ORELON SIATE
LIYERSITY
LOMPYTER

" SCIENCE
DEPARTIMENT

An Efficient ATMS for Equivalence Relations

Caroline N. Koff

Nicholas S. Flann

Thomas G. Dietterich
Department of Computer Science
Oregon State University

38-30~1 Corvallis, Oregon 97331




An Efficient ATMS for Equivalence Relations™

Caroline N. Koff
Nicholas S. Flann
Thomas G. Dietterich

Department of Computer Science

Oregon State University

Computer Science Building 100

Corvallis, Oregon 97331-3902
koff@cs.orst.edu

Topic: Automated Reasoning (equality reasoning
Word count: 4000 (approx.)

Abstract

, truth maintenance)

We introduce a specialized ATMS for efficiently computing equivalence relations in
multiple contexts. This specialized ATMS overcomes the problems with existing
solutions to reasoning with equivalence relations. The most direct implementa-
tion of an equivalence relation in the ATMS—encoding the reflexive, transitive
and symmetric rules in the consumer architecture—produces redundant equality
derivations and requires ©(n®) label update attempts (where n is the number of
terms in the equivalence class). An alternative implementation is one that em-
ploys simple equivalence classes. However, this solution is unacceptable, since the
size of the classes grows exponentially with the number of distinct assumptions.
The specialized ATMS presented here produces no redundant equality derivations,
requires only ©(n?) label update attempts, and is most efficient when there are
many distinct assumptions. This is achieved by exploiting a special relationship
that holds among the labels of the equality assertions because of transitivity. The
standard dependency structure construction and traversal is replaced by a sin-
gle pass over each label in a particular kind of equivalence class. The specialized
ATMS as been implemented as part of the logic programming language FORLOG.

*This research was supported by the National Science Foundation under grants DMGC-85-
14949 and TRI-86-57316 and by Tektronix, Inc. ander contract No. 530097. The authors thank
Jim Holloway, Giuseppe Cerbone, Marion Hakanson, and Ritchey Ruff for their helpful comments

on previous drafts of this paper.

v Sbomitlid A AII-28



1 Introduction

Consider the following reasoning problem. Given equality assertions of the form (= z ¥),
where = and y are either Skolem constants or ordinary constants, compute the symmetric
and transitive closure of the equality relation, detect contradictions, and answer queries of
the form (= z y). This problem has a long history in computer science, beginning with the
need to reason about EQUIVALENCE and COMMON declarations in FORTRAN [Arden,
Galler, & Graham, 1961). The best known solution involves representing equivalence classes
(sets of constants known to be equal to one another) as trees spanning from a chosen constant
(the class representative) to the other members of the class. This yields the UNION-FIND
algorithm [Galler & Fisher, 1964] and subsequent path compression optimizations [Aho,
Hopcroft, & Ullman, 1974].

In this paper, we are interested in the case where the various equality assertions are
labeled with supporting environments (sets of primitive assumptions) of the kind introduced
by de Kleer’s ATMS [1986a]. In this case, queries ask whether (= z y) is true under some
specified set of assumptions. This problem arises in any situation where equality assertions
are present and there is a need to investigate multiple contexts (sets of assumptions) si-
multapeously. In particular, it arises in the FORLOG logic programming system [Flann,
Dietterich & Corpron, 1987]. FORLOG is a forward-chaining logic programming language
that employs Skolem constants in place of Prolog’s “logical variables” and performs equality
reasoning instead of unification. It is implemented using an extended version of de Kleer’s
[1986¢] consumer architecture. We expect that the same problem will arise in any parallel
logic programming system.

The remainder of this paper explores forward chaining approaches to solving this rea-
soning problem. First, the existing approaches, including UNION-FIND, are shown to be
inefficient. Second, our solution is introduced with an algorithm description, an example
problem, worst case and best case analysis, and a proof of correctness. Third, the algorithm
is generalized and optimized. Finally, a brief summary is given.

9 Existing Approaches

There are two obvious methods for reasoning with equality in multiple contexts: (2) encode
the equality axioms in the de Kleer’s consumer architecture and ATMS and (b) employ a
multiple-context version of the UNION-FIND algorithm.

2.1 Encoding the Equality Axioms

The simplest approach is to give the equality axioms direction to an ATMS-based problem
solver. Only the transitive axiom must be represented directly. The reflexive axiom (= = )
can be handled by the query routines, and the symmetry axiom (= z y) O (=yz) can be
handled by establishing a canonical ordering over the terms and doing some clever pattern
matching on the left-hand-side of the transitivity axiom.

Vz,p,z(=zy) A (=y2) D (=2 2) @)



(= <1 sx2) {{A}} (= sk2 sk3) {{B}}

\s

(= sk1 sk3) {{AB}}

Figure 1: The dependency structure for three equalities

Here z, y, and z are either Skolem constants or ordinary constants. Whenever the antecedent
pattern of this axdiom is szxisied by a set of facts in the database during problem solving, a
new assertion is derived 2nd zdded to the ATMS database. For example, consider the follow-
ing two equality assertions (presented using the basic ATMS data structure: node:{datum,

label, justifications)):

nodel : {(= sk1 sk2) {{4}} {(A)) @)
node2: {(= sk2 sk3) {{B}} {(B)}) (3)

These satisfy the antececents of (1) and produce the following derived node:
node3 = {{= skl sk3) {{A,B}} {(nodel,node2)}) (4)

Node3 is the only new ecuality information derivable from nodel and node2. But by applying
the reflexivity axiom, the newly derived equality in node3 will twice satisfy the antecedent
of (1) in conjunction with the equalities in nodel and node2 respectively, and rederive the
following two equalities:

nodzl = {(= skl sk2) {{A4,B}} {(node2,node3)}) (3)
node2: {(= sk2 sk3) {{4,B}} {(nodel,node3)})- (6)

One of the requirements imposed on the labels by the ATMS is that they be in minimal
form. Since the environment {A, B} of (5) and (6) is subsumed by {A} of nodel and {B}
of node2, it is not inciuded in the labels of nodes nodel and node2. In this sense, the
equality derivations of (3) and (6) are redundant. However these redundant derivations
allow the problem solver to generate all of the necessary justification links for these three
nodes. Without these justification links, the ATMS cannot apply its label-update algorithm
correctly. The dependency ciructure for these three nodes is given in Figure 1. (Justifications
for each equality assertian are shown as two links merging to support that assertion.)

Although de Kleer's Izbel-update algorithm [de Kleer, 1986a] guarantees that the labels
will be consistent and complete upon termination of the update process, each node may
have been updated more than once. By applying this algorithm to a collection of mutually-
supporting assertions, <ack 2s those shown in Figure 1, an alarming number of label update

3



attempts will occur due to the circular structure of the dependencies. For example, suppose
a node is given a DeEW supporting environment. To propagate this environment to the rest of
the nodes, the Jabel-update algorithm will recursively update the consequent node labels by
traversing justification Links. Consider the following series of label update attempts made by
the label-update algorithm after nodel has been updated to include the environment {C} in
its label. First, the algorithm attempts to update the labels of its consequent nodes, node2

and node3:

o For node2’s label, the new environment of nodel and the environment of node3 are
combined to produce the environment {A, B, C}, which is subsumed by {B}.

o For node3’s label, the new environment of nodel and the environment of node2 are
combined to produce the environment {B,C} which is included in node3’s label.

Since node3’s label has changed, the algorithm will now attempt to update the labels of
node3’s consequent nodes, nodel and node2:

o For nodel’s label, the new environment of node3 and the environment of node2 are
combined to produce the environment {B, C}, which is subsumed by {C}.

e For node2’s label, the new environment of node3 and the environments of nodel are
combined to produce the environments {A,B,C} and {B,C} both of which are sub-

sumed by {B}-

The example given above does not demonstrate the worst case. This occurs when new sup-
port arrives on a derived node, such as node3—the algorithm must traverse every justification

of every node. Since there are %), or a(n=1) equalities, where n is the number of terms
2 7

in an equivalence class, and there are n — 2 ways to justify an equality, the number of label
update attempts made by the algorithm is (n(n — 1)/2)(n — 2) or ©(n®). (The best case
occurs when the algorithm terminates after attempting to update just one label upon either
deriving a nogood or deriving an environment which was subsumed by the node’s original
label.)

One approach to reducing the generation of redundant equality assertions is to employ
typed consumers. The basic idea is to postpone construction of the circular dependency
links until they are needed to allow label propagation and updating. The example used by
de Kleer [1986¢] is the relation plus(z,y,z). Such relations are implemented by a set of
constraint consumers, one for each variable that computes its value from the values of the
other variables. For example, when z and y are known, 2 constraint consumer computes
the value for z. However, this value for z will be used with z (or y) and another constraint
consumer to recompute y (z). To avoid such redundancies, a special mechanism was proposed
by de Kleer that involved assigning a unique ¢ype to each constraint consumer of a relation
and barring the use of data derived from such consumers to satisfy other consumers of the
same type. This prevents the circular justifications and redundant assertions from being
created until additional support is given to the value for z. At that point, the justifications
will be created so that this new support can be propagated to z and to y.

Because redundant assertions and circular justifications are eventually created, typed
consumers do not improve the worst-case behavior of this approach to equality reasoning.

4



2.2 Extending UNION-FIND

The second approach is to employ some kind of equivalence class data structure like the
UNION-FIND tree. An equivalence class is a set of constants and Skolem constants that are
all equal to one another in a single context. In single-context systems (like Prolog and RUP
[McAllester, 1982]), the context in question is implicit, and this is very efficient.

However, when we move o multiple context systems like de Kleer’s ATMS, the number
of equivalence classes explodes. Suppose we have three equality assertions: ((= a u){A}),
{(= a v){B}), and ((= a w){C}). In this case, four non-trivial equivalence classes must be
constructed: {a,u,v}{4, B}, {a,u,w}{4, ¢}, {a,v,w}{B,C}, and {a,u,v,w}{4,B,C}. If
we only constructed the last class, we would not be able to answer the query (= u v){A, B}
correctly. What is happening is that every distinct context gets its own equivalence class.
Since there are 2F contexts for k primitive assumptions, this results in an exponential explo-

sion.

3 A Specialized ATMS for Equivalence Relations

Both of the approaches given above for implementing equality reasoning under multiple
contexts are inefficient either because they construct explicit justification links or because
they use the implicit justification structure of equivalence classes. The method described
below avoids both of these problems by using a weaker kind of equivalence class and exploiting
special properties of the ATMS labels. It does not construct any explicit justification links.
There are three components to this specialized ATMS: the equality database (hereafter, ED),
the problem solver, and the label-update algorithm.

3.1 The Equality Database
The equality database consists of equality nodes and equivalence class nodes. The equality

node is like the ATMS node, but it has no justifications, and its datum is an equality assertion
such as (= z y). All equality assertions, whether given or derived, are explicitly represented
by equality nodes. Hence, in the worst case, we will have O(n?) equality nodes in ED.

The equivalence class node lists the terms (and assertions) that belong to that equiva-
lence class. The notion of equivalence class employed for the remainder of the paper is the
following: a weak equivalence classis a maximal set of terms that are weakly equivalent. Two
terms ¢1 and 12 are weakly equivalent if there ezists an environment under which (= i1 12)
is true. Note that the environment in question need not be the same for all pairs of terms
in the class.

The terms of an equivalence class under this definition form the nodes of a complete
graph. The edges of the graph are equality assertions. The edge from node 1 to node 12
asserts that (= ¢1 ¢2). Figure 2 shows the equivalence class of Figure 1 using this notation.

The edges are labeled with the labels for the corresponding equality nodes.



oki_ A sk2
B}}

{{A& /
sk

Figure 2: The equivalence class from Figure 1 in the new notation

3.2 The Problem Solver

The problem solver of the specialized ATMS is given equalities of the form (= t1 ¢2) with
their corresponding labels. Its task is to create and maintain equivalence class nodes by
deriving new equality nodes from the given assertion. To differentiate the nodes derived by
the problem solver from the nodes given to the problem solver, we will call the latter the
primitive equalities, and their environments, the primitive environments. Let us assume for
now that each of the primitive environments introduced to the problem solver is distinct.

For the purpose of describing how the new equality nodes are derived, let Eq be the
primitive equality (= 1 £2), with I5, as its label consisting of only primitive environments,
and let EC; and EC; be two separate equivalence class nodes of size ny and n, respectively.
Let Combine-Labels be a function which takes two labels, I1 and 12, and produces a new label
by putting in a minimal form the set of environments enva,, where env.y, = {env: U envy |
env, € L1 A env, € L2}.

The four cases that must be considered for deriving new equality nodes are given below.
Case 1: If neither 1 nor #2 exist in any of the equivalence class nodes in ED, create and
assert into ED an equality node with Eq and Ig,, and an equivalence class node listing 71
and 12.

Case 2: Suppose £l € ECj, but ¢2 does not exist in ED. Let EC! = EC; — {t1}. Then
Vi; € EC], for i =1...n1 —1, create and assert into ED an equality node with the equality
(= t2 t;), where its label is computed as Combine-Labels(Lg,, label for (=1 %)) ‘Then,
create and assert into ED an equality node for Eq and Iz, and add 12 to EC;.

- Case 3: Suppose 11 € EC; and £2 € ECo. Let EC] = ECy — {t1}, and EC, = EC, —{t2}.
Then Vi; € EC|,fori=1...ny—1,and V¢{; € ECS, for j =1...nz—1, create and assert
into ED the following:

e An equality node with (= %; ;) and its label computed as:

Combine-Labels{Lg,, Combine-Labels(label for (=11 %;), label for (=12 1;)))-
e An equality node with (= 12 ¢;) and its label computed as:
Combine-Labels{ Lg,, 1abel for (=11 %))
e An equality node with (= 11 1;) and its label computed as:
Combine-Labels{Lg,, label for (=12 t;))-
Hence, the number of new equalities derived from joining EC; and ECa, is (n1 — 1)(n2 —
1)+ (ny — 1)+ (n2 — 1) = nyny — 1. Then, create and assert into ED an equality node for
Eq and lg,, and update EC; to be EC3 U EC,.
Case 4: When t1,12 € EC,, the label-update procedure is called, since Eq is providing new
environment(s) to be added to the existing label of Eq.

6



TR

Table 1: Summary of the label-update process

e — i

BE envi; Result of (envi; N{A}) ] Result of ((env;; ei_-;:} U {f}:_]

1

1]

JT1]1 {B} @ not computed
g {C} 0 not computec
31 {4B) {4] {5.D}
11| {A,C} {A} {C,D}
51| {A,B,C} {A} {B,C.,D}

While deriving new equality nodes, if the problem solver detects 2 dezived equality be-
tween two different (non-Skolem) constants (a contradiction), its label is declared nogood

(see [Koff, 1988]).

3.3 The Label-Update Algorithm

3.3.1 The Algorithm

The label-update procedure is given an existing equality node, called the eniry node, along
with a new environment, €nvnew- Its task is to add this new environment to the existing
label, I,14, of the entry node and to update all the labels of the other equality nodes in the
equivalence class. Let Lupdstes b the set of all labels in the equivalence cizss containing the
entry node, but not including lo- The procedure is as follows:

e For each I; € Lupdates do:
e For each env;; € [; do:
e For each envold k € 14 do:

1. If (envoiar N env;i;) = 9, do nothing.

2. Else, compute a new environment to be added to ; ast
o (envoax @ envi;) U eNVnew.
e If the newly computed environment is not

subsumed by the environments in J; then add it to L.

3.3.2 An Example

Consider the equivalence class shown in Figure 3. Suppose new environment {D} arrives on
the label for (= skl sk2). The updated label for this equality is {{4},{D}}, and envaas
is {A} and envpey is {D}. The other labels in the equivalence class shown in Figure 3 are
updated as prescribed by the label-update algorithm given above. The results of applying
the steps are summarized in Table 1. The updated equivalence class of Figure 3 is shown
in Figure 4. Note that in this example the algorithm did not compute any redundant

environments.
1g is the disjoint union operation defined as: A® B = (A— B)U(B — A)-




. |

{{ch

sk1— HAR sk2 ski {{4}.{0}} /sk2
}5‘;} {{L{ {{AB}.{8P}} {{a.ch{c02} o
- =3 Hen 183}
- : k33— sk4
ske— {{AB.C}} sk = {{45,2},{E.C0}}

Figure 3: Before ithe label updates Figure 4: After the label updates

12 {D} i4 {E} it

Figure 5: Shared support and lzbel updates

3.3.3 An Explanation

To see why this zlgorithm succeeds, consider Figure 5, which shows 2 portion of an equiva-
lence class. All of the equalities with singleton environments are primitive (given) assertions.
Let us focus on the two desived equalities (= £1 £2) and (= 5 16). Notice two things. First,
the grephical counterpart of the tranpsitivily zxiom is 2 connected path. To compute the
environment for (= %5 16), we find a path from 25 to 6 containing only primitive environ-
ments. In this cese, the peth is (£5,13,14,16), which gives us the environment {B,C, E}-
Second, the intersection of the environments for (=1 ¢2) and (=5 16), {C}, 1s the shared
environment—that is, the shared path.

Suppose thzt 2n enviroament, {F}, is given as new support for (= t1 #2). The lebet
update algorithm will, azmong other things, update the label for (= 5 16) to include the
environment ({4,C,D} e {B,C,E})U{F} = {A,B,D,E,F}. This can be viewed 2s (2)
subtracting the path shared by the two egualities (=21 29) and (= 5 16) 2nd (b) computing
a new path, (£5,13,11,12,%4,16), that passes through the newly supported equality (=43d2)
In effect, {F}, zlong with {A} and {D}, is subsiituted for the old shared environment,
{C}, to provide 2 new supporting environment for (= 15 16). The entire calculation can be
performed without explicitly traversing paths or jusiification links, since the lzbels implicatiy
hold the dependency structure. _

1t 3s for this rezson that when applying this algorithm, the nogood environments cannot



be removed from the Jabels until they can be replaced with a new non-nogood environment

(see [Koff, 198 ])-

3.3.4 Computational Costs

Since there are n(n — 1)/2 equalities in an equivalence class with n terms, and since the
algorithm always attempts to update all but one of the labels for those equalities, the number
of label update attempts is ©(n?). This figure is significantly better than the ©(n®) label
computations performed by de Kleer’s algorithm. Moreover, note from the algorithm that
not all label update attempts will result in a label computation (since (envoek Nenvi;) =0
may be true). In fact, it can be shown that in the best case, only ©(n) label computations

will be performed [Koff, 1988].

| 3.3.5 Proof of Correctness

We demonstate the algorithm’s correctness by an inductive proof.

First we consider the base case—a three tezm equivalence class. Given any two equalities
(= z y) (in environment envl) and (= y 2) (in environment env2) the third equality (=
z z) can be derived using the transitivity axiom. (We will refer to these simple three way
equalities as ‘triangles’ since they form triangles in the graphical notation introduced earlier.)
Since (= z z) was derived from the equealities supported with envl and env2, the derived
environment env3, which supports (= z z), is defined as: env3 = env2Uenvl. Since we have
assumed that envl and env2 are disjoint environments, the following relationships hold for

the three environments in a triangle:

env3 = envl © env2 (7)
env2 = envl © env3 (8)
envl = env2 © envd 9)

We now prove that for any triangle in an equivalence class, equations 7, 8 and 9 hold.
The proof is by induction on n, the size of the equivalence class. Consider the equivalence
class of n terms illustrated in Figure 6. The new equality added between 12 and the existing
term #1 will result in n — 1 triangles being added to the equivalence class. Since each new
triangle is computed in exactly the same way as the simple triangle above, and we assume
that each new environment envs is unique, then the relationships of 7, 8, and 9 must hold
for each new triangle added. Hence, by induction, the relationships of 7, 8, and 9 hold for
all triangles in an equivalence class.

Now consider a new support envlne, armving on equality Eql, where Eql is in an equiv-
alence cless of size n. Eql will form an edge ofn—1 triangles with each of the edges termed
Eq2; and Eq3;. To update this equivalence class, the labels of Eq2; and Eg3; for each of
the triangles will be updated. Let envl, env?2, and env3 be the pre-existing environments
of Eql, Eq2;, and Eg3; respectively. According to de Kleer, the new environments to be
added to the labels of Eq2; and Eg3; (referred to as env2..p and env3ne, respectively) are
computed as follows:

env2,., = envd U envlaas (10)



12
4

envs
f

—

Figure 6: Incremental extension of an equivalence class

env3new = ent2 U entlocw (11)
From 7 we can substitute into 10, and from 8 we can substitute into 11 to obtain the following

two equations:
env2n.e = (envl & env2) Uenvlac, (12)

env3new = (envl G envd) U envlncy (13)

The equations 12 and 13 directly correspond to the disjoint union and union step of the
label-update algorithm. Hence, we have shown that the algorithm behaves correctly.

4 Extending the Method

Tt is clear from the proof given above that the label-update algorithm will behave incorrectly if
any of the incoming environments are not unique, since the disjoint relationship will not hold
among environments in an equality triangle. To accommodate non-unique environments,
incoming environments are made unique by an equality token mechanism described below.

4.1 Equality Tokens

Uniqueness can be guaranteed by assigning globally unique names, which we will call equality
tokens, to each and every environment introduced to the equality database, either through
new equality assertions or as new support for an existing equality. Under this design, label
updates, as well as the computation of labels for the newly derived equalities, will be done
on environments containing equality tokens, not ATMS assumptions.

For example, suppose two equality assertions (= skl sk2) with {4, B} and (= sk2 sk3)
with {B,C} are given to the problem solver. Then, the following renaming, denoted as —,
will occur: {4,B} — {1}, and {B,C} — {2}. The derived equelity node (= skl sk3)
will have {{1,2}} as its label instead of {{4,B,C}}. When the new support, say {D},
on (= skl sk2) is introduced, it will be renamed as {3}. The label-update algorithm will
proceed as usual, but using the equality tokens, and will cause {2,3} to be included in the
(= skl sk3) label. (One can see that this update is correct since {2,3} maps to {B,C,D}.)

The equality tokens must be translated back to their equivalent ATMS form for the
purposes of determining nogoods and queries into the equality database.? The mapping

2The translation will also be necessary during label updates if the specialized ATMS is linked to the
standard ATMS.

10



their corresponding ATMS environments can be done efficiently

from the equality tokens to . :
m the individual equality tokens to their corresponding ATMS

by storing the mapping fro
environments.

4.2 Optimization

Although the label-update algorithm for the specialized ATMS produces fewer redundant
environments, as equality tokens, than de Kleer’s label-update algorithm, it must still per-
form the subsumption check for every equality token environment it produces, since it cannot
that they are in minimal form. However, there are certain cases where the sub-

guarantee
checks can be skipped because the derived environments are guaranteed to be

sumption
non-redundant.
Suppose an entry node N which contains a singleton environment (primitive environment)

{Toa}, within its existing label, is given the environment {Tnew}. All of the other labels in
the same equivalence class as [V can be fully updated by simply substituting Tsew 1n place of
all occurrences of Tog. This is because the inferences performed when T4 was propagated
during previous updates will be exactly the same inferences needed for Thew- Therefore Thew
may simply replace Toiq-

Consider the alternate case in which the entry node, N, contains only derived (non-
singleton) environments within its label. Suppose it is given the environment {Tnew}, 25
an initial update. If, during the label update process, we encounter a node A whose label
contains a singleton environment {Z,iq}, We can completely update M’s label by only consid-
ering {T,1a} in combination with the existing environments of N. We do not need to consider
the other environments in M’s label. Furthermore, the newly computed environments for
M do not need to be checked for subsumption.

The first optimization is applicable whenever an equality node receives multiple exter-
nal supporting environments. When our specialized equality ATMS is embedded within a
de Kleer-style ATMS, this happens often, because each supporting ATMS environment is

mapped into a unique primitive equality token.

5 Summary

The advantages of the specialized ATMS are summarized by comparing it to the approach
of incorporating the transitivity axiom into de Kleer's ATMS (described in Section 2:1):

e The worst case time complexity of the label-update algorithm has been reduced from
O(n®) to ©(n?) label update attempts. In addition, since not all of these attempts
result in label computations, the actual number of these label computations can be
significantly lower.

e Through optimization techniques, the label-update algorithm can skip subsumption
checks in certain cases.

e The problem solver that derived two redundant equalities for every new equality derived
has been replaced by one that only derives the necessary equalities.

11



e The space required to store the justification links is eliminated.

The specialized ATMS has been implemented as a part of the equality system for FOR-
LOG [Flann, et al., 1987] and interfaced with the standard ATMS and the consumer archi-

tecture.

6 References

Aho, A. V., Hopcroft, J. E., and Ullmann, J. E., 1974. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass.

Arden, B. W., Galler, B. A., and Graham, R. M., 1961. An Algorithm for Equivalence Declaration.
Comm. ACM, 4 (7), pp. 310-314.

de Kleer, J., 1986a. An Assumption-based TMS. Artificial Intelligence, 28 (2) pp. 127-162.
de Kleer, J., 1986c. Problem-solving with the ATMS. Artificial Intelligence, 28 (2) pp. 197-224.

Flann, N. S., Dietterich, T. G., and Corpron, D. R., 1987. Forward Chaining Logic Programmirg
with the ATMS. A4 AT :24-29, 1987.

Galler, B. A., and Fisher, M. J., 1964. An Improved Equivalence Algorithm. Comm. ACM, 7 (3),
pp- 301-303.

Koff, C., 1988. Forthcoming. An Efficient ATMS for Equivalence Relations. M.S. Thesis, Depazi-
ment of Computer Science, Oregon State University.

McAllester, D., 1982. Reasoning Utility Package User’s Manual. Artificial Intelligence Laboratory,
ATM-667, MIT, Cambridge, MA.



