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Abstract

Given a Markov Decision Process (MDP) defined by a sim-
ulator, a designated starting state s0, and a downside risk
constraint defined as the probability of reaching catastrophic
states, our goal is to find a stationary deterministic policy π
that with probability 1 − δ achieves a value V π(s0) that is
within ε of the value of the optimal stationary deterministic ν-
feasible policy, V ∗(s0), while economizing on the number of
calls to the simulator. This paper presents the first PAC-Safe-
RL algorithm for this purpose. The algorithm extends PAC-
RL algorithms for efficient exploration while providing guar-
antees that the downside constraint is satisfied. Experiments
comparing our CONSTRAINEDDDV algorithm to baselines
show substantial reductions in the number of simulator calls
required to find a feasible policy.

Introduction

This work is inspired by problems in natural resource man-
agement centered on the challenge of invasive species (Diet-
terich, Alkaee Taleghan, and Crowley, 2013; Taleghan et al.,
2015). Computing optimal management policies for ecosys-
tems is challenging because they exhibit complex spatio-
temporal interactions at multiple scales. Many ecosystem
management problems can be formulated as MDP (Markov
Decision Process) planning problems (Sheldon et al., 2010).
In a simulator-defined MDP, the Markovian dynamics and
rewards are provided by a simulator from which samples
can be drawn. Simulators in natural resource management
can be very expensive to execute, so that the time required
to solve such MDPs is dominated by the number of calls to
the simulator.

Efficient MDP planning algorithms attempt to mini-
mize the number of simulator calls before terminating
and outputting a policy that is approximately optimal with
high probability (Dietterich, Alkaee Taleghan, and Crowley,
2013). For unconstrained MDPs, the standard formulation
of this is the notion of PAC-RL, first introduced by Fiechter
(1994). This is in contrast to the PAC-MDP formalization,
which minimizes various measures of infinite-horizon re-
gret (Strehl and Littman, 2008). A common component of
PAC-RL algorithms is to compute confidence intervals and
explore using the optimism principle.
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In many practical scenarios, such as natural resource
management, a desirable policy needs to satisfy certain
constraints imposed by decision makers. In these scenar-
ios, maximizing the expected reward does not necessarily
avoid rare catastrophic or dangerous situations. For exam-
ple, in conservation problems, catastrophic outcomes in-
clude species extinction, long-term establishment of an in-
vasive species, and severe wildfires. A standard approach to
finding policies that avoid catastrophic states is to assign a
large negative reward to those states (Garcı́a and Fernández,
2015; Geibel and Wysotzki, 2005). This is equivalent to a so-
called Big M method for establishing a lexicographic prefer-
ence for policies that do not enter catastrophic states. How-
ever, this approach does not quantify the risk (probability) of
entering a catastrophic state, nor does it determine whether
there are policies that control this risk. A better approach
is to adopt the Constrained MDP (C-MDP) formalism (Alt-
man, 1999), which seeks to maximize one objective (e.g.,
economic value) while satisfying one or more constraints
probabilistically. For example, in invasive species manage-
ment, we can define a C-MDP to minimize the economic
cost of invasive species management while ensuring that the
probability of native species extinction is less than a speci-
fied threshold.

Recently, Geibel and Wysotzki (2005) developed a
model-free Q-learning algorithm for C-MDPs. Their formu-
lation is applicable to episodic tasks with a combination
of absorbing catastrophic and goal states. As Geramifard
(2012) pointed out, the Geibel, et al., work does not provide
a performance guarantee on the result.

An alternative to constrained MDPs is to consider risk-
sensitive objectives such as variance penalties, value at risk
(VaR), and conditional value at risk (CVaR) (Garcı́a and
Fernández, 2015; Altman, 1999). Var and CVar optimize the
α-quantile of the expected return, and CVaR has favorable
mathematical properties. While these are all very interesting
approaches, we find the constrained MDP formulation eas-
ier to understand and explain to stakeholders, and for this
reason, we focus our efforts on C-MDPs.

A drawback of C-MDPs is that the optimal policy can be
stochastic in some cases. Specifically, if there are c con-
straints, then the optimal policy may be stochastic in up
to c states. From the perspective of our stakeholders, this
stochastic behavior is confusing and undesirable. Hence, in
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this paper, we aim to find a stationary deterministic policy
that satisfies a downside risk constraint as well as maximiz-
ing the discounted reward. We seek to do this while econ-
omizing on the number of calls to the simulator and while
providing PAC guarantees both that the constraints are sat-
isfied and that the resulting policy is within a fixed bound
of optimality. This provides the first PAC-RL algorithm for
deterministic policies in C-MDPs.

The paper is organized as follows. Section 2 introduces
our notation for MDPs, C-MDPs, and confidence inter-
vals. Section 3 introduces our new planning algorithm
CONSTRAINEDDDV. Section 4 provides theoretical results.
Section 5 presents an experimental evaluation of CON-
STRAINEDDDV and a comparison with other methods. Sec-
tion 6 concludes the paper. We evaluate our algorithms on an
invasive species problem as well as on standard reinforce-
ment learning benchmarks.

Problem Definition and Notation
Let a simulator-defined MDP consist of a start state s0, a
set of possible states S, a set of possible actions A, a dis-
count factor γ ∈ (0, 1] and a stochastic function F that
maps from an input state-action pair (s, a) to a resulting
state s′ and reward r, where s′ ∼ P (s′|s, a) is sampled ac-
cording to the (unknown) transition function, r ∼ R(r|s, a)
is sampled according to the unknown reward function, and
0 ≤ r ≤ Rmax. In this paper, we will assume that the re-
ward is deterministic; our methods can be easily extended
to handle stochastic rewards. A (deterministic) policy π is
a function mapping from states s to actions a = π(s). The
value of the policy in the start state, V π(s0), is the expected
discounted cumulative reward:

V π(s0) = E

[ ∞∑
t=0

γtrt | s = s0

]
.

Let Vmax = Rmax

1−γ be the maximum possible value of any
state under any policy. The corresponding minimum possi-
ble value is zero.

An optimal policy π∗ maximizes V π(s0), and the corre-
sponding value is denoted by V ∗(s0). The action-value of
state s and action a under policy π is defined as Qπ(s, a) =
R(s, a)+γ

∑
s′ P (s′|s, a)V π(s′). The optimal action-value

is denoted Q∗(s, a). Later, we indicate these functions with
subscript R to distinguish them from the catastrophe value
function.
Definition 1 The occupancy measure μ of an MDP under
policy π is defined as

μπ(s) = EP

[ ∞∑
t=0

γtI[st = s]|s0, π
]
,

where I[·] is the indicator function and the expectation is
taken with respect to the transition distribution.
This is the cumulative discounted probability that the MDP
will occupy state s under policy π for discount factor γ. It
can be computed via dynamic programming on the Bellman
flow equation (Syed, Bowling, and Schapire, 2008):

μπ(s) = I[s = s0] + γ
∑
s−

μ(s−)P (s|s−, π(s−)). (1)

This says that the discounted probability of visiting state s
is equal to the sum of the probability that s is the starting
state and the probability of reaching s by first visiting state
s− and then executing an action that leads to state s.

It is easy to show that

V π(s0) =
∑
s

μπ(s)R(s, π(s)). (2)

We adopt μπUCB

(also written as μUCB) as the occupancy
measure computed based on the principle of optimism under
uncertainty and maximum likelihood estimates of transition
probabilities.

Let a subset of states SC ⊂ S be “catastrophic” states in
the sense that we want to limit the probability of entering
those states. Let us assume that all states in SC are absorb-
ing.
Definition 2 For a policy π, the risk in state s is defined as

ξπ(s) =
∑
t

γt
CP (st ∈ SC |s, π), (3)

which is the (discounted) probability of entering a catas-
trophic state when following π. γC denotes the catastrophe
discount factor.

As a learning algorithm explores the MDP, it collects the
following statistics. Let N(s, a) be the number of times
state-action pair (s, a) is simulated during learning and
N(s) =

∑
a N(s, a). Let N(s, a, s′) be the corresponding

number of times that s′ has been observed as the resulting
state. Let R(s, a) be the observed reward. Let P̂ (s′|s, a) =
N(s, a, s′)/N(s, a) be the maximum likelihood estimate for
P (s′|s, a).

A 1 − δ confidence interval is a pair of random variables
V (s0), V (s0) such that with probability 1 − δ, V (s0) ≤
V π(s0) ≤ V (s0). Similarly, Q(s, a) and Q(s, a) denote
the confidence bounds over the action-value functions. We
follow the “Optimism Under Uncertainty” principle, and
denote by πUCB the policy based on an upper confi-
dence bound on the action-value function, πUCB(s) =
argmaxa Q(s, a).

Definition 3 (Fiechter, 1994). A learning algorithm is PAC-
RL if for any discounted MDP (S,A, P,R, γ, P0), ε > 0,
1 > δ > 0, and 0 ≤ γ < 1, the algorithm halts and outputs
a policy π such that

P[|V ∗(s0)− V π(s0)| ≤ ε] ≥ 1− δ,

in time polynomial in |S|, |A|, 1/ε, 1/δ, 1/(1 − γ), and
Rmax.

Optimal Policies for C-MDPs

Before delving into additional definitions for C-MDPs, let’s
clarify the class of optimal policies for C-MDPs. It has been
shown that, unlike unconstrained MDPs, the optimal poli-
cies in C-MDPs are not necessarily stationary and determin-
istic and may depend on the starting state (Feinberg and
Shwartz, 1996; Zadorojniy, Even, and Shwartz, 2009). In
standard discounted unconstrained MDPs, one can find op-
timal policies that are stationary and deterministic from any
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state in O
(|S|2|A|). In a C-MDP with two objectives (the

standard value function and the risk of catastrophe), if the
two objectives have unequal discount factors, then finding
deterministic and stationary policies is NP-complete (Dol-
gov and Durfee, 2005; Feinberg, 2000; Chang, 2016). Op-
timal policies in C-MDPs with equal discount factors are
randomized and stationary for a fixed starting state. The
solution can be found by solving a linear program, where
the dual variables represent the state occupancy measure, if
the model is known. In our case where we only have one
constraint, the optimal randomized policy is called a “1-
randomized” policy (Zadorojniy, Even, and Shwartz, 2009).
This means the difference between deterministic and the 1-
randomized policy will arise in at most one state, where
the randomized policy may choose probabilistically between
two actions (Feinberg and Rothblum, 2012).

In this paper, we focus on finding a best policy in the
class of stationary and deterministic policies with perfor-
mance guarantees, even when a randomized policy is the
optimal policy. It is a challenge to present a randomized
policy to stakeholders. Feinberg (2008) points out that im-
plementation of randomized policies is not natural in many
applications, and the use of randomization procedures could
increase the variance of the expected return. Boutilier and
Lu (2016) also give an example of how randomized policy
could be undesirable.

Additional Definitions for C-MDPs

Let Π be the space of deterministic polices over the con-
strained MDP M(τ) = 〈S,A, P,RR, RC , τ, γ, s0〉. Every
policy π induces two value functions V π

R and V π
C . We will

say two policies π1 and π2 are equivalent if V π1

R = V π2

R
and V π1

C = V π2

C over all states s ∈ S. Let π denote the set
of policies equivalent to π. Let π1 and π2 be two distinct
equivalence classes of policies. We will say that π1 domi-
nates π2 if V π1

R (s0) ≥ V π2

R (s0) and V π1

C ≤ V π2

C . That is,
π1 is superior in either RR or RC or both. An equivalence
class is non-dominated if there does not exist an equivalence
class that dominates it.

Let Π(τ) be the space of deterministic policies such that
∀π ∈ Π(τ), V π

C (s0) ≤ τ . These are the feasible deter-
ministic policies. An optimal feasible deterministic policy
π∗
τ ∈ Π(τ) satisfies

V
π∗τ
R (s0) ≥ V π

R (s0) ∀π ∈ Π(τ).

Values are defined in the usual way as the expected cumu-
lative discounted return:

VC(s0) = E[
∑
t

γtRC(st, π(st))],

and
VR(s0) = E[

∑
γtRR(st, π(st))].

An optimal feasible policy π∗
τ is not necessarily non-

dominated. There might be another policy π′ that achieves
the same VR(s0) but has larger V π′

C (s0) > V
π∗τ
C (s0) that is

still feasible.
Define the Lagrangian MDP L(λ) = 〈S,A, P, λRR −

(1− λ)RC , γ, s0〉 whose reward function is a linear combi-
nation of RR and RC .

PAC-RL for Constrained MDPs

We now consider the problem of finding an approximately
optimal policy by sampling from a simulator-defined Con-
strained MDP. We introduce the following parameters:
• τ defines the feasibility constraint. A policy π is feasible

if V π
C (s0) ≤ τ .

• ε defines a tolerance on the optimality of V π
R (s0).

• ν defines a tolerance on feasibility. We will accept any
policy for which |V π

C (s0) − V ∗
C(s0)| ≤ ν, which means

that in the worst case, V π
C (s0) = τ + ν.

• η controls the numerical precision of the λ values.
• δ is the confidence parameter.

Definition 4 (Chang (2016)). A deterministic policy π is
called ν-feasible if V π

C (s0) ≤ τ + ν for ν ≥ 0.

Definition 5 Let ΠL be the set of all stationary determin-
istic policies that are solutions to the Lagrangian MDP for
some value of λ.

Definition 6 An algorithm is Lagrangian-PAC-SAFE-RL if,
for any C-MDP M(τ) = 〈S,A, P,RR, RC , τ, γ, s0〉 and
any parameters ε > 0, δ ∈ (0, 1), τ ∈ (0, 1], η > 0,
and ν > 0 the algorithm halts in time polynomial in
|S|, |A|, 1/(1 − γ), 1/ε, 1/ν, 1/δ, and 1/η and does one of
the following two things:

1. Outputs a policy π ∈ ΠL,η such that with probability 1−δ
the following are simultaneously true:

(a) V π
C (s0) < τ + ν (π is τ + ν feasible)

(b) V
∗(−ν)
R (s0)− V π

R (s0) ≤ ε (the value of π is never less
than ε below the value of the optimal τ − ν feasible
policy, and it may be significantly higher)

2. Outputs the message Fail, in which case with probability
1 − δ there does not exist any policy π ∈ ΠL,η such that
V π
C (s0) ≤ τ + ν.

This definition gives us control over how close to feasible
the policy is (via ν) and how close to the optimal feasible
policy its VR return is (via ε).

Confidence intervals for VR and VC for policy
evaluation

Suppose we have drawn a set of samples for various states
and actions. For any fixed policy π, we can perform ex-
tended policy evaluation (i.e., extended value iteration with
a fixed policy) to obtain lower and upper confidence bounds
on VC(s0) and VR(s0). We will denote these as V π

C(s0),
V

π

C(s0), V
π
R(s0), and V

π

R(s0). Suppose our goal is to de-
termine whether π is feasible and if it is, then to determine
confidence intervals on V π

R (s0). The policy π will be feasi-
ble with probability 1 − δ if V

π

C(s0) ≤ τ . Conversely, π is
not feasible with probability 1− δ if V π

C(s0) > τ .

Confidence intervals for VR and VC for policy
optimization

Instead of using a fixed policy, we can set a value of λ and
perform extended value iteration based on the upper confi-
dence bound of the Lagrangian objective. This will define
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the πUCB(λ) policy. More generally, we can perform binary
search on λ to find three values:
• λ is the largest value of λ ∈ Λ such that V

UCB(λ)

C (s0) ≤
τ . This means that given our current sample, πUCB(λ) is
the “best” policy (in the sense of having the largest λ) for
which we can guarantee with probability 1 − δ that it is
feasible.

• λ is the largest value of λ ∈ Λ such that V UCB(λ)
C (s0) ≤

τ . This means that given our current sample, this is the
largest value of λ that we cannot prove is not feasible.

The solid lines denote the true values of VC and VR. The
dashed lines denote the corresponding upper and lower con-
fidence bounds. For purposes of this section, let π∗ be the
policy in Π(τ, η) that maximizes V π

R (s0). That is, π∗ is τ -
feasible and among all such policies it maximizes the VR

return.

Extended Value Iteration

Classical value iteration computes an optimal policy for a
fixed MDP. Extended value iteration can compute optimal
policy for finite-sampled optimistic/pessimistic MDPs by
defining confidence intervals on the value function at each
state of the MDP based on samples from that MDP. Dif-
ferent confidence interval methods (e.g., Hoeffding bound
(Hoeffding, 1963), empirical Bernstein bound (Audibert,
Munos, and Szepesvári, 2009), multinomial confidence in-
terval (Weissman et al., 2003), etc.) at each state lead to
different confidence intervals throughout the MDP. One can
obtain robust policies from pessimistic MDPs (Tamar, Man-
nor, and Xu, 2014). Based on our experiments, the empirical
Bernstein bound is the tightest bound compared to the other
bounds.

The Empirical Bernstein Method: This approach uses
the empirical Bernstein bound. Let M(s, a) denote the sam-
ple mean of the discounted backed-up values from the suc-
cessor states that result from taking action a in state s,
and V ar(s, a) denote the sample variance of these values.
We denote the upper and lower bounds on these values as
M(s, a), M(s, a),V ar(s), and V ar(s).

M(s, a) =
∑
s′

P̂ (s′|s, a)γV (s′)

V ar(s, a) =
∑
s′

P̂ (s′|s, a)[γV (s′)−M(s, a)]2

V (s) = max
a

R(s, a) +M(s, a)+√
2V ar(s) ln(3/δ0)

N(s, a)
+

3γVmax ln(3/δ0)

N(s, a)

(4)

The lower bounds could be defined in a similar way as
above. We need to define δ0 so that the confidence intervals
hold simultaneously with probability 1− δ. These equations
can be iterated to convergence. At convergence, with proba-
bility 1− δ, V (s0) ≤ V ∗(s0) ≤ V (s0).

Algorithm
The extended value iteration for the Lagrangian objective
computes upper and lower bounds on VR and VC in all states

and on QR(s, a) and QC(s, a) in all state-action pairs. A
binary search algorithm (see supplementary materials) on λ
finds λ and λ to within tolerance η for a given set of samples.
We will apply BINARYSEARCH to find λ and λ. For λ, we
are looking for the point λ where V

λ

C(s0) crosses τ , which
is exactly what BINARYSEARCH does. For λ, we need to
find the point where V λ

C(s0) crosses τ , determine the value
on the larger side, and then find the largest value of λ that
achieves that value. The function NEXTLARGERLAMBDA
finds the next larger value of λ that will cause the UCB pol-
icy to change by calling LAGRANGIANEVI.

The main algorithm works by maintaining an upper bound

V
UCB(λ

(−ν)
)

R (s0) on the value of the best (τ − ν)-feasible

policy and a lower bound V
UCB(λ(+ν))
R (s0) on the value of

the best (τ + ν)-feasible policy. Here the notation λ(−ν)

refers the (τ − ν) feasibility and λ(+ν) refers to (τ + ν) fea-
sibility. Sampling proceeds in a series of minibatches that
cause these bounds to shrink toward one another. Execution

terminates when V
UCB(λ

(−ν)
)

R (s0)−V
UCB(λ(+ν))
R (s0) ≤ ε.

This is summarized in Algorithm1).
The rationale is the following. The largest value that

V
∗(−ν)
R (s0) could have is V

UCB(λ
(−ν)

)

R (s0). The smallest

value that πUCB(λ(+ν)) could have is V UCB(λ(+ν))
R (s0). We

want the value of πUCBλ(+ν)) to be no less than ε below
the value of V

∗(−ν)
R (s0). We attain this by ensuring that

V
UCB(λ(+ν))

R (s0)− V
UCB(λ

(−ν)
)

R (s0) < ε.

Correctness and Polynomial Running Time

The proofs for the following claims and theorem are pro-
vided in supplementary materials.
Claim 1 For any fixed λ, the optimal policy π∗

λ for L(λ) is
a non-dominated policy.

Claim 2 Let λ1 and λ2 be a pair of values such that λ2 =
λ1 − δ for some positive δ. Let π1 be a policy that optimizes
the Lagrangian for λ = λ1 and π2 be the policy that op-
timizes the Lagrangian for λ = λ2. Then one of two cases
holds:

Case 1: V π2

C (s0) = V π1

C (s0), and V π2

R (s0) = V π1

R (s0) or
Case 2: π1 
= π2, V π2

C (s0) < V π1

C (s0), and V π2

R (s0) <
V π1

R (s0).

Claim 3 There exists a value λ∗ such that ∀λ ≤ λ∗, the
optimal policy, π∗

λ, of the Lagrangian MDP L(λ) is feasible
for M(τ); that is V π∗λ

C (s0) ≤ τ .

For computational efficiency, we will not consider all possi-
ble values of λ. Instead, we discretize the space by introduc-
ing a precision parameter η. Define ΠL,η to be the class of
all policies in ΠL where λ = kη, for k ∈ {0, 1, . . . , 1/η}.
We will restrict our attention to only these policies.

To obtain a polynomial time sampling algorithm, we need
to relax our goal (based on ideas from Chang (2016)). Let
ΠL,η(τ) be the set of all policies π ∈ ΠL,η such that
V π
C (s0) ≤ τ . These are the τ -feasible policies. We will
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Algorithm 1: CONSTRAINEDDDV(s0, τ, ν, F, ε, δ, γ, Rmax)

1: λ(+ν) := 0; λ
(−ν)

:= 1
2: CheckFeasibility:=true
3: loop

4: λ
(−ν)

= FINDUPPER(0, 1,max(0, τ − ν), η)

5: λ(+ν) = FINDLOWER(0, 1,min(1, τ + ν), η)
6: if CheckFeasibility then
7: LAGRANGIANEVI(0, η, δ)
8: if V

UCB(0)
C (s0) ≥ τ − ν then

9: {there is no (τ − ν)-feasible policy}
10: return No feasible policy
11: else if V

UCB(0)

C (s0) < τ − ν then
12: {there is a (τ − ν)-feasible policy}
13: CheckFeasibility:=false
14: end if
15: end if

16: if
(
λ
(−ν)

= λ(+ν)
)

and(
V

UCB(λ
(−ν)

)

R (s0)− V
UCB(λ(+ν))
R (s0) ≤ ε

)
then

17: return
(
Success, πUCB(λ(+ν))

)
18: end if
19: Explore for a minibatch of B samples using DDV

on πUCB(λ
(−ν)

)

20: end loop

be interested in two other policy classes: ΠL,η(τ − ν) and
ΠL,η(τ + ν).

Let π∗(−ν) ∈ ΠL,η(τ − ν) be a policy that is feasi-
ble with respect to the threshold τ − ν and that among all
such policies maximizes VR(s0). More precisely, π∗(−ν) =
argmaxπ∈ΠL,η(τ−ν) V

π
R (s0).

Denote the value of π∗(−ν) by V
∗(−ν)
R (s0). Our goal

will be to output a policy π ∈ ΠL,η(τ + ν) such that
V

∗(−ν)
R (s0)− V π

R (s0) ≤ ε and to do so in polynomial time.

Claim 4 The optimal value λ∗ ∈ [λ, λ] with probability 1−
δ.

Claim 5 V
UCB(λ)
R (s0) ≤ V ∗

R(s0) ≤ V
UCB(λ)

R (s0) with
probability 1− δ.

Note that the gap between V
UCB(λ)

R (s0) and
V

UCB(λ)
R (s0) is composed of three parts. First, there is

the width of the upper confidence interval V
UCB(λ)

R (s0) −
V

UCB(λ)
R (s0). Second, there is the difference in the values

of the policies πUCB(λ) and πUCB(λ), which we can write as
V

UCB(λ)
R (s0)− V

UCB(λ)
R (s0). Finally, there is the width of

the lower confidence interval V UCB(λ)
R (s0)−V

UCB(λ)
R (s0).

To prove correctness, we must show that, under appropri-
ate conditions, the CONSTRAINEDDDV algorithm will ter-
minate at line 17. Specifically, we will prove the following
claim:

S0 GoalCAT CAT

Actions:

(a) γ = 0.95 and γC = 0.95

S0 GoalCAT CAT

Actions:

(b) γ = 0.95 and γC = 1

Figure 1: Derived policies for the GridWorld domain; solid
arrows are when λ = 1 and dotted arrows are when λ = 0.
When both policies agree on an action in a cell, only one is
shown.
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(b) Varying τ

Figure 2: Value of reward and risk while varying λ and risk
threshold (τ ) for the GridWorld domain.

Claim 6 If ΠL,η(τ−ν) and ΠL,η(τ+ν) are non-empty and
0 < λ∗ < 1, then with probability 1 − δ, CONSTRAINED-
DDV will terminate at line 17.

We can also show the following.

Claim 7 If there is no (τ−ν)-feasible policy, then the CON-
STRAINEDDDV algorithm will terminate at line 10.

Theorem 1 CONSTRAINEDDDV requires polynomial
sample size and terminates in polynomial computation time.

Experiments

We report three experiments. First, we study the GridWord
domain shown in Figure 1(a) (there is one starting state, one
goal state, and two catastrophic states). Our goal is to gain
some intuition about the C-MDP formulation. Specifically,
we look at the policies for λ = 0 and λ = 1.

In Figure 1, we assume the model is known. The solid
lines show the optimal policy for λ = 1 (maximizing the
reward), and the dotted actions show the optimal policy
for λ = 0 (minimizing the risk). Notice that even for un-
equal discount factors, we are able to find a desirable policy,
which may not be optimal. The main difference between
the policies for discounted and undiscounted risk is that
for discounted risk the best stationary deterministic policy
that minimizes the risk takes the discount into account and
moves toward the goal more slowly than the undiscounted
risk policy.

In the second experiment, we solve for the optimal policy
when the MDP is known while varying λ and the constraint
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(c) Tamarisk R = 3 and H = 2

Figure 3: Comparison of number of samples taken by each algorithm to reach to the termination point.

threshold τ . Our goal is to determine the right answer and
see the impact of τ and λ. Figure 2 shows the value of re-
ward (VR) and value of risk (VC) in the starting state for
the GridWorld domain while varying the value of λ (2(a))
and while varying the value of τ (2(b)). There is no feasible
policy when τ = 0.

In Figure 2(a), we see that when λ is close to 1, we can
easily reduce VC without any impact on VR. As λ shrinks,
VC and VR both shrink gradually, so that for values of τ in
the range (0.185 to 0.1), there continues to be little impact on
VR. However, when λ goes from 0.1 to 0.0, we see a huge
drop in VR for very little gain in VC . This kind of sudden
drop causes difficulty for obtaining PAC results. The prob-
lem is that in this region, the confidence intervals on VR will
be very wide, and it can require a huge number of training
samples to shrink them enough to achieve a width of ε.

In the third experiment, we compare the sample com-
plexity of CONSTRAINEDDDV against three benchmark al-
gorithms: GW-MLE, εg-greedy GW-MLE, εg-greedy UCB.
GW-MLE is the improved version of the algorithm of
Geibel and Wysotzki (2005), which basically maximizes
the Lagrangian defined as L(λ̂) = 〈S,A, P̂ , λ̂RR − (1 −
λ̂)RC , γ, s0〉, where λ̂ is the maximum likelihood estimate
of λ calculated over the MDP with transition probability P̂
and reward functions RR and RC . The GW-MLE algorithm
samples along the induced πλ̂ policy at each mini-batch.
UCB algorithm calculates πUCB = argmaxa QR(s, a) and
samples along the πUCB policy. Since the UCB algorithm
ignores the risk in its default operation, we have added an ad-
justable εg parameter for better exploration. The algorithms
are modified to have stopping condition similar to the lines
8 and 16 in Algorithm 1 .

We compared these algorithms on the GridWorld MDP
and two instances of the tamarisk domain. In these experi-
ments, we learn the model by sampling from the simulator.
Tamarisk problem instances are configured with the number
of river segments (E = 3) and the number of slots (H = 1)
and (H = 2) (for more detail see Taleghan et al. (2015)).
For the (E = 3, H = 1) problem, the starting state was
NTE (one site contains a native species, one is invaded by
tamarisk, and one site at the bottom of river is empty). For
the (E = 3, H = 2) instance, the starting state is NTEEEE
(one site contains a native species and an invasive species

and the rest of the sites in the river are empty). A catastrophic
state is any state in which there are no natives (species ex-
tinction). The goal state is that all sites are fully occupied by
native species. We optimized the value of εg for εg-greedy
GW-MLE and εg-greedy UCB algorithms among the candi-
date values εg ∈ {0.01, 0.1, 0.25}. After sampling a mini-
batch of size B = 1000 we update the model and calculate
the corresponding confidence bounds. We calculate λ and λ
every 8000 samples.

In these experiments, γ = γC = 0.95, δ = 0.01,
η = 0.01, and ν = 0.025. For the GridWorld domain,
ε = 0.2, and for the Tamarisk problems ε = 1. The algo-
rithms terminate either if the width of the confidence interval
falls below εRmax or if 3 million samples are drawn.

We report the number of samples drawn at termination
in Figure 3. The results are averaged over 10 indepen-
dent runs, and the vertical axis is plotted on a log scale.
Error bars indicate one standard deviation. The GW-MLE
and εg-GW-MLE algorithms perform very poorly; much
worse than CONSTRAINEDDDV. In many cases, they hit
the 3 million maximum sampling budget without achiev-
ing the desired confidence interval width. CONSTRAINED-
DDV and εg-UCB give much more similar performance, if
εg is properly tuned. CONSTRAINEDDDV almost always re-
quires smaller sample sizes, particularly for small values of
τ (which would be the values normally encountered in a real
application).

Conclusion

Many computational sustainability problems involving
MDPs must be concerned with catastrophic outcomes such
as species extinction. One approach to this is to limit the
probability of catastrophic outcomes by imposing a con-
straint on the MDP policy, which converts the MDP into a
Constrained MDP (C-MDP). Previous work on simulation-
based MDP planning for constrained MDPs has not pro-
vided formal guarantees. This paper is the first to provide an
algorithm with formal guarantees by extending the notion of
PAC-RL algorithms to PAC-Safe-RL algorithms. We proved
that this new algorithm, CONSTRAINEDDDV, is PAC-Safe-
RL. Our experiments demonstrated that CONSTRAINED-
DDV is also able to match or beat the sample complexity of
very competitive baseline algorithms that lack formal per-
formance guarantees.
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