir
d

s
 

 Species 𝑠 

 Observers 𝑜 

 Sites 𝑖 

 Acoustic stations 𝑘 

 Radar sites 𝑣 
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With Added Covariates 

 

NIPS 2012 
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𝒏𝑡
𝑠 𝒏𝑡,𝑡+1

𝑠  

𝑥𝑡
𝑠(𝑖, 𝑜) 

𝑠 = 1,… , 𝑆 

𝑎𝑡,𝑡+1
𝑠 (𝑘) 

𝑦𝑡,𝑡+1
𝑠 (𝑘) 

𝑟𝑡,𝑡+1
 (𝑣) 

𝑧𝑡,𝑡+1
 (𝑣) 

… … 

𝑜 = 1,… , 𝑂(𝑖, 𝑡) 
𝑠 = 1,… , 𝑆 

𝑖 = 1, … , 𝐿 

𝑠 = 1,… , 𝑆 

𝑘 = 1,… , 𝐾 𝑣 = 1,… , 𝑉 

eBird acoustic radar 

b
ir
d

s
 

𝒘𝑡,𝑡+1 𝒘𝑡 



Drill Down:  

Three Projects at Oregon State 

NIPS 2012 

 Species Distribution Modeling with 

Imperfect Observations 

 Explicit Observation Models 

 Flexible Latent Variable Models 

 

 Models of Bird Migration 

 Collective Graphical Models 

 

 Policy Optimization 

 Controlling Invasive Species 

 Algorithms for simulator-defined 

MDPs 

 

Data 

Integration 

Data 

Interpretation 

Model Fitting 

Policy 

Optimization 

Data 

Acquisition 

Policy 

Execution 
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Invasive Species Management in 

River Networks 

Tamarisk: invasive tree from the 

Middle East 

 Out-competes native vegetation for 

water 

 Reduces biodiversity 

 

What is the best way to manage 

a spatially-spreading organism? 

NIPS 2012 
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Markov Decision Process 

Tree-structured river network 

Each edge 𝑒 ∈ 𝐸 has 𝐻 “sites” where a 

tree can grow. 

Each site can be 

 {empty, occupied by native, occupied by 

invasive} 

 # of states is 3𝐸𝐻 

Management actions 

Each edge: {do nothing, eradicate, restore, 

eradicate+restore} 

 # of actions is 4𝐸 

𝑒1 𝑒2 

𝑒3 
𝑒4 

𝑒5 

NIPS 2012 
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Dynamics and Objective 

Dynamics: 

 In each time period 
 Natural death 

 Seed production 

 Seed dispersal (preferentially downstream) 

 Seed competition to become established 

 Couples all edges because of spatial spread 

 Inference is intractable 

 

Objective: 

Minimize expected discounted costs 
(sum of cost of invasion plus cost of 
management) 

Subject to annual budget constraint  

 

 NIPS 2012 
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𝑒1 𝑒2 

𝑒3 
𝑒4 

𝑒5 

n
 

n
 

t 
n

 n
 



Algorithm DDV 

Goal: Compute PAC-optimal policy 

while minimizing simulator calls 

Explicit representation of the MDP 

(Transition matrix and Q table) 

 Confidence intervals 𝑄𝑙𝑜𝑤𝑒𝑟(𝑠, 𝑎) and 

𝑄𝑢𝑝𝑝𝑒𝑟(𝑠, 𝑎) 

 Confidence interval on 𝑉(𝑠0) 

 Upper bound on discounted state 

occupancy probability 𝜇𝑢𝑝𝑝𝑒𝑟(𝑠) 

 𝜇𝜋 𝑠 =  𝛾𝑡𝑃(𝑠𝑡 = 𝑠|𝑠0 = 𝑠0, 𝜋)𝑡  

 Measure of uncertainty: 

 Δ𝑉 𝑠0 = 𝑉𝑢𝑝𝑝𝑒𝑟 𝑠0 − 𝑉𝑙𝑜𝑤𝑒𝑟(𝑠0) 

 

NIPS 2012 
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 𝑠0 

 𝑎1  𝑎2 

 𝑠1  𝑠2 

 𝑠 

 𝑎1  𝑎2 

 𝑠′ 

... 

𝑄𝑢𝑝𝑝𝑒𝑟(𝑠0, 𝑎1) 

𝑄𝑙𝑜𝑤𝑒𝑟(𝑠0, 𝑎1) 

𝑄𝑢𝑝𝑝𝑒𝑟(𝑠0, 𝑎2) 

𝑄𝑙𝑜𝑤𝑒𝑟(𝑠0, 𝑎2) 

𝑉𝑢𝑝𝑝𝑒𝑟(𝑠0) 

𝑉𝑙𝑜𝑤𝑒𝑟(𝑠0) 

𝑄𝑢𝑝𝑝𝑒𝑟(𝑠, 𝑎2) 

𝑄𝑙𝑜𝑤𝑒𝑟(𝑠, 𝑎2) 

𝜇𝑢𝑝𝑝𝑒𝑟(𝑠0) 

𝜇𝑢𝑝𝑝𝑒𝑟(𝑠1) 

𝜇𝑢𝑝𝑝𝑒𝑟(𝑠) 

𝑉𝑢𝑝𝑝𝑒𝑟(𝑠0) 

𝑉𝑙𝑜𝑤𝑒𝑟(𝑠0) 

Δ𝑉(𝑠0) 



Algorithm DDV 

 Exploration heuristic: 

 Exploring (𝑠, 𝑎2) will cause a local 

reduction in  
Δ𝑄 𝑠, 𝑎2 = 𝑄𝑢𝑝𝑝𝑒𝑟 𝑠, 𝑎2 − 𝑄𝑙𝑜𝑤𝑒𝑟 𝑠, 𝑎2  

 

 The impact of this on Δ𝑉(𝑠0) can be 

approximated by 
𝜇𝑢𝑝𝑝𝑒𝑟 𝑠 [Δ𝑄 𝑠, 𝑎1 − Δ𝑄′ 𝑠, 𝑎1 ] 

 

 Explore the (𝑠, 𝑎) that maximizes  

   𝜇𝑢𝑝𝑝𝑒𝑟 𝑠 [Δ𝑄 𝑠, 𝑎 − Δ𝑄′ 𝑠, 𝑎 ] 
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 𝑠0 

 𝑎1  𝑎2 

 𝑠1  𝑠2 

 𝑠 

 𝑎1  𝑎2 

 𝑠′ 

... 

𝑉𝑢𝑝𝑝𝑒𝑟(𝑠0) 

𝑉𝑙𝑜𝑤𝑒𝑟(𝑠0) 

Δ𝑄(𝑠, 𝑎2) 

𝜇𝑢𝑝𝑝𝑒𝑟(𝑠0) 

𝜇𝑢𝑝𝑝𝑒𝑟(𝑠1) 

𝜇𝑢𝑝𝑝𝑒𝑟(𝑠) 

Δ𝑄′(𝑠, 𝑎2) 



Results on “RiverSwim” benchmark 
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 Comparison with Strehl 

& Littman (2008) 

Model-Based Interval 

Estimation (MBIE) 

 DDV reduces the 

uncertainty in 𝑉(𝑠0) 
much faster than MBIE 

 note log scale 

 Both algorithms have 

PAC guarantees 



Published Rule of Thumb Policies  

for Invasive Species Management 

Triage Policy 

 Treat most-invaded edge first 

 Break ties by treating upstream first 

Leading edge 

 Eradicate along the leading edge of invasion 

Chades, et al.  

 Treat most-upstream invaded edge first 

 Break ties by amount of invasion 

DDV 

 Our PAC solution 
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Cost Comparisons:  

Rule of Thumb Policies vs. DDV 
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Summary 

 Data  Models  Policies 

 

 Three projects at Oregon State: 

 Species Distribution Modeling with 

Imperfect Observations 

 Flexible Latent Variable Models 

 

 Models of Bird Migration 

 Collective Graphical Models 

 

 Policy Optimization 

 Algorithms for simulator-defined MDPs 
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Data 

Integration 

Data 

Interpretation 

Model Fitting 

Policy 

Optimization 

Data 

Acquisition 

Policy 

Execution 



Distinctive Characteristics of 

Sustainability Problems 

 Goal is typically to encourage or prevent spatial spread 
 Encourage spread of endangered species 

 Manage spread of fire 

 Prevent spread of diseases and invasive species 

 Over long time horizons 

 Resulting MDPs are immense 

 Dynamics are typically available only via a simulator 

 

 Data are extremely noisy, heterogeneous, and incomplete 
 Need to learn latent process dynamical models from this data 

 

 Optimization is based on learned models 
 Need to be robust to incorrect models 

 Need to be robust to the unknown unknowns 

 Risk sensitive: 
 avoid species extinctions 

 avoid catastrophic fires 
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Computational Sustainability 

There are many opportunities for computing to contribute 

to sustainable ecosystem management 

 

There are many challenging machine learning research 

problems to be solved 

 

 Institute for Computational Sustainability: 

http://www.computational-sustainability.org/  
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Thank-you 

 Rebecca Hutchinson, Liping Liu: Boosted Regression Trees in OD 

models 

 Dan Sheldon: Collective Graphical Models 

 Steve Kelling, Andrew Farnsworth, Wes Hochachka, Daniel Fink: 

BirdCast 

 H. Jo Albers, Kim Hall, Majid Taleghan, Mark Crowley: Tamarisk 

 Carla Gomes for spearheading the Institute for Computational 

Sustainability 

 

 National Science Foundation Grants 0705765, 0832804, and 0905885 
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Questions? 


