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Sustainable Management of the

Earth’'s Ecosystems

= The Earth’s Ecosystems are complex

= We have failed to manage them in a sustainable
way
= Example:

= Species extinction rate of mammals = 10-100 times
historical rates

= Mammalian populations are dropping rapidly worldwide
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Ceballos & Erhlich, 2002

% mammal population lost



Why??

1. We did not think about ecosystems
as a management or control problem

2. Our knowledge of function and
structure is inadequate

3. Optimal management requires
spatial planning over horizons of
100+ years

12/5/2012 NIPS 2012 3



Computer Science can help! |

1. We did not think about ecosystems
as a management or control problem

2. Our knowledge of function and «

structure is inadequate \
3. Optimal management requires -

spatial planning over horizons of
NIPS 2012

100+ years
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Computational Sustainability

= The study of computational
methods that can contribute
to the sustainable
management of the earth’s
ecosystems

= Data 2 Models = Policies
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Outline

=|llustrative Research
Challenges for each stage

=Drill down on three projects
at Oregon State University

=Discussion: What are the
distinctive aspects of
computational sustainability
problems?
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Example Research Challenges
Data Acquisition Data

Acquisition

= Africa is very poorly sensed

= Only a few dozen weather stations reliably
report data to WMO (blue points in map)

* Project TAHMO (tahmo.org)
= TU-DELFT & Oregon State University

= Design a complete meteorology sensor
station at a cost of EUR 200

= Deploy 20,000 such stations across Africa

= Where should sensors be placed?

= Accuracy of reconstructed fields for precipitation,
temperature, relative humidity, wind, etc.

= Robustness to sensor failure, station loss

NIPS 2012




. 4 A
Data Interpretation Dats
Acquisition
= Insect identification for population counting 3
= Raw data: image ( Sata A
= Interpreted data: CouJ_ w b | C®| n Interpretation
= Challenge: Fine-Grai \ /

'Species [Count
Taonm |15
nsiop | 4
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Data Integration Deta
Acquisition
= Virtually all ecosystem prediction problems —
require integrating heterogeneous data sources s Data h
= Landsat (30m; monthly) Interpretation
= land cover type \ Y,
= MODIS (500m:; daily/weekly) ——
= land cover type Data_
= Census (every 10 years) : Integration )

= human population density

= |Interpolated weather data (15 mins)

= rain, snow, solar radiation, wind speed & direction,
humidity

= Challenge:

= Learn from heterogeneous data
= without losing fine-grained information
= without losing uncertainty in the data

Landsat NDVI;
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http://ivm.cr.usgs.gov/viewer/
http://ivm.cr.usgs.gov/viewer/

Model Fitting

= Species Distribution Models
= create a map of the distribution of a species
= Meta-Population Models

= model a set of patches with local extinction and
colonization

= Migration and Dispersal Models
= model the trajectory and timing of movement

= Challenges

= The variables of interest are all latent
= Latent distribution of species
= Latent dynamics

= The data are very messy

12/5/2012 NIPS 2012
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State of the Art: STEM Model of
Bird Species Distribution

January 3.200A

Alpr Jtlm Stlep Dtlec
slide courtesy of Daniel Fink




Policy Optimization

= Challenges
= Long time horizons (100+ years)

= The system model is uncertain, so the
optimization needs to be robust to this
uncertainty

= The state of the system covers large spatial
regions (scales exponentially in region size)

= System dynamics only available via simulation
or sampling

12/5/2012 Leathwick et al, 2008
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State of the Art: Reserve Design from a
Species Distribution Model
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State of the Art: Reserve Design from a
Species Distribution Model
Observations Fitted Model

Kilomeatars

12/5/2012 Leathwick et al, 2008
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Conservation
ranking
I O-10%

I 10-20%
] 20-50%
[1>50%

Disregarding costs
to fishing industry
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Full consideration of costs

to fishing industry

Leathwick et al, 2008




Policy Execution Deta

Acquisition
= Repeat —
Data
= Observe Current State .
. Interpretation
= Choose and Execute Action N y
( ¥ )
: : Data
= Need to continually improve our models Integration
and update our policies +
= Challenge: We must start taking actions Model Fitting

while our models are still very poor. —a
4 )
= How can we make our models robust to both

“ . Policy
the knqwn unknown;s. (our known : Optimization
uncertainty) and the “unknown unknowns y
(things we will discover in the future) v

Policy
Execution
\_ /
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Drill Down:
Three Projects at Oregon State | pa |.

Acquisition
\ 4
= Species Distribution Modeling with Data
Imperfect Observations Interpretation
= Explicit Observation Models - S
= Flexible Latent Variable Models ~ ~~ _ . Data
DR Integration
= Models of Bird Migration ~~o_ AR - P Z—
= Collective Graphical Models Te~L. 2 .
= =3 |Model Fitting
" . " " \ )
= Policy Optimization —_—
= Controlling Invasive Species @ ~ == === _ _ _ & S Policy
= Algorithms for Large Spatial MDPs \Opt'm'zat'onj
4
Policy

Execution

NIPS 2012
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Project eBird
www.ebird.org

= Volunteer Bird Watchers
= Stationary Count
= Travelling Count
= Time, place, duration, distance travelled
= Species seen
= Number of birds for each species or ‘X’ which means > 1
= Checkbox: This is everything that | saw

= 8,000-12,000 checklists per day uploaded

NIPS 2012
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Species Distribution Modeling from
Citizen Science Data:

= eBird data issues
*imperfect detection
=variable expertise
=sampling bias

12/5/2012 NIPS 2012 19



Imperfect Detection

12/5/2012 NIPS 2012
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Multiple Visits to the Same Sites

True Visit 1 Visit 2 Visit 3
occupancy (rainy day, (clear day, (clear day,
(latent) 12pm) 6am) 9am)

(forest, 0
elev=400m)

B
(forest,
elev=500m)

C
(forest,
elev=300m)

D
(grassland,
elev=200m)

12/5/2012 NIPS 2012




Occupancy-Detection Model I

MacKenzie, et al, 2002

Z;~P(Z;|X;): Species Distribution Model
P(Z; = 1|X;) = 0; = F(X;) “occupancy probability”

Y;i~P(Y;:|Z;, W;): Observation model
P(Yy = 1Z;, Wy) = Z;d;;
d;; = G(W;) “detection probability”

NIPS 2012
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Standard Approach: Log Linear
(logistic regression) models

F(X;)
"log R Bo + B1Xi1 + -+ B Xy

GWit)

= ao + a;Wigg + -+ agWig

= Fit via maximum likelihood

12/5/2012 NIPS 2012
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Results on Synthetic Species with
Nonlinear Dependencies |.

= Predictions exhibit high
variance because model
cannot fit the nonlinearities
well

True Occupancy Probabilities

NIPS 2012
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A Flexible Predictive (non-Latent)
Model

= Predict the observation y;; from the combination of
occupancy covariates x; and detection covariates w;;

= Boosted Regression trees

P(Yi=1|X;,Wie)
P(Yit=0|X;Wi¢)

= Fitted via functional gradient descent (Friedman, 2001, 2010)
= Model complexity is tuned to the complexity of the data

= Number of trees
= Depth of each tree

= log Bitrees (X;, Wip) + -+ + Brtree, (X;, W)

12/5/2012 NIPS 2012
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Predictive Model Results

= Systematically biased
because it does not capture
the latent occupancy

= Underestimates occupancy at
occupied sites to fit detection
failures
= Much lower variance than the
Occupancy-Detection model,
because it can handle the
non-linearities True Occupancy Probabilities

12/5/2012 NIPS 2012
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Two Approaches: Summary |

= Advantages
= Supports latent variables

= Disadvantages

= Hard to use
= Model must be carefully designed

= Data must be transformed to
match model assumptions

= Model has fixed complexity so
either under-fits or over-fits

12/5/2012 NIPS 2012

= Advantages

= Model complexity adapts to data
complexity

= Easy to use “off-the-shelf”

= Disadvantages

= Do not support latent variables

27
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A Simple ldea:
Parameterize F and G as boosted trees

log o0 = O(X) + puf ' (X) + -+ + pufH(X)

G(W)
"log =5 = 9" W) + 119" (W) + - +1,.9" (W)

= Perform functional gradient descent in F and G

= See also...
= Kernel logistic regression
= Non-parametric Bayes
= RKHS embeddings of probability distributions

12/5/2012 NIPS 2012
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Results: OD-BRT N
(Hutchinson, Liu & Dietterich, AAAI 2010) .
= Occupancy probabilities are g 2

predicted very well o

00 02 04 06 08 10

True Occupancy Probabilities

OD-BRT

12/5/2012 True Occupancy Frobabilities True Occupancy Probabilities



Handling Variable Expertise |

Expertise probability (function of U) Expert/novice observer
~

Observer

B —

covariates __— Observers

NIPS 2012
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Expert vs. Novice Differences

Average Difference in True Detection Probability

Common birds Hard-to-detect
birds

12/5/2012 Yu, et al, 2010 =



Drill Down:

Three Projects at Oregon State

= Species Distribution Modeling with
Imperfect Observations

= Explicit Observation Models
» Flexible Latent Variable Models

= Models of Bird Migration
= Collective Graphical Models

= Policy Optimization
= Controlling Invasive Species
= Algorithms for Large Spatial MDPs

12/5/2012 NIPS 2012
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BirdCast: Understanding and
Forecasting Bird Migration

ERD 2.0 Traveling & Stationary 2004-09

= Available data:
= eBird observations
= NEXRAD weather radar
= acoustic monitoring stations
= weather data
= weather forecast

= Goals:

= predict spatial distribution of each
species 24- and 48-hours in advance

= understand what factors drive bird
migration
= wind speed and direction?
= temperature?
= relative humidity?
= absolute or relative timing?
= food availability?

12/5/2012 NIPS 2012 35



Modeling Goal:
Spatial Hidden Markov Model |.

= Define a grid over the US

= Let n! be the number of birds in cell i at
time t

= Learn a probability transition matrix that .
depends on the features ‘,ﬁ’r’mf’f’m

= wind, temperature, time, etc. mrmrfm

12/5/2012 NIPS 2012 26



Problem:
We have only aggregate data

= The data we wish we had: _
= tracks of individual birds

= The data we have:

= ebird: aggregate counts of
anonymous birds

= radar: birds per km3 summed
over all species

12/5/2012 NIPS 2012
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Solution;
Collective Graphical Models

Individual model: 4,@
Markov chain on grid

cells
Population model: @
iid copies of individual
model m=1,..,M

Derive aggregate

Sbseratons RGN @
o6 o

NIPS 2012

12/5/2012
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Solution:
Collective Graphical Models (2) |.

Derive aggregate
observations 4@4

oo o

Marginalize out individuals:
chain-structured model on
sufficient statistics

Transition
counts

Note: MAP estimates of n;; are sufficient statistics of the
individual model

We don’t need to reconstruct individual tracks to fit the
individual model

12/5/2012 NIPS 2012 39



Inference in Collective Graphical
Models (sheldon & Dietterich. NIPS 2011) I.

Best exact method

= Model Fitting via EM
= Requires sampling from

P(nyiiq|ny, ..., ny)
= posterior distribution of “flows”
through the HMM trellis

= Fast Gibbs Sampler that
respects Kirchoff’s laws

= running time is independent of
population size

2]
O
-
Qo
O
(O
N

Population size

Our method

(to 2% relative error)

NIPS 2012
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radar

acoustic

eBird

The Migration Model

= Observers o
= Acoustic stations k
= Radar sites v

= Species s
= Sites i

41
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With Added Covariates

radar

acoustic

42
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Drill Down:
Three Projects at Oregon State

= Species Distribution Modeling with
Imperfect Observations

= Explicit Observation Models
» Flexible Latent Variable Models

= Models of Bird Migration
= Collective Graphical Models

= Policy Optimization
= Controlling Invasive Species

= Algorithms for simulator-defined
MDPs
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Invasive Species Management in
River Networks

= Tamarisk: invasive tree from the
Middle East

= Qut-competes native vegetation for
water

= Reduces biodiversity

= What is the best way to manage | e R e
a spatially-spreading organism? . L e

NIPS 2012
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Markov Decision Process

= Tree-structured river network

= Each edge e € E has H “sites” where a
tree can grow.

= Each site can be

= {empty, occupied by native, occupied by
invasive}

= # of states is 3£#
= Management actions

= Each edge: {do nothing, eradicate, restore,
eradicate+restore}

= # of actions is 4£

12/5/2012 NIPS 2012
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Dynamics and Obijective

= Dynamics:

* |n each time period
= Natural death
= Seed production
= Seed dispersal (preferentially downstream)
= Seed competition to become established

= Couples all edges because of spatial spread
= [nference is intractable

= Objective:
= Minimize expected discounted costs

(sum of cost of invasion plus cost of
management)

= Subject to annual budget constraint

12/5/2012 NIPS 2012
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Al g O rlth m D DV Hupper (50)  Vipper (S0)

= Goal: Compute PAC-optimal policy Viower (So)
while minimizing simulator calls Qupper (S0, a1 Qupper (So, @2)
i
= Explicit representation of the MDP - -
(Transition matrix and Q table) o B uupper(sl)Nz)
= Confidence intervals Q;,,,.r(s,a) and |
Qupper (Sr a) ‘
= Confidence interval on V' (s;) ’/
= Upper bound on discounted state Hupper (S) /
occupancy probability 1,5 (S) I .
= u™(s) = X, ytP(st = s|s® = s4,m) Qupper (s, 22)
= Measure of uncertainty: {/‘
= AV (so) = Vupper(So) — Viower (So) Qtower (S, az)

12/5/2012 NIPS 2012 7



Algorithm DDV e 50)  Vgper G0 |

= Exploration heuristic: ‘Vzower(s())
= Exploring (s, a,) will cause a local

Hupper (s1 )\R\
I

reduction in
AQ(s,az) = Qupper(s; az) — Quower(s, az) -

= The impact of this on AV (s,) can be
approximated by
Hupper (s)[AQ(s,a1) —AQ'(s,aq)]

5w
v

.uupper(s)/
I ‘ AQ(s,az)  AQ'(s az)
]

= Explore the (s, a) that maximizes
.uupper(s) [AQ(s,a) — AQ'(s,a)]

NIPS 2012
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Comparison with Strenhl
& Littman (2008)
Model-Based Interval
Estimation (MBIE)

DDV reduces the
uncertainty in V(sy)
much faster than MBIE

note log scale

Both algorithms have
PAC guarantees MBIE

V_upper

= Optimal

V_lower

12/5/2012 NIPS 2012 49



Published Rule of Thumb Policies
for Invasive Species Management

= Triage Policy

= Treat most-invaded edge first

= Break ties by treating upstream first
= | eading edge

= Eradicate along the leading edge of invasion
= Chades, et al.

= Treat most-upstream invaded edge first
= Break ties by amount of invasion

=DDV
= Qur PAC solution

12/5/2012 NIPS 2012
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Cost Comparisons:
Rule of Thumb Policies vs. DDV |

Total Costs
450 -

400 -
350 -
300 -
250 A
200 -
150 -
100 -
50 A

Triage Chades Leading DDV
Edge




Summary
= Data - Models - Policies

= Three projects at Oregon State:

= Species Distribution Modeling with
Imperfect Observations

= Flexible Latent Variable Models

= Models of Bird Migration
= Collective Graphical Models

= Policy Optimization
= Algorithms for simulator-defined MDPs

12/5/2012 NIPS 2012
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Distinctive Characteristics of
Sustainability Problems

= Goal is typically to encourage or prevent spatial spread
= Encourage spread of endangered species
= Manage spread of fire

Prevent spread of diseases and invasive species

Over long time horizons

Resulting MDPs are immense

Dynamics are typically available only via a simulator

= Data are extremely noisy, heterogeneous, and incomplete
= Need to learn latent process dynamical models from this data

= Optimization is based on learned models
= Need to be robust to incorrect models
= Need to be robust to the unknown unknowns

= Risk sensitive:
= avoid species extinctions
= avoid catastrophic fires

12/5/2012 NIPS 2012
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Computational Sustainability |

= There are many opportunities for computing to contribute
to sustainable ecosystem management

= There are many challenging machine learning research
problems to be solved

= |Institute for Computational Sustainability:
http://www.computational-sustainability.org/

NIPS 2012
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Thank-you |

= Rebecca Hutchinson, Liping Liu: Boosted Regression Trees in OD
models

= Dan Sheldon: Collective Graphical Models

= Steve Kelling, Andrew Farnsworth, Wes Hochachka, Daniel Fink:
BirdCast

= H. Jo Albers, Kim Hall, Majid Taleghan, Mark Crowley: Tamarisk

= Carla Gomes for spearheading the Institute for Computational
Sustainability

= National Science Foundation Grants 0705765, 0832804, and 0905885

NIPS 2012
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Questions?



