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Knowledge workers are struggling in the information flood. There is a growing

interest in intelligent desktop environments that help knowledge workers organize

their daily life. Intelligent desktop environments allow the desktop user to define

a set of “activities” that characterize the user’s desktop work. These

environments then attempt to identify the current activity of the user in order to

provide various kinds of assistance. TaskTracer [Dragunov et al., 2005] is one of

these efforts. We classify activities into three levels: task as in TaskTracer,

workflow, and operation. In this thesis, we concentrate on the two higher levels

of activity – “task” and “workflow” – and we present an activity recognition

solution for each of them. To recognize tasks, we employ various supervised

learning algorithms. The first approach is based on batch training, which has a

heavy requirement for CPU time and memory. It is also insensitive to user

feedback, and it is likely to make repeated mistakes. To address these issues, we



propose a novel online learning algorithm that is able to incorporate a richer set

of features than our previous predictors. We prove an error bound for the

algorithm and present experimental results that show improved accuracy and a

180-fold speedup on real user data. To recognize workflows, we first mine

frequent workflow models from the TaskTracer event log. Discovering desktop

workflows is difficult because they unfold over extended periods of time (days or

weeks) and they are interleaved with many other workflows because of user

multi-tasking. We describe an approach to discovering desktop workflows based

on rich instrumentation of information flow actions such as copy/paste, SaveAs,

file copy, attach file to email message, and save attachment. These actions allow

us to construct a graph whose nodes are files, email messages, and web pages and

whose edges are these information flow actions. A class of workflows that we call

work procedures can be discovered by applying graph mining algorithms to find

frequent subgraphs. After finding the workflow models, we create a Logical

Hidden Markov Model (LHMM) for each mined model to represent the workflow

in a form suitable for real-time recognition using the WARP relational inference

algorithm [Natarajan et al., 2008].
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Chapter 1 – Introduction

Knowledge workers, such as professors, managers, and engineers, perform many

different activities in their daily work life. An intelligent user interface helps such

multi-tasking knowledge workers easily organize and access the resources (files,

folders, email messages, contacts, and web pages) that they need to support these

activities. Such intelligent software usually possesses one or more of the follow-

ing abilities in order to assist the user: organizing the information, adapting the

interface and understanding the user’s activity.

Most operating systems (e.g., Windows, Linux, Mac OS) let the user organize

his/her files in a hierarchical way. While this is convenient when accomplishing

a task that only involves files from the same source, it becomes more challenging

when the task involves heterogeneous information (e.g., involving both email mes-

sages and doc files). Some intelligent software can organize information based on

the user’s explicitly-defined or implicitly-inferred activities [Bellotti et al., 2003;

Dragunov et al., 2005; Rattenbury and Canny, 2007]. This allows the user to access

the information related to a specific activity more easily and thus accomplish the

task more efficiently.

Instead of working in a one-size-fits-all way, some intelligent user interfaces

try to personalize the desktop in order to enhance user productivity. They may

re-configure the desktop to allow the access to some specific information easier
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[Bao et al., 2006], or they may proactively recommend the information related to a

specific activity to the user [Shen et al., 2008], or they may automatically generate

interfaces that are tailored to a user’s motor capabilities [Weld et al., 2003].

Understanding what the user is trying to accomplish can supply the grounds to

provide some appropriate assistance. Some systems try to generalize a repeatable

procedure from the user’s demonstration [Lau et al., 2003; Lau et al., 2004]. They

then execute such procedures automatically or semi-automatically to improve work

efficiency. Some systems observe a sequence of events and try to understand the

goal of the user in order to respond to it [Andrews et al., 2004; Horvitz et al., 1998;

Philipose et al., 2003; Shen et al., 2006].

TaskTracer [Dragunov et al., 2005] is an intelligent activity management sys-

tem which performs the above functions: it tries to organize the user’s information

based on activities, adapt the interface to make information access easier, and

predict which activity the user is doing. TaskTracer improves the user’s work

efficiency by effectively helping the user organize and re-find information. For ex-

ample, it supplies an application called the TaskExplorer, which presents a unified

view of all of the resources associated with the current task and makes it easy

to open those resources in the appropriate application. TaskTracer also predicts

which folder the user is most likely to access and modifies the Open/Save dialog

box to minimize the expected number of mouse clicks.

To correctly organize the information and appropriately adapt the user inter-

face, it is critical for TaskTracer to understand which activity the user is execut-

ing. This dissertation presents our effort to apply machine learning technology
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to activity recognition in the desktop environment. More specifically, we seek to

accomplish the following goals: 1) determine if the user has switched tasks, 2)

predict what is the current task, 3) estimate the state of workflow execution.

In the remainder of this chapter, we first introduce the TaskTracer system,

which is the activity management system upon which our work is built. Next, we

discuss related work. We then describe the activity recognition problem.

1.1 Software Aiming to Improve the Efficiency of Desktop Users

Knowledge workers are struggling in the information flood. Many intelligent as-

sistants have been proposed to help knowledge workers organize their daily life.

TaskTracer [Dragunov et al., 2005; Shen et al., 2006] is one such effort.

1.1.1 The TaskTracer System

The TaskTracer system is an intelligent activity management system [Kaptelinin,

2003; Quan and Karger, 2003; Bellotti et al., 2003; Geyer et al., 2006] that helps

knowledge workers manage their work based on two assumptions: (a) the user’s

work can be organized as a set of ongoing tasks such as “Write TaskTracer Pa-

per” or “Take CS534 Class”, (b) each task is associated with a set of resources.

“Resource” is an umbrella term for documents, folders, email messages, email con-

tacts, web pages and so on. TaskTracer collects events generated by the user’s

computer-visible behavior, including events from MS Office, Internet Explorer,
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Figure 1.1: The TaskExplorer (a) lists all resources related to the current task; the
Folder Predictor (b) provides 3 predicted folders in the “places bar” at left
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Windows Explorer, and the Windows XP operating system. The user can declare

a “current task” (via a “Task Selector” UI), and TaskTracer records all resources as

they are accessed and associates them with the current declared task. TaskTracer

then configures the desktop in several ways to support the user:

• Task Explorer: This presents a unified view of all of the resources asso-

ciated with the current task and makes it easy to launch those resources in

the appropriate application (see Figure 1.1(a)). This supports interruption

recovery by showing the user the most recent resources that they were work-

ing on for each task (as opposed to the global Recent Documents facility of

Windows).

• Folder Predictor: This modifies the Open/Save dialogs so that they are

task-aware (see Figure 1.1(b)). Folder Predictor predicts for all folders f

associated with the current task and computes the three folders that jointly

minimize the expected number of clicks to reach f . The Open/Save dialog

is initialized in the most likely of these folders, and shortcuts to all three

folders are made available in the dialogue box [Bao et al., 2006].

• Time Reporting: This allows the user to produce a report showing how

much time was spent on each task during the most recent day, week, month,

year, and so on.

• Email Tagging: Incoming and outgoing email messages are automatically

tagged (via another machine learning component) with the task (or tasks)

with which they are associated.
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Our research is motivated by several TaskTracer use cases. First, to asso-

ciate each accessed resource with the correct task, we would like TaskTracer to

automatically detect task switches and correctly associate the resources with the

corresponding task. Second, a significant portion of the desktop activity of knowl-

edge workers involves executing workflows. It is challenging for the user to track

the progress of the executing workflows. We are interested in detecting the initia-

tion of a new workflow instance, tracking the progress of each workflow instance,

and determining if the execution has been completed.

1.1.2 Related Work

Many intelligent systems have been proposed to help knowledge workers manage

their work. Such intelligent software usually possesses one or more of the follow-

ing abilities in order to appropriately assist the user: organizing the information,

adapting the interface and understanding the user’s activity.

Organizing the information. Activity management systems help knowledge

workers manage their daily work life by organizing information based on activities.

They are mainly based on two assumptions: (a) the desktop user switches be-

tween different activities, and (b) each activity is associated with a set of resources

relevant to that activity. Those activities are usually some long-lived projects,

such as “Writing PhD Dissertation”, “Project TaskTracer” or “Teaching CS534”.

Such activities are called “tasks” in our TaskTracer system. Resources can be

documents, photographs, podcasts, email messages, web pages, RSS feeds, social
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bookmarks, chats and so on. Activity management systems help with task switch-

ing and resource re-discovery by providing a context for organizing and accessing

related resources.

Some systems focus on email by tracking tasks hidden in the user’s inbox

[Bellotti et al., 2003; Dredze et al., 2006; Kushmerick and Lau, 2005]. Activity-

centric email clients, for example, enable users to associate incoming email mes-

sages with existing tasks. Other systems try to support heterogeneous resources

besides email messages [Kaptelinin, 2003; Dragunov et al., 2005]. These systems

monitor the user’s activities and track resources used when carrying out the task;

they automatically organize and update these resources to make them easily avail-

able to the user when the task is resumed. Finally, there are activity management

systems based on shared objects and collaboration around those objects [Quan and

Karger, 2003; Geyer et al., 2003; Moore et al., ]. In contrast to the aforementioned

single user systems, these systems provide integrated representations of diverse

media that are assumed to be shared, such as email, IM, and web pages.

Adapting the interface. Adaptive systems enhance user productivity by

automatically changing the interface in response to routine user behaviors. Tra-

ditional computer interfaces are one-size-fits-all. Users with little programming

experience have very limited opportunities to customize an interface to their task

and work habits [Weld et al., 2003]. Adaptive systems automatically personalize

the interfaces based on the user’s motor ability, personal preference, or information

requirements.

Supple++ [Gajos et al., 2007] models users’ motor capabilities based on a
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one-time motor performance test and uses this model in an optimization process to

generate a personalized interface. Arnauld [Gajos and Weld, 2005] is a general

interactive tool for eliciting user preferences concerning concrete outcomes and

using this feedback to automatically learn a factored cost function. FolderPredictor

[Bao et al., 2006] is an application that applies a cost-sensitive prediction algorithm

to the user’s previous file access information and can reduce the cost of locating

files in hierarchical folders. Malibu [Shen et al., 2008] automatically changes the

view of a side bar to support knowledge workers’ activities.

Understanding the user’s activity. With the ability to understand the

user’s activity, the intelligent assistant can provide more appropriate services to

the user. There have been many attempts in machine learning to understand

the user’s goal or recognize the user’s activity. To understand the user’s goal,

a programming by demonstration approach [Lau et al., 2003; Lau et al., 2004]

is usually applied. The system generalizes a parameterized procedure from the

user’s repeated behavior. It then instantiates this learned procedure for a specific

situation and provides automatic or semi-automatic operations.

To recognize the user’s activity, researchers usually convert this inherently se-

quential problem into an ordinary supervised learning problem through the de-

sign of appropriate features [Andrews et al., 2004]. Many of the applications are

based on probabilistic models. The Lumière project centers on harnessing prob-

ability and utility to provide assistance to computer users [Horvitz et al., 1998].

Lumière applies Bayesian network user models to infer a user’s needs by consid-

ering a user’s background, actions, and queries. Recently, Horvitz et al. [1999;
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Figure 1.2: The screenshot of TaskSelector, an application that is located at the
right bottom of the desktop and indicates the current task.

2003] have been studying the problem of interruption. They learned a dynamic

Bayesian network to model the user’s attentional focus and predicted the cost of

interrupting the user. Intel Research has developed a toolkit called the Proba-

bilistic Activity Toolkit (PROACT) [Philipose et al., 2003]. They tried to infer

the user’s activity from the objects involved in the activity. PROACT’s activity

model is restricted to linear sequences of sub-activities that provide annotated

object information. The model is very similar to a hidden Markov model.

Motivated by the requirements of the TaskTracer users, the focus of this dis-

sertation will be trying to understand the user’s activity.

1.2 Activity Recognition Problems

An intelligent user interface helps multi-tasking knowledge workers easily organize

and access the resources (files, folders, email messages, contacts, and web pages)

that they need to support these activities. Activity recognition (e.g., [Andrews et

al., 2004; Horvitz et al., 1998; Horvitz et al., 1999; Horvitz et al., 2003; Philipose

et al., 2003]) plays an important role in such intelligent environments: the system
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observes a sequence of events, tries to understand the goal of the user, and attempts

to respond to it.

The TaskTracer system [Dragunov et al., 2005; Shen et al., 2006] is one of

the many efforts to design an intelligent user interface. It provides a convenient

way for the user to define a hierarchy of tasks and associate information resources

(email messages, files, folders, web pages) with those tasks. The user can declare

a “current task” (via a Task Selector component in the windows tray area. See

Figure 1.2), and TaskTracer then configures the desktop in several ways to support

the selected task. For example, it supplies an application called the Task Explorer,

which presents a unified view of all of the resources associated with the current task

and makes it easy to open those resources in the appropriate application. It also

predicts which folder the user is most likely to access and modifies the Open/Save

dialog box to reduce the user’s effort to locate files.

TaskTracer requires the user to explicitly declare the current task in order

to correctly associate resources with tasks. This approach fails when the user is

interrupted (e.g., by a phone call, instant message). The user typically changes

documents, web pages, and so on without remembering to first inform TaskTracer.

To address this problem, we designed and implemented some activity recognition

components using machine learning methods.

A significant portion of the desktop activity of knowledge workers involves ex-

ecuting workflow procedures. These can be formally prescribed procedures (e.g.,

submitting requests for travel authorization) or informal, idiosyncratic procedures

(e.g., keeping track of fantasy football results). We are also interested in design-
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Figure 1.3: Example of an activity hierarchy. Each activity consists of several
sub-activities.

ing an intelligent “To-Do” manager with the ability to recognize such workflow

instances. We can then detect when a new workflow instance was initiated, track

the current state of execution of each workflow instance, and determine when the

execution was complete.

1.3 Three Levels of “Activity”

There can be different levels at which we can describe an activity. For example,

we can imagine a three-level description [Dietterich and Bui, 2006]. At the highest

level is the kind of weak activity model that TaskTracer has: an activity is a

collection of “resources” (web pages, folders, documents, email messages, email

contacts). Typical activities are “Advising student YY”, “Project ZZ”, and so on.

They are called tasks in TaskTracer. We discuss how to recognize such activities

in Chapter 2 and 3.
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The next level is a kind of workflow model. A workflow can be thought of as a

“To-Do” item, consisting of several steps with some temporal constraints. A work-

flow usually involves an initiation (typically the receipt of an email message with

some information such as a URL or an attached file and a request or command),

a partially-ordered sequence of steps, and a termination. The “task” above usu-

ally consists of several workflows. We will describe some workflow examples and

discuss how to recognize them in Chapter 4 .

The third level is the functional operation, such as retrieving a paper, saving a

file in the “reading” folder, and printing a copy of a file, and so on. A workflow

usually consists of a bunch of operations. In this thesis, we will concentrate on the

higher levels of activity – “task” and “workflow”.

An example of an activity hierarchy is depicted in Figure 1.3. The user has

several tasks, such as advising student Shen and project TaskTracer. Each task also

involves several workflow procedures. For example, the task advising student Shen

involves the workflow comments on thesis, scheduling meeting, and so on. Each

workflow procedure consists of several functional operations. For example, the

workflow comments on thesis consists of the functional operation retrieve thesis,

write notes, and so on.

Our research goal is to provide appropriate assistance to the user. Thus, we

focus on recognizing the higher-level activities – tasks and workflows. As we will

discuss later, recognizing such activities has the potential to greatly improve the

efficiency of knowledge workers.
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1.4 Thesis Outline

The dissertation is structured as follows. Chapter 2 gives some background about

our research and presents our first version of the task recognition system, which

is based on batch learning. Chapter 3 analyzes the shortcoming of the previous

system and presents a novel online learning system to detect task switches. The

new system has a more friendly user interface supporting negotiated interruption.

Section 4 introduces the workflow recognition problem. We mine the workflow

models from the user’s TaskTracer event log and apply such mined models to

workflow recognition. We conclude the thesis with a summary of contributions

and a disscusion of the future work.
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Chapter 2 – Single Window Classifier and Its Extension for Task

Recognition

The TaskTracer system seeks to help multi-tasking users manage the resources

that they create and access while carrying out their work tasks. It does this by

associating with each user-defined task the set of files, folders, email messages,

contacts, and web pages that the user accesses when performing that task. The

initial TaskTracer system relies on the user to notify the system each time the

user changes tasks (See Figure 1.2). However, this is burdensome, and users often

forget to tell TaskTracer what task they are working on.

This chapter introduces TaskPredictor [Shen et al., 2006], a machine learning

system that attempts to predict the user’s current task. We first present the single

window classifier, which achieves high prediction precision by combining three

techniques: (a) feature selection via mutual information, (b) classification based

on a confidence threshold, and (c) a hybrid design in which a Naive Bayes classifier

estimates the classification confidence but where the actual classification decision

is made by a support vector machine. We then describe how to combine multiple

single-window predictions (specifically, the class probability estimates) to obtain

more reliable predictions [Shen et al., 2007]. We study three such combination

methods: (a) simple voting, (b) a likelihood ratio test that assesses the variability

of the task probabilities over the sequence of windows, and (c) application of the
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Viterbi algorithm under an assumed task transition cost model.

2.1 Overview

Today’s desktop information workers continually switch between different tasks

(i.e., projects, working spheres). For example, Gonzalez and Mark [2004], in their

study of information workers at an investment firm, found that the average dura-

tion of an episode devoted to a task was slightly more than 12 minutes, and that

workers typically worked on 10 different tasks in a day. Furthermore, the infor-

mation needed for each task tends to be fragmented across multiple application

programs (email, calendar, file system, file server, web pages, and so on). The

TaskTracer system [Dragunov et al., 2005] is one of several efforts that seek to

address this problem by creating “task-aware” user interfaces for the information

worker.

TaskTracer provides a convenient way for the user to define a hierarchy of tasks

and associate information resources (email messages, files, folders, web pages) with

those tasks. The user can declare a “current task” (via a Task Selector component

in the window title bar), and TaskTracer then configures the desktop in several

ways to support the selected task. For example, it supplies an application called

the Task Explorer, which presents a unified view of all of the resources associated

with the current task and makes it easy to open those resources in the appropriate

application. It also predicts which folder the user is most likely to access and

modifies the Open/Save dialog box to use that folder as the default folder. If
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desired, it can restore the desktop to the state it was in when the user last worked

on the task, and so on.

A drawback of the current TaskTracer system is that the user must remember

to change the current declared task each time the task changes. If the user forgets

to do this, then resources become associated with incorrect tasks, and TaskTracer

becomes less useful. For this reason, we would like to supplement the user’s manual

task declaration with a TaskPredictor that attempts to predict the current task

of the user. If the TaskPredictor is sufficiently accurate, its predictions could be

applied to associate resources with tasks, to propose correct folders for files and

email, and to remind the user to update the current declared task.

A variety of recent work has demonstrated the success of machine learning

approaches for recognizing human activities [Fawcett and Provost, 1999; Haigh

and Yanco, 2002]. Some commercial applications have been developed [Horvitz et

al., 1998]. The primary challenge of activity recognition is that the data are quite

noisy. There may be irrelevant actions intermixed with relevant ones, the user may

do the same task in many different ways, and different activities may involve the

same set of objects. For all of these reasons, it is useful to view activity recognition

as a probabilistic prediction problem.

Horvitz [1999] proposes several critical factors for the effective integration of

automated services into user interfaces, which include:

1. Tailoring the service to match uncertainty, variation in goals. A

preference for “doing less” but doing it correctly under uncertainty can pro-

vide a valuable advance towards a solution and minimize the need for costly
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undoing or backtracking.

2. Maintaining working memory of recent interactions. Systems should

maintain a memory of recent interactions with users and provide mecha-

nisms that allow users to make efficient and natural references to objects

and services.

3. Continuing to learn by observing. Automated services should be en-

dowed with the ability to continue to become better at working with users

by continuing to learn about a user’s goals and needs.

4. Considering the status of a user’s attention in the timing of ser-

vices. Intelligent assistants should employ models of the attention of users

and consider the costs and benefits of deferring the action to a time when

the action will be less distracting.

TaskPredictor was designed to address the above factors. We will discuss its

detailed design in the rest of this thesis.

2.2 A Hybrid Learning System for Task Recognition

TaskPredictor predicts the current task based on properties of the window cur-

rently in focus. In order to “do less” but do it correctly, TaskPredictor only makes

inferences based on “informative” observations and only issues a switch alert when

its confidence is larger than a specified threshold. When TaskPredictor is confident

about the switch prediction, it pops up a balloon to remind the user.
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word: file1.doc excel: budget.xls

wds1 wds2 wds3

SaveAs

word: file2.doc

Figure 2.1: Examples of WDSs. Switching to another application or another doc-
ument will create a new WDS. There are three WDSs in our example.

2.2.1 Abstracting Observations from the Event Stream

TaskTracer operates in the Microsoft Windows environment and collects a wide

range of events describing the user’s computer-visible behavior. The TaskTracer

system is described in detail in Dragnov et al. [2005].

TaskTracer collects events from MS Office 2003, MS Visual .NET, Internet

Explorer and the Windows XP operating system. An event message contains the

following information:

• Event type — such as window focus, file open, file save, web page naviga-

tion, and so on;

• Listener ID — the source of the EventMessage (MS Office, file system hook,

Internet Explorer, Windows explorer, and so on);

• Body — the detailed information about the event e.g., pathname, window

title, email address, Uniform Resource Locator (URL);

• Time — time the event occurred.

From the raw event stream, the main TaskPredictor extracts a sequence of

Window-Document Segments (WDSs). A WDS consists of a maximal contiguous
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segment of time in which a particular window has focus and the name of the

document in that window does not change. An example is shown in Figure 2.1.

In our approach, a new WDS is defined to begin when one of the following

events happens:

• Navigate (Internet Explorer): the browser displays a new webpage;

• OsWindowFocus (all applications): a different window gains the focus;

• Open (MS Office): the user opens a new file

• SaveAs (MS Office): the user saves a file under a new name;

• New (MS Office): the user creates a new blank document.

TaskPredictor attempts to make a prediction for each WDS. To do this, it

extracts the following information from each WDS: the window title, the file path-

name, and (for web pages) the website URL. It heuristically segments these into

a set of “words” and then creates a binary variable xj in the feature set for each

unique word j. If this word appears in the event, xj is 1, otherwise xj is 0.

2.2.2 Machine Learning Methods

It is important for an intelligent system to tailor its service to match its uncertainty.

A preference for “doing less” but doing it correctly under uncertainty can provide

a valuable advance towards a solution and minimize the need for costly undoing

or backtracking. To achieve this goal, we employ the following three machine
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learning methods: (a) classification thresholds, (b) mutual information feature

selection, and (c) a hybrid Naive Bayes/Support Vector Machine classifier.

2.2.2.1 Classification Thresholds

In user interface applications, it is essential to avoid annoying the user by making

incorrect predictions. Indeed, it is better to make no prediction at all than to make

an incorrect prediction. Therefore, we make predictions based on a probabilistic

prediction threshold θ. Let x be the vector of features extracted from the WDS

or from the email message, and let y be the task to be predicted. We employ

probabilistic learning algorithms that predict P (y|x) and P (y) for each possible

task y.

TaskPredictor uses this information to compute P (x) according to the formula

P (x) =
∑

y

P (x|y)P (y).

It then compares P (x) to a threshold θ, and if P (x) > θ, it makes a prediction.

Otherwise, it does nothing. In effect, TaskPredictor is estimating the probability

density of data points in the neighborhood of x. If it has previously observed

many data points near x, then it is reasonable to make a prediction, because the

prediction is based on sufficient data. If not, it is better to make no prediction.

We will employ two measures of prediction performance: coverage and preci-

sion. Coverage is the fraction of cases in which a prediction was made (i.e., p̂ > θ).
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Precision is the fraction of those predictions that were correct (i.e., ŷ = y, the

correct task). For TaskPredictor, we need high precision but we do not need high

coverage. This is because each episode (i.e., each period of time during which the

user is working on a single task) is composed of very many WDSs. There is no

need to make a prediction for every single WDS. The important thing is that if the

user has forgotten to update the task, TaskPredictor should catch this promptly

and make a correct prediction for at least one WDS in the episode.

2.2.2.2 Feature Selection via Mutual Information

It is well known that feature selection can improve the accuracy of classifiers by re-

ducing the complexity of the learned hypothesis (and thereby reducing the variance

of the learning algorithm). We applied three feature selection methods.

First, we employed a stopword list to eliminate words that are very common,

such as “to”, “open”, “Microsoft” (which appears in the titles of IE and MS Office

applications), “RE” and “FWD” (which appear in the subjects of email messages).

Second, we applied a simple rule-based algorithm for stemming English words

to their roots [Porter, 1980]. For example, this converts “tracing”, “traced”, and

“tracer” to the root word “trace” [Porter, 1980].

Third, we employed mutual information to select the K = 200 features with

highest (individual) predictive power. Mutual information (or information gain)

is one of the most common measures of relevance in machine learning [Yang and

Pedersen, 1997]. It measures the reduction of entropy in the predicted class distri-
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bution P (y|xj) provided by knowing the value (i.e., present or absent) of feature

xj . Entropy is a measure of the uncertainty of a random variable. Let {yi}m
i=1

denote the set of task categories, then the mutual information of a word feature

xj is computed as

G(xj) = −
m∑

i=1

P (yi) logP (yi)

+ P (xj = 1)

m∑
i=1

P (yi|xj = 1) logP (yi|xj = 1)

+ P (xj = 0)

m∑
i=1

P (yi|xj = 0) logP (yi|xj = 0),

where the probabilities are estimated from the training sample using maximum

likelihood estimates (i.e., simply computing the fraction of cases). The K = 200

features with the highest information gain are selected for inclusion in the training

set.

An additional advantage of feature selection is that it speeds up the learning

algorithms. For example, the TaskPredictor extracts on the order of 1000 words

from the WDSs collected over a 3-month period. Our experiments show that

predictive performance is maximized when the number of selected features K is

in the range 100–300. This speeds up the learning algorithm and the prediction

process by a factor of 3–10. As a result, our hybrid Naive Bayes + SVM classifier

can make a prediction in less than 0.01 seconds on an ordinary PC computer

(Pentium4 CPU, 512MB).
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2.2.2.3 A Hybrid Naive Bayes + SVM Classifier

The TaskPredictor applies a combination of two well-known algorithms to make

its predictions.

The first algorithm is the Naive Bayes algorithm. It learns a model of the

joint probability, P (x, y), of the input x and the label y, and makes its predictions

by applying Bayes’ rule to calculate P (y|x). Given a test instance x = {wi}|F |
i=1,

where |F | is the total number of features, we make the prediction according to the

following rule:

argmaxyP (y|x) = argmaxy
P (y)

∏|F |
i=1 P (wi|y)∑

y′ P (y′)
∏|F |

i=1 P (wi|y′)

Our Naive Bayes model employs an indicator (0/1) variable for each feature. We

apply standard Laplace smoothing when computing the probability estimates.

The second algorithm is the linear support vector machine that has been shown

to be both very fast and effective for text classification problems [Joachims, 2001].

To apply SVMs in our multi-class situation, we employ the one-against-one ap-

proach in which an SVM classifier is learned for each pair of classes. If there are

k classes (i.e., user tasks), then k(k − 1)/2 classifiers must be trained. To predict

the class of a new case, each of these classifiers makes a prediction, and the predic-

tions are then combined by the method of Wu et al. [2004] to produce estimated

probabilities P (y|x).

Many studies in machine learning have shown that discriminative classifiers

(such as SVMs) generally give higher predictive accuracy than generative classifiers
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(such as Naive Bayes) except at very small sample sizes. However, an advantage of

generative classifiers is that they can very cheaply provide an estimate of P (y|x)

and P (x) as we have seen above. This permits them to “know what they know” —

that is, to produce a measure of the probability that they have seen similar data

points before.

Hence, in our hybrid method, we first apply the Naive Bayes classifier to es-

timate PNB(y|x) and PNB(x). We compare PNB(x) to θ and make a prediction

using the learned SVM if PNB(x) > θ. In this way, we obtain the advantages of

both generative methods (that they can produce a density estimate over the input

space) and discriminative methods (that they generally produce more accurate

decisions).

2.2.3 Experimental Results

We deployed TaskTracer on Windows machines in our research group. To evaluate

TaskPredictor, we required a dump of the TaskTracer database, which raises many

privacy concerns. As a result, we only obtained data from 2 professors. We refer

to them as FA and FB (the faculty members). Subject FB manually reviewed his

data and cleaned it so that it contained more accurate task labels. The collected

data is summarized in Table 2.1.
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Table 2.1: Datasets for Evaluating TaskPredictor (number of words is computed
after stoplist and stemming)

Subject FA FB
# of tasks 96 81
# of WDSs 5894 4151
# of words 1202 983

2.2.3.1 Evaluation Methodology

For TaskPredictor, we adopted an on-line prediction methodology as follows. The

data is sorted according to whole days. To make predictions for the WDSs in day

t, we train the hybrid classifier on the data from days 0 through t−1. This process

is started on day 1 and repeated until all data have been processed. We analyze

the results based on the total number of predictions and the percentage of those

that are correct.

2.2.3.2 Effect of Feature Selection

We first assess the value of performing feature selection. Figures 2.2 and 2.3 show

the results of feature selection for FA and FB on TaskPredictor. The horizontal

axis shows the value ofK, the number of features chosen by the mutual information

method. The vertical axis shows the precision of the predictions. In each case, we

have varied the value of the classification threshold θ to maximize the precision,

subject to the constraint that θ should be large enough that the learning algorithm

makes at least 100 correct predictions.
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Figure 2.2: Precision of TaskPredictor for FA as a function of the number of
selected features K. Error bars denote 95% confidence intervals.

For both FA and FB, we can see that reducing the number of features generally

improves the performance of both Naive Bayes and the SVM. For FA, SVM gives

higher precision than Naive Bayes when the number of features is very large,

whereas Naive Bayes does better when the number of features is less than 400

(although the differences are not statistically significant). For FB, the SVM always

outperforms Naive Bayes, and most of the differences are significant. Note that for

FA, the best precision attained is around 93%, while for FB, the SVM does better

than 95%. We set the number of features K to be 200 for both FA and FB.
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Figure 2.3: Precision of TaskPredictor for FB as a function of the number of
selected features K. Error bars denote 95% confidence intervals.

2.2.3.3 Effect of the classification threshold

Now we analyze the effect of the classification threshold. Figures 2.4 and 2.5

show the precision of TaskPredictor as a function of the coverage of the algorithm.

These values are averaged over all of the days of the test data. The coverage is

the percentage of WDSs for which a prediction was made, and the precision is the

probability that the predictions made were correct. The value of the classification

threshold θ is implicit in these plots. Low values of θ correspond to high coverage,

and high values of θ give low coverage. We see that as we increase θ, the precision

increases very well. TaskPredictor is able to attain a precision of 80% with coverage

of 10% for FA and a precision of 80% with coverage of 20% for FB.
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Figure 2.4: Precision of TaskPredictor as a function of the coverage for FA, created
by varying θ.

2.2.3.4 Effect of the Hybrid Method

The preceding figures also show the effect of the Hybrid method. For FA (Fig-

ure 2.4), the Hybrid method gives precision that is essentially the same as Naive

Bayes when coverage is small and the same as the SVM when coverage is larger.

For FB (Figure 2.5), the Hybrid method gives better performance than either

Naive Bayes or the SVM when coverage is small and performance similar to the

SVM with coverage is larger.

These results show that the hybrid method gives performance equal to or better

than the best single method (Naive Bayes or SVMs). This supports our hypothesis

that using a generative model to decide when to make predictions works better
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Figure 2.5: Precision of TaskPredictor as a function of the coverage for FB, created
by varying θ.

than using a discriminative model. This result may have significance beyond Task

Prediction, and we plan to test the hypothesis over a larger set of machine learning

problems to ascertain its generality.

2.2.3.5 Online Performance

It is interesting to plot the cumulative online performance of the learning algo-

rithms over the evaluation period. Figure 2.6 plots the total number of correct

(and incorrect) predictions for FB as a function of the number of WDSs processed,

for two different settings of θ. That is, a point (x, y) is plotted at the moment when

the algorithm has observed and trained on x WDSs, and it has made y correct (or
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Figure 2.6: Cumulative correct and incorrect predictions for FB as a function of
the number of WDSs processed (the hybrid model)

incorrect) predictions.

Note that there are several times in which the error curves (the lower two

curves) take sudden upward jumps. These correspond to periods when the user

starts a new task. The new task may confuse TaskPredictor because 1) TaskPre-

dictor has seen very few training examples for the task and 2) the user may access

resources of other tasks in order to initialize the new task (e.g., by copy and edit).

This suggests that it may be appropriate to disable TaskPredictor for some period

of time after a new task is initialized. It also shows that even the Hybrid method

is not able to identify all cases where it should not make a prediction.
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2.2.4 Conclusions

This section has presented a learning system for predicting the current task of the

user. The TaskPredictor system predicts the user’s current TaskTracer task based

on the title and document pathname (or URL) of the window currently in focus.

We demonstrated that three machine learning techniques gave improved perfor-

mance with the system: 1) feature selection via mutual information, 2) a threshold

for making classification decisions, and 3) a hybrid approach in which a genera-

tive model (Naive Bayes) is first applied to decide whether to make a prediction

and then a discriminative model (linear support vector machines) is applied to

make the prediction itself. The experiments show that the hybrid method gives

slightly better performance than either Naive Bayes or SVMs alone. These three

techniques give us a TaskPredictor that is sufficiently accurate to be useful.

2.3 Combining Predictions from Multiple Observations

The TaskTracer system provides a convenient, low-cost way for knowledge workers

to define a hierarchy of tasks and to associate resources with those tasks. With

this information, TaskTracer then supports the multi-tasking user by configuring

the computer for the current task. To do this, it must detect when the user

switches the task and identify the user’s current task at all times. This problem

of “task switch detection” is a special case of the general problem of change-point

detection. It involves monitoring the behavior of the user and predicting in real

time when the user moves from one task to another. In this section, we present
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a framework that analyzes a sequence of observations to detect task switches.

First, a classifier is trained discriminatively to predict the current task based only

on features extracted from the window in focus. Second, multiple single-window

predictions (specifically, the class probability estimates) are combined to obtain

more reliable predictions. This section studies three such combination methods:

(a) simple voting, (b) a likelihood ratio test that assesses the variability of the

task probabilities over the sequence of windows, and (c) application of the Viterbi

algorithm under an assumed task transition cost model. Experimental results show

that all three methods improve over the single-window predictions and that the

Viterbi approach gives the best results.

2.3.1 Introduction

TaskTracer provides a convenient way for the user to define a hierarchy of tasks

and associate information resources (email messages, files, folders, web pages) with

those tasks. The user can declare a “current task” (via a Task Selector component

in the window title bar), and TaskTracer then configures the desktop in several

ways to support the selected task.

This approach of requiring the user to declare the current task makes sense

when the user is returning from an interruption and wants to bring up the list of

relevant resources. However, this approach fails when the user is interrupted (e.g.,

by a phone call, instant message). The user typically changes documents, web

pages, and so on without remembering to first inform TaskTracer. In such cases,
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we would like TaskTracer to automatically detect the task switch.

To address this problem, we wish to apply machine learning methods to au-

tomatically detect task switches. When a task switch is detected, we would like

TaskTracer to pop up a “balloon alert” asking the user for permission to change

the current declared task. To be usable, this task switch detector must be highly

precise (i.e., have very low false alarm rate), and it must be timely (i.e., it must

detect the task switch as soon as possible after it occurs so as to avoid interrupting

the user once he or she is fully engaged in the new task). Finally, it must consume

minimal CPU resources so that it does not interfere with the work the user is

trying to accomplish. We call this task switch detector the TaskPredictor.

The first TaskPredictor for TaskTracer was developed by Shen et al.[2006] and

deployed in TaskTracer in 2006. This TaskPredictor is a classifier trained to predict

the user’s current task based only on features describing the window currently in

focus. In the remainder of this thesis, we will refer to this as the Single Window

Classifier (SWC). Although the SWC achieves fairly high accuracy, it is unusable

in practice because it produces far too many task-switch false alarms.

This section describes a set of experiments to develop an improved TaskPredic-

tor. Our basic idea is to develop algorithms that analyze the sequence of predictions

from the SWC to make more reliable task switch predictions.

The remainder of this section is structured as follows. First, we briefly describe

the Single Window Classifier. Then we present a framework that we have applied

to the task switch detection problem. This framework makes the task switch

decision based on a metric that combines multiple task predictions over time.
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Three different metric functions are proposed in this section. Third, we show

experimental results on both synthetic and real user data. We conclude the section

with a review of related work and a discussion of future work.

2.3.2 TaskTracer and the Single Window Classifier (SWC)

TaskTracer operates in the Microsoft Windows environment and collects a wide

range of events describing the user’s computer-visible behavior. TaskTracer collects

events from MS Office 2003, MS Visual .NET, Internet Explorer and the Windows

XP operating system. Then various TaskTracer components provide services to the

user based on this information. From the raw event stream, the SWC extracts a

sequence of Window-Document Segments (WDSs). A WDS consists of a maximal

contiguous segment of time in which a window is in focus and the name of the

document in that window does not change. The SWC extracts information about

the window title and the file pathname from each WDS. Then it heuristically

segments these into a bag of “words” and creates a binary variable xj in the

feature set for each unique word. To put more weight on long-duration WDSs, we

create multiple training instances for each WDS. For a WDS that lasts t seconds,

we generate n = � 5
1+5 exp(−0.1t)

� identical training instances.

For the sake of both accuracy and speed, the information gain [Yang and Ped-

ersen, 1997] of each feature is computed and then the 200 features with the highest

(individual) predictive power are retained and the rest are discarded. We will refer

to these 200 features as the “informative” features .
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Figure 2.7: Impact of feature selection. Fraction of one-minute intervals that have
informative observations as a function of the number of selected features.

It is reasonable to ask whether feature selection causes a large number of WDSs

to have empty bags of words (i.e., to be uninformative). We checked this on one

user’s 2-month TaskTracer dataset. This dataset contains 781 distinct words. We

discretized time into 60-second periods and applied feature selection to the entire

dataset. Figure 2.7 shows the fraction of episodes that have at least one informative

feature as a function of the number of features selected. With 200 features, more

than 95% episodes still have informative features.

The first version of our TaskPredictor worked by applying the SWC to predict

the task of every informative WDS. If the predicted task was different than the

user’s declared task and if the prediction was sufficiently confident, then TaskPre-

dictor issued a task switch alarm. Initial experience with this TaskPredictor re-
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vealed that it was very sensitive to noise and that it issued many false alarms.

Clearly, we need a more sophisticated technique to solve this problem.

2.3.3 Switch Detection With Informative Observations

Detecting switches from individual task predictions fails mainly because decisions

based on just one observation are not reliable: given the observations {x1,x2, . . . ,xt},
the SWC only uses xt to predict the task at time t. Instead, we should detect

switches based on the previous � observations {xt+1−�, . . . ,xt}. The larger value of

� can bring more information to make the task switch predictions. However, this

comes at the cost of reducing the timeliness of the predictions, because roughly

we have to wait for �/2 observations before the system has enough information to

reliably detect the task switch.

2.3.3.1 A Framework to Detect Task Switches

The above algorithm presents our framework for detecting task switches. We

execute the detector every f seconds or when an event is received. If the bag of

features for a WDS contains no informative features (i.e., it is the null bag), then

it is ignored. This usually happens for short-duration pop-up windows, empty

Internet Explorer windows, new office documents (“Document1”), and so on.

The informative WDS observations are pushed into a first-in-first-out queue

X of maximum length �. Once X contains � elements, each new element added
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Algorithm 2.1 Generic framework for detecting task switches.
Require: � – we will store � observations in queue X
Require: d – efficiency delay; skip switch computation if WDS has lasted longer than d seconds
Require: r – recovery time; keep silent for the next r informative observations after a switch

alarm
1: NoEventTime ⇐ 0
2: SilentNumber ⇐ ∞
3: repeat {every f seconds or if an event happens}
4: if no event happened then
5: NoEventTime ⇐ NoEventTime +f
6: else
7: NoEventTime ⇐ 0
8: end if

//skip inference if nothing has happened for d seconds
9: if NoEventTime > d then

10: continue
11: end if

//update the observation queue X = (x1, . . . ,x�)
12: xnow ⇐ GetObservation()
13: if xnow is not null then
14: UpdateQueue(X,xnow, �)
15: SilentNumber ⇐ SilentNumber +1
16: else
17: continue
18: end if
19: if SilentNumber ≤ r then
20: continue
21: end if
22: (Λ, PredictedTask) ⇐ SwitchMetric (X)
23: if Λ > threshold then
24: SilentNumber ⇐ 0
25: if PopUpAlert(PredictedTask)==OK then
26: SetCurrentTask(PredictedTask)
27: end if
28: end if
29: until the system is shutdown
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to X causes the oldest element to be removed. The function SwitchMetric

computes the switch metric value Λ from X and also returns the predicted new

task as discussed below. If Λ exceeds a threshold, a task-switch alert is shown to

the user, and the user is asked to confirm it. If the user agrees, then the current

task is changed to the new task, otherwise it is left unchanged.

The variable SilentNumber stores the number of informative observations

since the last switch alarm was made. To avoid annoying the user, the method

does not raise any new alarms for at least the next r informative observations after

a switch alarm.

If no event occurs for a long time (more than d seconds), then there is no point

in predicting a switch, so we can avoid the cost of computing the switch metric.

We do not want X to be full of identical observations from the same long-duration

WDS. Hence, there is no need to update X either.

Based on some user studies, we set the parameters for this framework as follows:

f = 5, d = 25, and r = 10.

2.3.3.2 Metric Functions

We now describe three methods for computing metric functions based on the FIFO

queue of informative observations X. First we describe the baseline method, which

is similar to what has been deployed in TaskPredictor.
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Baseline Method. The Baseline Method applies the SWC to each observation

individually. Given an observation x, the SWC returns three things: a predicted

class label ŷ, a probability distribution Θ = P (y|x) over the possible class labels,

and a confidence measure that estimates P (x). The baseline method considers a

prediction to be confident if P (x) exceeds a given threshold [Shen et al., 2006]. It

compares the class labels of the two most recent confident predictions and declares

a task switch alarm if they are different.

Class Probability Voting. A simple solution to combine multiple predictions

is voting. Let X = (x1, . . . ,x�) be the queue of informative observations. The

basic idea is to vote for the task of (x1, . . . ,x�/2) and the task of (x�/2+1, . . . ,x�)

and see whether they are the same. First, compute ya = arg maxy

∑�/2
i=1 P (y|xi)

and yb = arg maxy

∑�
i=�/2+1 P (y|xi). Then calculate the switch metric as

Λ = I[ya �= yb] ·



�/2∑
i=l

P (ya|xi) +

�∑
i=�/2+1

P (yb|xi)


 , (2.1)

where I[p] = 1 if p is true and −1 otherwise. Throughout this section, we train

support vector machines to do class probability estimation [Platt, 1999; Wu et al.,

2004]. This voting method votes the class probability distributions to calculate

the metric. It is straightforward and cheap, but it doesn’t take into account the

variability of the task probabilities.
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Likelihood Ratio Scores. Instead of just looking at the sum of the predicted

class probability distributions, we can also consider the variability of those dis-

tributions. Although voting may suggest a task switch, if the class probability

distributions within each half of X are highly variable, this suggests low confi-

dence in the prediction.

Let Θi be the posterior probability distribution over the tasks given obser-

vation xi, and µa, µb be the true means of {Θ1, . . . ,Θ�/2} and {Θ�/2+1, . . . ,Θ�}
respectively. We seek to test the hypothesis H0 : µa = µb against the alterna-

tive H1 : µa �= µb. Developed by Neyman and Pearson, the likelihood ratio test

provides a general methodology to test a two-sided alternative against a null hy-

pothesis [Mukhopadhyay, 2000]. The central limit theorem states that the sample

mean is approximately a Gaussian distribution given a sufficiently large sample.

Thus, we can compute the switch metric Λ as the Gaussian likelihood ratio score

Λ =(Θa − Θb)
T

(
2

�
Σa +

2

�
Σb

)−1

(Θa − Θb), (2.2)

where Θa and Θb are the sample means and Σa and Σb are the sample covariance

matrices of {Θ1, . . . ,Θ�/2} and {Θ�/2+1, . . . ,Θ�} respectively. We should reject H0

for large values of Λ. If we assume ∀i �= j, yi and yj are independent, and treat

Σa and Σb as diagonal matrices, then the computation time is O(� · |y|) excluding

the expense for the SWC to compute P (yj|xi).

The central limit theorem suggests that � should be quite large (e.g., > 30).

However, very large � values will substantially delay the task switch alarms. For-
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tunately, our experimental results are good even when � = 8.

Minimal Transition Costs. Our third metric is based on hypothesizing a task

switch cost and applying an additive conditional cost formula similar to that of

hidden Markov models (HMMs). We define the cost of labeling X by Y as

C(Y|X) =
∑

1≤i≤�

Ca(yi|xi) +
∑

1<i≤�

Ct(xi|xi−1), (2.3)

where Ca is the atemporal cost of labeling observation i with yi and Ct is the

transition cost of moving from task yi−1 to task yi. We define Ca as the negative

log likelihood Ca = − logP (yi|xi). As in Fern et al. [2005], we define the transition

cost function as Ct = c · δ[yi �= yi−1], where c is a real and δ[p] = 1 if p is true and

0 otherwise. This model simply charges an equal cost for all task switches, even

though it’s possible that some switches are more likely than others.

We assume that the sequence X is short enough that it only contains 0 or 1

switches. We are concerned with whether there is one switch for sequence X. So

we compare the minimal cost under the assumption of 0 switches to the minimal

cost under the assumption of one switch:

α = min
a
C(y1 = y2 = . . . = y� = a|X), (2.4)

β = min
i,a�=b

C(y1 = . . . = yi = a, yi+1 = . . . = y� = b|X). (2.5)

We can apply the Viterbi algorithm to find these minimal costs. Given (x1, . . . ,xi),

let αij be the minimal cost if we predict the task at time i as yj and predict no
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switch until time i. Let βij be the minimal cost if we predict the task at time i

as yj and that one switch has occurred prior to time i. For each yj, we initialize

α1j = Ca(yj|x1) and β1j = +∞. For task yj , if we assume that no switch has

occurred until time i, then αij is simply the sum of the atemporal costs plus

α(i−1)j . If we assume that one switch has occurred prior to time i, there are two

possibilities: this switch occurred at time i or before time i. We then pick the choice

with the smaller cost and add the atemporal cost to give βij. Thus, ∀1 < i ≤ �,

we can recursively calculate the cost for each yj at time i as

αij = α(i−1)j + Ca(yj|xi), (2.6)

βij = min {β(i−1)j ,min
k �=j

α(i−1)k + c} + Ca(yj|xi). (2.7)

The minimal costs over the entire sequence X will be α = minj α�j and β =

minj β�j. We set the value of the metric as their difference:

Λ = α− β. (2.8)

This naive Viterbi approach will take O(� · |y|2) time excluding the expense for

Ca(yj|xi). In step i we only need to calculate Ca(yj|xi) for each yj, and these

values can be cached for future reuse.

Since we assume a constant transition cost, we can adopt the forward-backward

algorithm [Felzenszwalb et al., 2004] to reduce the complexity to O(� · |y|).
Without the constraint on the number of transitions, ct(yj), the minimal cost
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of labeling the observation x as yj at time t given the observations seen so far can

be computed as

ct(yj) = c(yj|x) + min
i

(ct−1(yi) + c(yj|yi)). (2.9)

The main computation lies in D(j) = mini(ct−1(yi) + c(yj|yi)), which will be

O(n2) if we use Viterbi to compute D(j) for each j. With the L1 norm distance

cost for c(yj|yi), the method introduced in [Felzenszwalb et al., 2004] can reduce

the complexity of D(j) to O(n). In that case, the cost function looks like a “∨”,

and the cost keeps linearly increasing. In our case, we assume a constant transition

cost c(yt|yt−1) = c · δ[yt �= yt−1], where c is a real and δ[p] = 1 if p is true and 0

otherwise. The cost function looks like a “−∨−”, and the cost will be the same

after we move away from the center. See an example in Figure 2.8.

We can modify the approach with the L1 norm cost function to fit our require-

ment. To apply the forward-backward algorithm [Felzenszwalb et al., 2004], we

need to do a minimum filtering: we track β, which is the smallest cost assuming

a transition seen so far. Let Cj be the minimal cost found so far for task yj.

First, we make a forward pass through all tasks. For each task yj, we compute

β = min(β, ct−1(yj−1) + c), that is, the minimal cost seen so far either remains the

same, or, takes the previous minimal cost of the previous task plus a transition

cost (which is the flat plane of “−∨−”). Then Cj = min(β, ct−1(yj)), that is, it is

either the minimal cost assuming a transition or the cost without a transition.

In the backward process, we gather the influence from the right to the left and
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Figure 2.8: An example of our cost function.

update the values computed in the forward process. This time, for each task yj

we compute β = min(β, ct−1(yj+1)+ c). We let Cj = min(β, Cj). Then D(j) = Cj.

The forward and backward passes take O(n), thus we get an O(Tn) algorithm for

computing the minimum cost label sequence.

A small example is presented in Table 2.2 and Table 2.3.

ct−1(yj) 3 1 4 2 1
ct−1(yj−1) + c ∞ 4 2 5 3

β ∞ 4 2 2 2
Cj 3 1 2 2 1

Table 2.2: Forward pass (from the left to the right), assuming the transition cost
c = 1.

The result (2, 1, 2, 2, 1) is exactly what we will get if directly computing mini(ct−1(yi)+

c(yj|yi)) for each activity yi.
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ct−1(yj) 3 1 4 2 1
ct−1(yj+1) + c 2 5 3 2 ∞
old Cj 3 1 2 2 1

β 2 2 2 2 ∞
Cj 2 1 2 2 1

Table 2.3: Backward pass (from the right to the left), assuming the transition cost
c = 1.

2.3.4 Experimental Results

We tested the framework and the three task switch metrics on synthetic data and

on data from four real users.

We generated 20 synthetic datasets using the following process. Each dataset

contained 8 tasks and 500 distinct words. For each task, its multinomial distri-

bution over words was randomly generated so that 150 of the words were approx-

imately 7 times more likely to appear than the remaining 350 words. Then, we

sequentially generated 300 episodes: first we chose a task y uniformly at random

and generated the length of the episode m uniformly in the range (10 ≤ m ≤ 60).

Then we generated m observations for task y according to its multinomial distri-

bution such that each observation lasts 1 second and contains less than 5 words.

Real user data was obtained by deploying TaskTracer on Windows machines in

our research group and collecting data from four users, whom we refer to as FA,

FB, FC, and SA. The collected data is summarized in Table 2.4. Each episode in

these data sets was hand-labeled with the associated task, although these labels

probably exhibit considerable levels of noise.

We now present the results for two performance metrics: COAP and precision.
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Table 2.4: Datasets for Evaluating Switch Detection (# of words is computed after
stoplist and stemming)

Data Set FA FB FC SA
size(in months) 6 2 4 2.5
# of switches 374 246 1209 286

# of tasks 83 51 176 8
# of words 575 781 1543 514

COAP given the size of the queue. We measure the probability that seg-

ment boundaries are correctly identified by the co-occurrence agreement probability

(COAP) [Beeferman et al., 1999; McCallum et al., 2000]. The sequence of obser-

vations can be divided into segments using either the observed or the predicted

task switch points. Consider two arbitrary time points t1 and t2 in the segmented

sequence. Either t1 and t2 belong to the same segment, or they belong to differ-

ent segments. The COAP is computed by choosing a probability distribution D

over (t1, t2) and measuring the probability that the observed and the predicted

segmentations agree on whether these two points belong to the same or different

segments. In our case, D is the uniform distribution over all pairs (t1, t2) such that

|t1 − t2| ≤ 30 time units. For the synthetic data set, the time unit was 1 second;

for the real user data, the time unit was 60 seconds.

For each dataset, the data is ordered according to time and divided into three

equal time intervals: A, B, and C. We first train the Single Window Classifier

using A. Then for a given switch detection algorithm, we vary the threshold and

evaluate on B to choose the best threshold. Recall that we issue a switch alarm

when the metric value is larger than the threshold. Finally, we retrain the SWC
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Figure 2.9: The average COAP values of the synthetic data as a function of �, the
length of the observation queue X

using A+B and apply the learned SWC and threshold value to evaluate on C. The

results on C are plotted in Figure 2.9 and 2.10.

From the plots, � (the size of informative observation queue) is crucial to the

accuracy of methods. When � is increased, the COAPs first increase and then

decrease for all three metric functions. The initial increase is presumably due to

the increase in the amount of information available. The subsequent decrease is

presumably due to the fact that when the queue X is too long, it contains more

than one task switch, but our framework assumes only 0 or 1 task switches occur.

There might be 2 or even more switches when � is large. The maximal COAPs are

reached when � is around 12 for the synthetic data and around 10 for the real user

data. The highest COAP value of any metric function is larger than that of the
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Figure 2.10: The average COAP values of the real user data as a function of �

baseline method.

The minimal transition cost metric gives the best performance, particularly on

the synthetic data. One reason may be that unlike the other metrics, it is not

constrained to predict the switch point in the center of the observation queue X.

The likelihood ratio metric is more conservative in predicting switches, since it will

not issue any alarm if the predicted P (y|xi) is not stable. Thus it misses some real

switches, but it makes fewer false alarms. This sometimes leads to a low COAP

value. The voting method is the least effective.

Precision given coverage. We measured precision and coverage as follows.

If a correct (user-labeled) switch occurs at time t and a switch is predicted to occur

between t− 60 and t + 180, then the first such switch prediction is considered to
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Figure 2.11: The average precision values as a function of the coverage for real
users given 10 observations, created by varying the prediction threshold.

be correct. However, subsequent predictions in the same time interval are counted

as errors. Precision is the probability that a switch prediction is correct. Coverage

is the probability that a user-labeled switch is predicted correctly.

We adopted an on-line learning methodology to evaluate the algorithms on

the real user data. We divided the data into days and assigned d0 to be the day

that is 25% of the way through the data set. This defines an initialization period.

For each day d from d0 + 1 to the end of the data set, we trained the system on

the data from days 0 through d − 1 and then evaluated its performance on day

d. The precision given coverage for � = 10 informative observations is plotted in

Figure 2.11.

Our framework with any of the metric functions outperforms the baseline
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method. These results show that using more observations does reduce the false

alarms. The minimal transition cost metric gives the best results for coverage be-

low 40%. Compared to the baseline method, the minimal transition cost metric

can improve precision by more than 15%. The likelihood ratio metric gives the

best results for coverage from 40% to 65%. Voting is the worst of the three metrics.

2.3.5 Related Work

Our method of task switch detection is based on task recognition and prediction,

for which many methods have been developed (see Shen et al., [2006] for a re-

view). There are also some attempts in understanding the user’s interest in the

information retrieval area [Ohsawa and Yachida, 1997].

Task switch detection is also related to change-point detection [Chen and

Gopalakrishnan, 1998; Guralnik and Srivastava, 1999]. The standard approach

of change-point detection has been to (a) apriori determine the number of change-

points that are to be discovered, and (b) decide the function that will be used

for curve fitting in the interval between successive change-points [Guralnik and

Srivastava, 1999]. These approaches usually do not employ supervised learning

techniques. Our switch detection method sheds some light on such problems: we

can hand-label observations and train a switch detector to predict change points.

Task switch detection is different from novelty detection [Schölkopf et al., 2000;

Campbell and Bennett, 2001; Ma and Perkins, 2003] and first story detection [Allan

et al., 2000]. Novelty detection, or anomaly detection, tries to automatically iden-
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tify novel or abnormal events embedded in a large body of normal data. One

application is to liberate scientists from exhaustive examination of data by draw-

ing their attention only to unusual and “interesting” phenomena [Ma and Perkins,

2003]. The problem is typically solved by learning a pattern to cover most normal

data points. Any point outside of this pattern will be considered as a novelty. How-

ever, in switch detection, when the user is changing tasks, the current observation

may be neither novel nor abnormal. First Story Detection (FSD) is the task of

online identification of the earliest report for each news story as early as possible.

Existing FSD systems usually compare a new document to all the documents in

the past, and they predict a first story if the similarity score is smaller than some

threshold. This method does not work for switch detection, because task switches

often involve repeating tasks that the user did in the past.

Text segmentation tries to predict where boundaries occur in text [Beeferman

et al., 1999]. Maximum entropy Markov models [McCallum et al., 2000] and condi-

tional random fields [Lafferty et al., 2001] have been successful in natural language

tasks. With some additional requirements, it is possible to apply these state-of-

the-art models to detect task switches. First, since task switch detection is done in

real time, we should do efficient filtering (instead of smoothing). Second, the cost

for wrong predictions is unbalanced: A false alarm costs a lot; it is more acceptable

to miss some switches.
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2.3.6 Conclusions

In this section, we introduced a special case of the general problem of change-point

detection, which we term task switch detection. This involves monitoring the user’s

behavior and predicting when the user switches to a different task. To reduce

false alarms, we made our decision based on multiple informative observations–

observations exhibiting one or more of the 200 most informative features. We

tested this framework in the TaskTracer system and compared three switch metrics,

each computed from information produced by a learned Single Window Classifier

(SWC). We found that the metric based on an assumed task switch transition cost

and the Viterbi algorithm gave the best results.
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Chapter 3 – Efficient Online Learning for Task Recognition

The TaskTracer system allows knowledge workers to define a set of tasks that

characterize their desktop work. It then associates with each user-defined task

the set of resources that the user accesses when performing that task. In order

to correctly associate resources with tasks and provide useful task-related services

to the user, the system needs to know the current task of the user at all times.

It is often convenient for the user to explicitly declare which task he/she is work-

ing on. But frequently the user forgets to do this. TaskTracer applies machine

learning methods to detect undeclared task switches and predict the correct task

of the user. This chapter presents TaskPredictor2 [Shen et al., 2009b], a complete

redesign of the task predictor in TaskTracer and its notification user interface.

TaskPredictor2 applies a novel online learning algorithm that is able to incorpo-

rate a richer set of features than our previous predictors. We prove an error bound

for the algorithm and present experimental results that show improved accuracy

and a 180-fold speedup on real user data. The user interface supports negotiated

interruption and makes it easy for the user to correct both the predicted time of

the task switch and the predicted task.
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3.1 Overview

The TaskTracer system [Dragunov et al., 2005; Shen et al., 2006] is an intel-

ligent activity management system [Kaptelinin, 2003; Quan and Karger, 2003;

Bellotti et al., 2003; Geyer et al., 2006] that helps knowledge workers manage

their work. TaskTracer then configures the desktop in several ways to support the

user. In order to automatically associate resources with tasks, TaskTracer needs

to know the current task of the user. TaskTracer provides a taskbar component,

the Task Selector, that makes it easy for the user to explicitly declare the current

task. However, when the user forgets to do this, resources become associated with

incorrect tasks. This will cause errors in the resources displayed in Task Explorer,

incorrect folder predictions, and errors in time reporting.

To address this problem, we have previously developed two machine learning

methods for detecting task switches and predicting the current task of the user,

which are described in Chapter 2. The first of these was the “single window classi-

fier” that based its predictions only on the file path (or URL) of the current resource

and the title of the active window. An advantage of this was that the predictions

could be computed immediately and rapidly each time the user switched focus

from one window to another. The disadvantage was that with such impoverished

features, the accuracy of the predictions was not very high.

The second learning method was based on analyzing the sequence of recently-

visited resources. It first applied the single-window classifier to each of these

resource visits. Then it detected task switches by applying a Viterbi algorithm
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with a fixed switch cost. This led to somewhat improved accuracy but had the side

effect of introducing a potentially significant delay between the time of the switch

and the time the switch was detected. This led in turn to major usability problems.

The UI that we developed for notifying the user consisted of a pop-up window. By

the time the switch was detected, the user was typically deeply engaged in the new

task, so that the pop-up window created an expensive interruption. Furthermore,

the pop-up window UI only allowed the user to accept or correct the prediction.

However, if the true switch occurred at time t and the prediction was accepted at

time t′, then all resources visited between t and t′ would be incorrectly associated

with the old task. There was no way—short of going to Task Explorer and dragging

the incorrectly-associated resources to the right task—to fix these errors.

An additional drawback of both of these learning methods is that they employed

a batch SVM algorithm [Joachims, 2001; Chang and Lin, 2001]. This must store

all of the training examples and reprocess all of them when retraining is required.

SVM training time is roughly quadratic in the number of examples, so the longer

TaskTracer is used, the slower the training becomes. Furthermore, task prediction

is a multi-class prediction problem over a potentially large number of classes. For

example, our busiest user worked on 299 different tasks over a four-month period.

To perform multi-class learning with SVMs, we employed the one-versus-rest ap-

proach. If there are K classes, then this requires learning K classifiers. If there

are N examples per class, then the total running time is roughly O(N2K3). This

is not practical in an interactive, desktop setting.

The goal of the redesign of the TaskPredictor (and of this chapter) was to
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address these four problems:

• Accuracy: How can we improve the accuracy of the task switch predictor?

• Memory/CPU Cost: Can we switch to a more efficient learning algorithm

that requires constant memory and CPU time to train and make predictions?

• Prediction Delay/Interruption Cost: Can we develop a user interface that is

able to manage the delay between the time a switch occurs and the time it

is predicted? How can this UI minimize interruption costs?

• Retroactive Association Changes: When the user changes the time of an

task switch, how can that change be reflected in the associations between

resources and tasks?

This chapter presents TaskPredictor2, a new switch detection system that fixes all

of these problems.

3.2 System Design

TaskPredictor2 captures a set of richer contextual information and provides a

better user experience. It consists of the following components (see Figure 3.1):

• The Association Engine manages the associations between resources and

tasks. Each time the user visits a resource, an event is triggered. In response,

the Association Engine starts a 20-second timer. If the resource is still in

focus after 20 seconds and if it has not been previously associated with the
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current declared task, then it is automatically associated with the current de-

clared task. In addition to recording the association in a data base table, the

Association Engine also places an entry in an Association History database

table that keeps track of the time the association was established, the id of

the resource, and the id of the task. When the user accepts or corrects a task

switch, the UI sends an “AssociationHistoryRevisions” event specifying the

time interval that is affected by the change and the id of the task that now

should be associated with this interval. The Association Engine then revises

the associations for this time interval.

• The State Estimator monitors desktop events. Once each minute, it com-

putes an information vector that summarizes the state of the desktop and

sends this to the Switch Detector.

• The Switch Detector analyzes the information vectors provided by the

State Estimator and converts them into a collection of feature vectors as

described below. These are processed by the learned classifier to predict

whether there has been an undeclared task switch and (if so) the time of the

switch, the id of the new task, and the prediction confidence. This is passed

to the Notification Controller and the UI.

• The Notification Controller chooses when and how to notify the user with

the goal of minimizing both the interruption cost and association errors.

When the system becomes confident that the user forgot to declare a task

switch, the user might be busy with something. Notifying the user right then
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Figure 3.1: The system architecture of the task recognition system. Arrows indi-
cate information flows.

would have a high interruption cost.

• The UI presents the switch notification to the user and provides the user a

variety of ways to respond to (and correct) the predicted switch. It provides

feedback to the Switch Detector so that it can retrain its predictors.

The current version of the Notification Controller employs a simple heuristic

to determine when to issue the switch alert: If the system is confident that a

task switch has occurred and the user is at an operation boundary and likely has

low interruption cost (e.g., opening a file dialog box or switching focus to another

window), then an alert should be given. Following the design guideline suggested

by Gluck et al. [2007], the alert takes three forms depending on the confidence of

the predictor: (a) displaying a red switch icon (see Figure 3.2), (b) shaking the

timeline UI for one second, or (c) opening a pop-up window. The rationale is that

highly confident predictions are more likely to be correct, so ignoring them is more
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likely to lead to association errors.

(a) Notification Controller issues a switch alert (the red triangle) + tool tip.

(b) Hovering the mouse over a resource icon gives more information.

(c) If a switch is changed, UI will ask for confirmation (the Save/Cancel box).

Figure 3.2: Interactions between TaskPredictor2 and the user.

Figure 3.2 shows an example of the interactions between UI and the user. The

UI consists of two rows of icons. The upper row displays one icon for each time that

a resource was visited by the user (in the order that these visits occurred). Multiple

visits result in multiple icons—however, very brief visits are ignored. Information

about each resource (path name/URL, associated task) is shown as a tool tip if

the user hovers the mouse over the resource icon (see Figure 3.2b). The user can
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also double-click on an icon to cause that resource to be opened and brought into

focus.

The lower row displays one icon for each task switch. The shape and color of

the icon indicates the type of switch. User-declared switches are displayed as green

boxes. Unconfirmed switch predictions are displayed as red triangles. Confirmed

switch predictions are displayed as a green “house”. A tool tip shows the task

name, the type of switch, and the time of the switch. The user can drag and drop

a switch icon to change the switch time. However, we do not permit the drag

operation to go past another existing switch time.

In the examples shown in Figure 3.2, the user first worked on the task IUI-09.

Then he explicitly switched to Reading News and browsed some webpages. The

green box indicates this switch. After reading the news, he resumed working on

task IUI-09. Unfortunately he forgot to explicitly indicate that switch. TaskPre-

dictor2 detected this undeclared switch and decided that it was the right time to

notify the user. So it drew a red triangle to indicate this switch and shook the UI

to attract the user’s attention. The user then hovered the mouse over the triangle

to see the predicted task (Figure 3.2a). To confirm that the prediction is correct,

the user can double-click the switch icon. The icon then turns into a “house” (see

Figure 3.2c). If the prediction is wrong (i.e., there was no switch at all), the user

can right click and select “Remove” from a pop-up menu. If the predictor has

correctly identified a task switch but predicted the wrong task, the user can right

click and choose “Change the Task”. This brings up a Task Chooser UI. If the

switch is predicted at the wrong time point, the user can drag the switch icon to
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the correct point in time. As the icon moves, the UI provides tool tips to show

the full name of the resource, the time it was accessed, and the task to which it is

currently assigned so that the user can find the right switch point. In all cases, the

UI requests confirmation (“Save”) or allows the user to cancel out of the changes

(“Cancel”). If the user ignores a notification, TaskPredictor2 does nothing. In

most cases, if the user ignores a notification long enough, it will disappear because

the user will continue to accumulate time on an open resource, and this resource

will become associated with the current declared task. This will, in turn, cause

TaskPredictor2 to stop predicting that a task switch has occurred, because it now

has evidence that the open resource is associated with the declared task.

As in our earlier method, there can be a substantial delay between the time the

user switches tasks and the time TaskPredictor2 detects this. A key design goal of

this UI was to support this by providing asynchronous (negotiated) interruption

and retroactive correction of incorrect associations. After the user confirms a

change, the information is sent to the Association Engine to update the resource-

task associations.

3.3 Efficient Learning Algorithms for Task Recognition

To address the accuracy and CPU cost of our previous predictors, we adopted an

efficient online learning algorithm and provided it with a richer set of features. On-

line learning algorithms have been shown to be efficient in many large-scale prob-

lems. The algorithm is based on the Perceptron family of algorithms [Rosenblatt,
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1988], and, particularly, on the PA algorithm [Crammer et al., 2006].

3.3.1 Feature Design and Scoring Function

The State Estimator monitors various desktop events (Open, Close, Save, SaveAs,

Change Window Focus, and so on). Every s seconds (default s=60) or when the

user declares a task switch, it computes an information vector Xt describing the

time interval t since the last information vector was computed. This information

vector is then mapped into feature vectors by two functions: FT : (Xt, yj) → Rk

and FS : (Xt) → Rm. The first function FT computes task-specific features for a

specified task yj; the second function FS computes switch-specific features. The

task-specific features include

• Strength of association of the active resource with task yj: if the user has

explicitly declared that the active resource belongs to yj (e.g., by drag-and-

drop in TaskExplorer), the current task is likely to be yj. If the active

resource was implicitly associated with yj for some duration (which happens

when yj is the declared task and then the resource is visited), this is a weaker

indication that the current task is yj .

• Percentage of open resources associated with task yj : if most open resources

are associated with yj, it is likely that yj is the current task.

• Importance of window title word x to task yj. Given the bag of words Ω, we

compute a variant of TF-IDF [Joachims, 2001] for each word x and task yj:
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TF(x,Ω) · log
|S|

DF(x,S)
. Here, S is the set of all feature vectors not labeled

as yj, TF(x,Ω) is the number of times x appears in Ω and DF(x, S) is the

number of feature vectors containing x that are not labeled yj.

These task-specific features are intended to predict whether yj is the current task.

The switch-specific features predict the likelihood of a switch. They include

• Number of resources closed in the last s seconds: if the user is switching

tasks, many open resources will often be closed.

• Percentage of open resources that have been accessed in the last s seconds:

if the user is still actively accessing open resources, it is unlikely there is a

task switch.

• The time since the user’s last explicit task switch: immediately after an

explicit switch, it is unlikely the user will switch again. But as time passes,

the likelihood of an undeclared switch increases.

To detect a task switch, we adopt a sliding window approach: at time t, we

use two information vectors (Xt−1 and Xt) to score every pair of tasks for time

intervals t− 1 and t. Given a task pair 〈yt−1, yt〉, the scoring function g is defined

as

g(〈yt−1, yt〉) = Λ1 · FT (Xt−1, yt−1) + Λ1 · FT (Xt, yt)

+ φ(yt−1 �= yt) (Λ2 · FS(Xt−1) + Λ3 · FS(Xt)) ,
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where Λ = 〈Λ1,Λ2,Λ3〉 ∈ R
n is a set of weights to be learned by the system,

φ(p) = −1 if p is true and 0 otherwise, and the dot (·) means inner product. The

first two terms of g measure the likelihood that yt−1 and yt are the tasks at time

t − 1 and t (respectively). The third term measures the likelihood that there is

no task switch from time t − 1 to t. Thus, the third component of g serves as a

“switch penalty” when yt−1 �= yt.

We search for the 〈ŷ1, ŷ2〉 that maximizes the score function g. If ŷ2 is different

from the current declared task and the score is larger than a specified threshold,

then a switch prediction and the score are sent to the Notification Controller.

At first glance, this search over all pairs of tasks would appear to require time

quadratic in the number of tasks. However, the following algorithm computes the

best score in linear time:

y∗t−1 := arg max
y

Λ1 · FT (Xt−1, y)

A(y∗t−1) := Λ1 · FT (Xt−1, y
∗
t−1)

y∗t = arg max
y

Λ1 · FT (Xt, y)

A(y∗t ) = Λ1 · FT (Xt, y
∗
t )

S = Λ2 · FS(Xt−1) + Λ3 · FS(Xt)

y∗ = arg max
y

Λ1 · FT (Xt−1, y) + Λ1 · FT (Xt, y)

AA(y∗) = Λ1 · FT (Xt−1, y
∗) + Λ1 · FT (Xt, y

∗)
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Each pair of lines can be computed in time linear in the number of tasks. We

assume y∗t−1 �= y∗t . To compute the best score g(〈ŷ1, ŷ2〉), we compare two cases:

g(y∗, y∗) = AA(y∗) is the best score for the case where there is no change in the

task from t−1 to t, and g(y∗t−1, y
∗
t ) = A(y∗t−1)+A(y∗t )+S if there is a switch. When

y∗t−1 = y∗t , we can compute the best score for the “no switch” case by tracking the

top two scored tasks at time t− 1 and t.

3.3.2 Regularized Passive-Aggressive Algorithm

In TaskPredictor2 we decided to adopt an error-driven online approach [Rosenblatt,

1988] to train Λ. Online learning algorithms only need to process the most recent

observation to update the classifier. They have very limited requirements for CPU

time and memory. Their efficiency has made them popular for many large-scale

learning problems. An advantage of perceptron-style algorithms is that they are

“conservative”—that is, they only retrain when an error is made. This further

reduces the CPU cost of training, and it may also contribute to prediction accuracy

by avoiding overfitting on data points that are already correctly classified.

We further chose to adopt a modification of the Passive-Aggressive (PA) algo-

rithm [Crammer et al., 2006]. The basic idea of this algorithm is that when an

error is committed and feedback is received, the algorithm updates the weights

as little as possible while ensuring that the error would not be committed again.

More specifically, it chooses a step size that is exactly large enough to ensure that

the classifier will correctly classify the erroneous case with a margin of 1. This
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is highly desirable in an intelligent user interface, because it avoids the problem

where the user provides feedback but the algorithm only takes a small step in the

right direction, so the user must repeatedly provide feedback until enough steps

have been taken to fix the error. This behavior has been reported to be extremely

annoying.

The standard Passive-Aggressive algorithm works as follows: Let the real tasks

be y1 at time t−1 and y2 at time t, and 〈ŷ1, ŷ2〉 be the highest scoring incorrect task

pair. When the system makes an error, it would update Λ based on the following

constrained optimization problem:

Λt+1 = arg min
Λ∈Rn

1

2
‖Λ − Λt‖2

2 + Cξ2

subject to g(〈y1, y2〉) − g(〈ŷ1, ŷ2〉) ≥ 1 − ξ. (3.1)

The first term of the objective function,
1

2
‖Λ − Λt‖2

2, says that Λ should change as

little as possible (in Euclidean distance) from its current value Λt. The constraint,

g(〈y1, y2〉) − g(〈ŷ1, ŷ2〉) ≥ 1− ξ, says that the score of the correct task pair should

be larger than the score of the incorrect task pair by at least 1− ξ. Ideally, ξ = 0,

so that this enforces the condition that the margin (between correct and incorrect

scores) should be 1.

The purpose of ξ is to introduce some robustness to noise. We know that

inevitably, the user will occasionally make a mistake in providing feedback. This

could happen because of a slip in the UI or because the user is actually inconsistent

about how resources are associated with tasks. In any case, the second term in the
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objective function, Cξ2, serves to encourage ξ to be small. The constant parameter

C controls the tradeoff between taking small steps (the first term) and fitting the

data (driving ξ to zero). Crammer, et al. [2006] show that this optimization

problem has a closed-form solution, so it can be computed in time linear in the

number of features and the number of classes.

The Passive-Aggressive algorithm is very attractive. However, one risk is that

Λ can still become large if the algorithm runs for a long time, and this could

lead to overfitting. Hence, we modified the algorithm to include an additional

regularization penalty on the size of Λ. The modified optimization problem is the

following:

Λt+1 = arg min
Λ∈Rn

1

2
‖Λ − Λt‖2

2 + Cξ2 +
α

2
‖Λ‖2

2

subject to g(〈y1, y2〉) − g(〈ŷ1, ŷ2〉) ≥ 1 − ξ. (3.2)

The third term in the objective function,
α

2
‖Λ‖2

2, encourages Λ to remain small.

The amount of the penalty is controlled by another constant parameter, α.

We now derive a closed-form update rule for this modified Passive-Aggressive
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algorithm. First, let us expand the g terms. Define Zt = 〈Z1
t ,Z

2
t ,Z

3
t 〉 where

Z1
t =FA(Xt−1, y1) + FA(Xt, y2)

− FA(Xt−1, ŷ1) − FA(Xt, ŷ2)

Z2
t =(φ(y1 �= y2) − φ(ŷ1 �= ŷ2))FS(Xt−1)

Z3
t =(φ(y1 �= y2) − φ(ŷ1 �= ŷ2))FS(Xt).

Plugging this into the above optimization problem allows us to rewrite the inequal-

ity constraint as the following simple form:

Λ · Zt ≥ 1 − ξ.

We can then derive the following result:

Lemma 1 The optimization problem (3.2) has the closed-form solution

Λt+1 :=
1

1 + α
(Λt + τtZt), (3.3)

where

τt =
1 − Λt · Zt + α

‖Zt‖2
2 + 1+α

2C

. (3.4)

A detailed proof is presented in the Appendix. The update rule (3.3) can

be viewed as shrinking the current weight vector ΛT and then adding in the

incorrectly-classified training example with a step size of τt/(1 + α). The step

size is determined (in the numerator of (3.4)) by the size of the error (1 − Λt · Zt
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and (in the denominator) by the squared length of the feature vector and a cor-

rection term involving α and C.

The time to compute this update is linear in the number of features. Further-

more, the cost does not increase with the number of classes, because the update

involves comparing only the predicted and correct classes.

It is worth asking how much accuracy is lost in order to obtain such an efficient

online algorithm compared to a batch algorithm (or, more generally, compared to

the best possible algorithm). By extending existing results from computational

learning theory, we can provide a partial answer to this question. Let us assume

that the length of each vector Zt is no more than some fixed value R:

‖Zt‖2 ≤ R.

This is easily satisfied if every feature has a fixed range of values. Suppose there

is some other algorithm that computes a better weight vector u ∈ R
n. Let �t =

max{0, 1−Λt ·Zt} be the hinge loss of Λt at time t. The hinge loss is the amount

by which the constraint in Problem (3.2) fails to be satisfied. The hinge loss will

be at least 1 for misclassified examples. It is between 0 and 1 for examples that

are correctly classified by only a small margin less than 1. Similarly, let �∗t =

max{0, 1−u ·Zt} denote the hinge loss of u at iteration t. With these definitions,

we can obtain a result that compares the accuracy of the online algorithm after T

examples to the total hinge loss of the weight vector u after T examples:

Theorem 1 Assume that there exists a vector u ∈ R
n which satisfies h = 1−α2

R2+ 1+α
2C

−
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α
2+α

‖u‖2
2 > 0. Given α < 1, the number of prediction mistakes made by our

algorithm is bounded by m ≤ 1
h
‖u‖2

2 + 2C
h(1+α)

∑T
t=0(�

∗
t )

2.

A detailed proof is presented in the Appendix. This theorem tells us that the

number of mistakes made by our online algorithm is bounded by the sum of (a) the

squared hinge loss of the ideal weight vector u multiplied by a constant term and

(b) the squared Euclidean norm of u divided by h. This bound is not particularly

tight, but it does suggest that as long as u is not too large, the online algorithm

will only make a constant factor more errors than the ideal (batch) weight vector.

Theoretical analysis can provide one more insight into the behavior of the online

algorithm. Because of the penalty α
2
‖Λ‖2 on the weight vector, it turns out that

this algorithm automatically decreases the influence of older training instances.

Let It be the set of instances Zi such that i < t and Zi caused an update. From

Lemma 1, the learned score function at iteration t can be rewritten as

gt(Z) = sign

(∑
i∈It

τi
(1 + α)|It\Ii|Zi · Z

)
(3.5)

where |It \ Ii| is the number of elements in the set difference of It and Ii. This

indicates that the algorithm shrinks the influence of the old observations and puts

more weight on the recent ones.
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3.3.3 Pragmatic Issues in Selecting Training Examples

If the user were behaving correctly all the time, then every time the user declared a

task switch, we would obtain a training example of a correct switch, and whenever

the user did not declare a task switch, we would get an example of a non-switch.

But of course the whole reason to include an intelligent switch predictor is because

the user makes mistakes. When can we reliably train the classifier? We answer

this question as follows. We create positive examples of task switches whenever

(a) the user declares a task switch or (b) the user confirms a predicted switch

(possibly after modifying the predicted task and/or the predicted switch point).

We create negative examples of task switches for (a) the first d = 10 minutes after

a declared or accepted task switch and (b) the first d = 10 minutes after the user

Removes a predicted switch. The rationale for the 10-minute interval is that the

declared task is usually correct immediately after the user switches to the task.

But as the amount of time since the confirmed switch increases, it becomes more

and more likely that the user has switched without making an explicit declaration.

Using a fixed 10-minute window can be viewed as a crude Bayesian prior over the

likelihood of the user forgetting to declare a switch. An interesting direction for

future research would be to learn such a model based on the actual behavior of the

user.

There is an additional pragmatic issue that results from the combination of

affordances provided by the UI. In particular, consider the “dragging” affordance.

Consider Figure 3.2a, where a prediction has been made immediately after five Fire-
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fox web pages and just prior to two Word documents. Suppose that this prediction

was incorrect in that there was no task switch. Then the user would right-click

and select “Remove” from the pop-up menu. Our current system treats this as a

negative training example, and this sets up the start of a 10-minute segment in

which all user behavior will be trusted and converted to training examples.

However, we can infer more from the user’s Remove action. Suppose that there

had been a task switch at an earlier point (e.g., immediately after the first two

Firefox web pages). In that case, the UI would have permitted the user to drag

the red triangle to that point and then confirm. Therefore, under the assumption

that the user knows about this affordance, we can infer from the fact that the user

did not do this, that there was not a task switch anywhere in the time interval

between the first Firefox page and the last Word file. Our implementation does

not currently do this, but it raises an interesting question for future research. We

only discovered this issue after the UI was deployed. It would be interesting to

develop a design tool that could discover these kinds of counter-factual inferences

earlier in the design process.

3.4 Experimental Evaluation

We deployed TaskTracer on Windows machines in our research group and col-

lected data from two regular users, both of whom were fairly careful about declar-

ing switches. In addition, an SVM-based version of TaskPredictor2 was run-

ning throughout this time, and the users tried to provide feedback to the system
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74

throughout.

The first user (User 1) is a “power user”, and this dataset records 4 months of

daily work, which involved 299 distinct tasks, 65,049 instances (i.e., information

vectors), and 3,657 task switches. The second user (User 2) ran the system for 6

days, which involved 5 tasks, 3,641 instances, and 359 task switches.

To evaluate the online learning algorithm, we make the assumption that these

task switches are all correct, and we perform the following simulation. Suppose

the user forgets to declare every fourth switch. We feed the information vectors

to the online algorithm and ask it to make predictions. A switch prediction is

treated as correct if the predicted task is correct and if the predicted time of the

switch is within 5 minutes of the real switch point. When a prediction is made,

our simulation provides the correct time and task as feedback.

The algorithm parameters were set based on experiments with non-TaskTracer

benchmark sets. We set C = 10 (which is a value widely-used in the literature)

and α = 0.001 (which gave good results on the benchmark data sets).

Performance is measured by precision and recall. Precision is the number of

switches correctly predicted divided by the total number of switch predictions, and

Recall is the number of switches correctly predicted divided by the total number

of undeclared switches. We obtain different precision and recall values by varying

the score confidence threshold required to make a prediction.

The results comparing our online learning approach with our previous approach

described in Section 2.3 are plotted in Figures 3.3 and 3.4. Our previous approach

only uses the bag of words from the window titles and pathname/URL to do
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Table 3.1: Usage Statistics for User 1; SVM Version

Confirmed

Switch Type Ignored Removed NoChange ChangeTask ChangeTime ChangeBoth

Low Confidence 1 1 1 1 2 0
Medium Confidence 10 2 4 0 3 0

High Confidence 31 33 32 2 14 1
User-Declared N/A 5 N/A 2 21 1

inference. The new approach incorporates much richer contextual information to

detect task switches. This makes our new approach more accurate. Compared with

the previous approach which must train multiple binary SVMs, the online learning

approach is also much more efficient. On an ordinary PC, it only took 4 minutes to

make predictions for User 1’s 65049 instances while the previous approach needed

more than 12 hours!

3.4.1 Qualitative Evaluation and the User Experience

Within our group, we are currently using the SVM-based version of the system. It

is exactly the same as the system described in this chapter, except that it employs

the LibSVM implementation [Chang and Lin, 2001] to train the classifier. Table 3.1

shows the actual results of the four-month usage period for User 1. A total of 138

predictions were made. Of these, 42 (30.4%) were ignored (probably because the

user didn’t notice them when the UI was buried under another window). Of the 96
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non-ignored predictions, the user removed 36 (37.5%) of them. The user confirmed

37 (38.6%) without change, 3 more (3.1%) after changing the task, 19 (19.8%) after

changing the time, and 1 more (1.0%) after changing both the time and the task.

Qualitatively, User 1 reported that TaskPredictor2 was very accurate. When

it makes a prediction, the prediction is usually either correct or sensible, by which

we mean that the predicted task is one that is related to the correct task. For

example, a challenging case for task prediction arises when the user is working on

task A2 and accesses a resource that was previously only known to be associated

with task A1. Two common scenarios where this arises are (a) using a document

as a template for a new task (e.g., opening up an old syllabus, editing it to change

the course name, meeting time, and so on, and then saving it) and (b) assem-

bling summary documents (project reports, curriculum vitae, annual performance

reviews) by copying information from multiple source documents. In such cases,

TaskPredictor2 will predict that the user has switched to task A1. This is a sensi-

ble prediction, and users are not surprised by these kinds of predictions. However,

from the user’s point of view, he/she is working on task A2, so the user typically

Removes or ignores such predictions. This causes the source documents to become

associated with A2. It isn’t clear whether this result is good or bad. A good aspect

of this is that at some later time, when the user returns to working on task A2,

TaskTracer will include the source documents in the list of resources associated

with A2. This can provide an answer to the question “Where did I get those slides

from?”. A bad aspect of this is that when the user accesses the source documents

at some later time, TaskPredictor2 may predict that the user is switching to task
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A2 when the user is really switching to task A1. We have attempted to deal with

this case by including the “strength of association” feature in the information vec-

tor. Ideally, if a resource is more strongly associated with A1 than with A2, then

this will cause the predictor to predict a switch to A1 in this case.

3.5 Conclusion

This chapter has described TaskPredictor2, a novel task-switch predictor for the

desktop environment. Its user interface displays task switches [Smith et al., 2003;

Czerwinski et al., 2004] on a time line that shows accessed resources. This gives the

user contextual hints and makes it easy for the user to adjust the time at which a

task switch (declared or predicted) actually occurred. Instead of simply reminding

the user about the switch, it allows the user to edit the task switch history and

thereby adjust resource-task associations. The learning component exploits rich

contextual information, including both task-specific features and switch-specific

features, to predict task switches. The predictor parameters are trained via a

novel online learning algorithm. This algorithm is more accurate, more efficient in

memory, and runs much faster than our previous SVM-based method.
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Chapter 4 – Frequent Workflow Model Mining for Workflow

Recognition

In order to help the user organize and re-find information, TaskTracer requires

that the user explicitly names each of his/her activities, which imposes additional

overhead and is more appropriate for larger chunks of activity such as long-lived

projects. Such an approach lacks an understanding of the state of the activity, so

it can’t tell whether an activity is completed or ongoing, nor can it provide useful

reminders to the user about actions that still need to be performed to complete

the activity. Such activities correspond to “tasks” – the highest level of activities

in our definition as described in Section 1.3.

In this chapter, we address the above issues by extending “activities” to work-

flows [Shen et al., 2009a]. Workflows can be formally prescribed procedures (e.g.,

submitting requests for travel authorization) or informal, idiosyncratic procedures

(e.g., keeping track of fantasy football results). This chapter describes an algorithm

for mining frequent workflow models and then describes how to convert them into

Logical Hidden Markov Models for workflow recognition [Kersting et al., 2006].

Discovering desktop workflows is difficult because they unfold over extended pe-

riods of time (days or weeks) and they are interleaved with many other workflows

because of user multi-tasking. This chapter describes an approach to discovering

desktop workflows based on rich instrumentation of information flow actions such
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as copy/paste, SaveAs, file copy, attach file to email message, and save attachment.

These actions allow us to construct a graph whose nodes are files, email messages,

and web pages and whose edges are these information flow actions. A class of

workflows that we call work procedures can be discovered by applying graph min-

ing algorithms to find frequent subgraphs. They are then converted into Logical

Hidden Markov Models for workflow recognition.

4.1 Overview

Knowledge workers frequently change activities, either by choice or through inter-

ruptions [Mark et al., 2005]. With an increased number of activities and activity

switches, it becomes more and more difficult for knowledge workers to keep track

of the state of each of their activities. Many attempts have been made to de-

velop effective To-Do managers, but these impose additional overhead on desktop

work and they do not capture many of the user’s activities [Bellotti et al., 2003].

One way to reduce this overhead and increase the coverage of a To-Do manager

would be if the computer could automatically recognize which activities were being

executed and track their status in an intelligent To-Do manager.

In our work on the TaskTracer system [Dragunov et al., 2005; Shen et al., 2007],

we took an initial step in this direction by applying machine learning methods to

predict the current activity of the user based on the resources (files, web pages,

email messages) that the user accesses. This approach requires that the user ex-

plicitly name each of his/her activities, which imposes additional overhead and is
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more appropriate for larger chunks of activity such as long-lived projects. Such

activities are called “tasks” in our system. An additional shortcoming of this ap-

proach is that it lacks an understanding of the state of the task, so it can’t tell

whether a task is completed or ongoing, nor can it provide useful reminders to the

user about actions that still need to be performed to complete the task. So while

the TaskTracer approach is very valuable for helping the user recover from inter-

ruptions of long-duration activities, it does not provide any support for managing

To-Do lists.

A significant portion of the desktop activity of knowledge workers involves

executing workflow procedures. These can be formally prescribed procedures (e.g.,

submitting requests for travel authorization) or informal, idiosyncratic procedures

(e.g., keeping track of fantasy football results). Suppose that the computer had

models of these workflows. With such models, it would be able to detect when a

new workflow instance was initiated, track the current state of execution of each

workflow instance, and determine when the execution was complete. This would

allow it to automatically populate and maintain an intelligent To-Do list for the

knowledge worker.

If the workflow models were sufficiently precise, they could also provide the basis

for partial automation of workflows. For example, consider the simple workflow

“provide comments on a document”. In this workflow, a document arrives as an

email attachment. The user saves the document into an appropriate folder, edits

it (optionally saving it under a new name), and then attaches it to a reply email.

A smart desktop assistant might be able to recognize the start of the workflow
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by analyzing the initial email message. In which case, it could place an entry

on the To-Do list. When the user was ready to work on this action item, the

assistant could provide a one-click way of opening the email message, saving the

attachment, and opening the file. Later, after the file had been edited and saved,

it could provide one-click automation for opening the email message, initiating a

reply, and attaching the file to the reply message. These simple automation steps

could avoid the need for the user to find the old email message, remember where

the file was saved, and so on. We hypothesize that such support could avoid the

need to resort to desktop search tools to remember and re-access such “lost” items.

While this vision of an intelligent workflow assistant is very attractive, it has one

critical flaw: how can the computer acquire detailed models of desktop workflows?

Some researchers have addressed this problem by providing easy ways for users

to define the workflow procedures themselves [Leshed et al., 2008]. We propose

instead to automatically discover the workflows by observing the user’s desktop

activity and detecting repeated sequences of actions. This is very challenging for a

number of reasons. First, these workflows take place over extended periods of time

(days, weeks, months). Second, they are interleaved with thousands of irrelevant

actions that either do not belong to any workflow or belong to other workflows.

Indeed, for a workflow such as “Review conference paper”, many instances of that

workflow will be executing simultaneously. How can we detect and untangle these

interleaved instances?

We present an approach based on capturing information flow actions (also

called provenance links [Muniswamy-Reddy et al., 2006; Shah et al., 2007; Frew
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et al., 2008]). We define a work procedure as a directed graph whose nodes are

resources (files, email messages, web pages) and whose arcs are actions such as

SaveAs, copy/paste, save email attachment, attach file to email, upload file to web

page, download file from web page, and so on. With sufficient instrumentation of

desktop applications, we can capture the complete set of these provenance links.

This allows us to capture the user’s desktop behavior as a large graph of resources

and provenance links. Each work procedure instance is a connected subgraph in

this graph. To discover these instances, we extend an existing subgraph mining

algorithm to find frequently occurring subgraphs.

The information flow graph solves the problem of temporally-extended inter-

leaved work procedures. The provenance links in the graph are the same regard-

less of whether the work procedure was executed in a single day or over many

months. And the topology of the graph does not depend on how multiple work

procedure instances were interleaved. This leads to a powerful savings in compu-

tation. Consider two work procedure instances each involving 8 actions. There

exist
(
16
8

)
= 12, 870 possible interleavings of these actions, but there is only one

information flow graph.

To acquire the information flow graph, we employed the TaskTracer system

[Dragunov et al., 2005; Shen et al., 2007]. TaskTracer already tracks every re-

source (file, folder, web page, email message, email contact) accessed by the user,

so these provide the nodes in the graph. To acquire the provenance links, we

extended TaskTracer to capture several kinds of provenance links (File copy, File

rename, Copy/Paste, SaveAs, Save Email Attachment, Attach to Email, Download
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from web page, Upload to web page). This does not capture all of the relevant

provenance links, so in this chapter we performed additional automatic analysis of

the user’s resources to identify additional links as described below.

The mined work procedures are then converted into logical Hidden Markove

Models [Kersting et al., 2006]. Each edge corresponds to a state in the logical

Hidden Markov Model. We also introduce a “background” state between each pair

of work procedure states. Such “background” states correspond to the possible

cases that the user switches to other activities after executing some workflow steps.

The remainder of the chapter is structured as follows. The next section reviews

related work. Then, we motivate the work procedure discovery problem with some

typical work procedure cases and discuss its potential usage. Next, we provide a

brief overview of the TaskTracer system used for our research and present a user

interface for displaying the provenance information. We describe our methods for

building the information graph, for finding frequent generalized closed patterns,

for assigning appropriate action sequences and for converting the mined models

into logical Hidden Markov Models. The last section presents experimental results

on the accuracy of the approach.

4.2 Related Work

Several other researchers have worked on problems similar to the one we address

in this chapter.
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Business workflow mining. Traditionally, a workflow is defined as a par-

tial or total automation of a business process in which a collection of activities

must be executed by humans or machines according to certain procedural rules

[Agrawal et al., 1998; Medeiros et al., 2003; Greco et al., 2005; Ellis et al., 2006].

Workflow management systems help to execute, monitor and manage work process

flow and execution. They (partially) automate the definition, creation, execution,

and management of work processes through the use of software. Their transaction

logs record information of each executed process. The activity of using computer

software to examine theses records and derive various structural data results is

called workflow mining [Ellis et al., 2006].

Our work procedure discovery problem can be thought of as a special case of the

workflow mining problem with two differences: (a) the traditional workflow mining

problem tries to find a model expressing the business process of an organization

and the execution of a model usually involves multiple people, while we focus

on individual knowledge workers and the discovered model is executed by a single

user; (b) in the traditional workflow mining problem, the instances of the workflows

are assumed to already be identified, whereas in our work we must discover the

instances first.

Motif discovery. Another related line of work is motif discovery in biological

sequence data and continuous time-series data [Lin et al., 2002; Chiu et al., 2003;

Tanaka et al., 2005; Hamid et al., 2005; Minnen et al., 2007a; Minnen et al.,

2007b]. A motif is a frequently-appearing pattern. A typical motif discovery

approach first applies a sliding window to divide the temporal data into a set of



85

subsequences, and then builds a similarity matrix among these subsequences. This

matrix is then employed to select seed motif occurrences and locate additional

motif occurrences. Motif discovery is useful for various time-series data mining

tasks such as mining association rules in time-series data, time series classification,

anomaly/interestingness detection, and so on [Chiu et al., 2003].

A motif occurrence corresponds to a subsequence of the time-series data. Every

event point between the start point and the end point belongs to that motif oc-

currence. This is very different from the work procedures that we seek to discover,

which are interleaved and intermixed with unrelated (irrelevant) actions.

Desktop activity modeling. To build intelligent personal assistants to

help users organize their work, people have tried to automatically extract un-

derstandable descriptions of a desktop user’s activities [El-Ramly et al., 2002;

Mitchell et al., 2006; Amershi and Conati, 2007; Fern et al., 2007b]. Such descrip-

tions can help researchers understand users’ behavior and design smarter intelligent

agents. However, unlike our work procedures, these descriptions do not support

(semi-) automated execution of the discovered activities. Instead, each activity is

usually represented as a set of objects (people, documents) or as a cluster of action

sequences. Many of these approaches assume prior knowledge about the number

of activities and their duration.

Email activity management. Email activity management systems help

knowledge workers manage their daily work life by tracking email exchanges. The

work by Bellotti, et al. [2003], supports the manual population of an activity tem-

plate from emails. Dredze, et al. [2006] classify email messages into activities by
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analyzing their content. The work of Kushmerick, et al. [2005] is quite similar

to our work in that they also attempt to discover workflows and track the status

of those workflows. However, they focus on e-commerce transactions where the

email messages involve unique identifiers (e.g., order numbers; ebay item num-

bers), which simplifies the problem.

4.3 The Work Procedure Discovery Problem

4.3.1 Definitions

We now formally define the work procedure discovery problem.

Definition 1 A resource is a data object such as a file, email message, or web

page.

In our modified TaskTracer system, each resource is assigned a unique identi-

fier the first time it is accessed. There are several subtleties involved in handling

ephemeral resources such as email messages that are currently being composed

or MS Office documents that have not yet been saved (“Document1”, “Presenta-

tion2”).

Definition 2 An information flow action (also called a provenance link) is a prim-

itive or composite desktop action that directly links two resources.

We directly instrumented the following information flow actions:
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• Copy/paste. This involves instrumenting both the Copy event (to capture

the resource from which the information is copied) and the Paste event (to

capture the resource into which the information is pasted).

• Attach file to email. In order to capture the name of the file on disk, we

added our own button to the MS Outlook user interface.

• Save email attachment. In order to capture the name of the saved file on

disk, we added our own button to the MS Outlook user interface.

• Download file from web page. We wrote our own download manager as a

plugin to Internet Explorer.

• Upload file to web page.

• Copy or Rename file in Windows Explorer.

Definition 3 An information flow graph is a labeled directed graph where the nodes

are resources and the arcs are information flow actions. If there are multiple

information flow actions linking two nodes, the graph contains a single arc labeled

with the set of corresponding information flow actions.

The information flow graph is the raw graph of resources and actions con-

structed from observing the user’s desktop activity. Note that there may be mul-

tiple actions connecting two resources. For example, suppose the user performs a

SaveAs and then accidentally deletes part of a document. He might copy/paste
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that part from the previous version. Another simple example is that there are

often multiple copy/paste actions from one resource to another.

After the basic information flow graph is constructed, it is augmented with

additional arcs representing chain relations:

Definition 4 A resource-action chain is a sequence of resources joined by actions

of a single type.

For example, consider a chain of files created by a sequence of SaveAs actions:

F1 was saved as F2 which was saved as F3 which was saved as F4. We can collapse

this into a single step F1 → F4 for action “SaveAs. . . ”, where “SaveAs. . . ” is a

resource-chain action. A slightly more general example is a chain of email mes-

sages: user A sends message M1 to user B, user B replies with message M2 to user

A, and then user A replies with message M3 to user B. We can collapse this into

a single step M1 → . . . M3 for the resource chain action “EmailSend. . . ”. More

formally, for the actions “SaveAs”, “EmailSend”, and “EmailReceive”, we define

additional resource chain actions “SaveAs. . . ”, “EmailSend. . . ”, and “EmailRe-

ceive. . . ”. Two resources linked by one of these special actions denote a resource-

action chain linked by the appropriate primitive actions.

Definition 5 A work procedure WP = 〈R,A〉 is a labeled directed graph where

R is the set of resources involved in WP and A is the set of actions (including

resource-chain actions) performed in WP. Each resource r ∈ R corresponds to

a node. Each action a ∈ A corresponds to a directed edge in the graph, with the

target resource as the end node. The label of a node is the resource type of that node
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(document, web page) and the label of an edge is the type of the action (copy/paste,

attach file).

A work procedure is an abstract graph in which the specific identity of the

resources and information flow actions is replaced only by their types. Unlike in

the information flow graph, two nodes in a work procedure may only be joined by

a single edge.

Note that a work procedure typically does not contain all of the information

needed to automate the procedure. For example, editing a document involves more

than just performing a SaveAs, and uploading a file typically also involves logging

in to a web page, filling out a form, and so on.

Definition 6 A work procedure instance consists of a pair of a work procedure

and a subgraph of an information-flow graph joined by a mapping that maps each

node and edge in the work procedure into a node or edge of the same type in the

information-flow graph. If an edge is labeled with a resource-chain action, then it

can be mapped to a chain of 0 or more resources in the information-flow graph.

Given an information-flow graph and a work procedure, there may be several

different work procedure instances in the information-flow graph. These instances

may even share nodes and edges.

Definition 7 The work procedure discovery problem is the following: Given an

information-flow graph, discover a set of work procedures to cover as much of the

graph as possible and that will generalize to additional information-flow graphs.
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Figure 4.1: Two typical work procedure examples.
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4.3.2 Examples of Work Procedures

A simple work procedure Provide Comments on a Document is presented in Fig-

ure 4.1(a). Person2 receives an email message from Person1 requesting comments

on an attached Word file. Person2 saves the attachment in a folder associated with

the relevant project. He opens the document and uses SaveAs to save it with a

new name. After editing the file, Person2 replies to the original email message and

attaches the edited file. If the system can recognize instances of this work proce-

dure, it can automatically create a To-Do item when the email arrives and remind

Person2 about the progress. After detecting that Person2 has finished editing the

document, it can offer to send it back to Person1.

A more complex work procedure Prepare Quarterly Report is presented in Fig-

ure 4.1(b). Person2 receives an email from Person1 requesting the quarterly report

with an attached Word file and possibly a deadline. Person2 saves the attachment

into the relevant folder. He opens the file and does some editing. Let us suppose

that Person2 needs to obtain information from three additional people (Person3,

Person4, and Person5) to complete the report. He composes an email message to

these people requesting their contributions and attaching this file as the template.

As replies arrive, he saves their attached files in the same folder. As the deadline

approaches, he sends a reminder to those people who have not yet sent in their

contributions. When the deadline arrives, he opens the original file and all of the

various contributions, and he copies/pastes their materials into the file. Finally

he replies to the original email from Person1 with the attached report file. If the
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system could recognize instances of this work procedure, it could automatically

create a To-Do item when the email arrives. Later, it could save the attachment

and open it in Word. On request, it could create an outgoing email message and

attach the template. As the replies come in, it could track them and save the

attachments in the right folder. It could also offer to send reminders to the people

who have not yet responded. It could also offer to open the template file and all

of the contribution files to help the user edit the report. Finally, it could offer to

compose a reply email to Person1 and attach the final version of the file.

In this chapter, we are interested in work procedures that can provide benefit to

the user either through automatic creation and state tracking or through (partial)

automation. Hence, we make the following assumptions:

• A work procedure is a (weakly) connected graph. We assume that we can

observe (or reconstruct) enough information flow actions so that each work

procedure is a weakly connected graph. This means that every node can be

reached from every other node if we ignore the directions of the information

flow links.

• A work procedure involves at least k = 3 resources. Automatic tracking

of work procedures is likely to be more useful if there are many resources

involved, because users have more difficulty keeping track of the state of

more complex procedures.

• A work procedure involves resources other than emails. A procedure only

consisting of emails is not our focus. First, there are already very good email
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Figure 4.2: Screenshot of TaskTrail displaying a real-case provenance connection.

threading tools that can help users track their work status [Lam et al., 2002].

We believe it is also more difficult for the user to track work procedures

involving different kinds of resources, because this requires working with

multiple application programs.

4.4 Building the Information Flow Graph

We build the information flow graph by utilizing the provenance information col-

lected by TaskTracer and augmenting it with links inferred by analyzing the con-
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tents of resources.

4.4.1 The TaskTracer System and Provenance Information

User’s activities applied to resources are captured by the TaskTracer system [Dragunov

et al., 2005]. TaskTracer is an intelligent activity management system that allows

users to organize and retrieve information based on their activities. TaskTracer

collects various time-stamped user interactions (such as file new, open, save, text

selection, copy/paste, windows focus, web navigation, email read/send, and so on)

in Microsoft Office (Word, Excel, PowerPoint, Outlook), text and pdf files, In-

ternet Explorer, and the Windows operating system. Each interaction generates

events which are stored in a database. TaskTracer associates with each activity

the set of resources accessed when performing that activity. It leverages this data

and machine learning technology [Shen et al., 2007] to configure the desktop to

assist users in organizing and re-finding information.

Recent research [Blanc-Brude and Scapin, 2007] has shown that common search

criteria, such as file modification time and even the document title, are usually

remembered inaccurately. There are other resource attributes that are more easily

remembered by users and could be helpful in re-finding documents. One such

attribute is a resource’s relationship to other resources [Gonçalves and Jorge, 2004;

Blanc-Brude and Scapin, 2007]. Inspired by this and other work, we extended

TaskTracer to capture a variety of provenance actions. These are also published as

events within TaskTracer and recorded in the event database and in a provenance
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database. We have found that even without any further analysis, provenance data

can provide answers to user queries that cannot be obtained in any other way.

For example, a user might want to know such things as “Did I ever email this

Word file to Bob?”, “Did I save this email attachment, and if so, where did I put

it?”, or “What Powerpoint presentations did I copy slides from to produce this

presentation?” We have modified the Windows and Outlook user interfaces so

that the user can right-click on a file or email message and request a “provenance

graph” to be displayed. TaskTrail is the TaskTracer component that displays these

graphs and allows users to interact with them.

A real case using TaskTrail is shown in Figure 4.2. The user could not find

the PowerPoint document he prepared for Alberta. But he remembered that this

document was created from a previous presentation “tasktracer-ibm-v1.ppt” and

he knew where that presentation was located. So he right-clicked “tasktracer-

ibm-v1.ppt” and chose “Show TaskTrail” from the context menu. He instantly

found what he was searching in the provenance graph. The left panel of TaskTrail

visualizes the entry point resource and resources related via provenance (moving

from left to right). The right panel lists all resources contained in the current

provenance relationship. The user can change the display resolution, hover the

mouse over nodes and links to get detailed information, and double-click on nodes

to open resources.
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4.4.2 Inferring Implicit Links

Some important provenance relations are not currently captured by TaskTracer

because the corresponding instrumentation has not been implemented. Hence, for

the data employed in this study, we analyzed the contents of various resources to

reconstruct additional information flow relationships:

• Email threading: if email message X is a reply to or forward of message

Y , we want to create a “reply/forward” link from Y to X. An email thread

is a group of messages that are related by such links. By capturing email

threads, we can connect many resources that seemed unrelated before. Those

threading relationships can be accurately recovered by analyzing the subject

lines and the RFC-822 header fields of email messages (such as Message-ID,

In-Reply-To, References field, and so on).

• Document conversion: many users prefer to convert doc files into pdf files

in order to send them as email attachments. We would like to create a “PDF-

Print” link from this doc file to this pdf file. To capture such connection, we

extract the text contents of each pdf file and compare it to the contents of

doc files. If it matches a doc file, we create a link from this doc file to the

pdf file.

• URL click-through: instead of attaching a file, the user sometimes provides

a URL in the email message and asks the recipient to download the file. If

the user clicks on a URL in an email and opens a website or downloads a file,
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we wish to create a “Click-through/SaveAttachment” link from this email to

the website or the file. For each navigation or download event, we check if

the previous window in focus is the email client. If it is and the opened email

message contains that URL, we create a “Click-through/SaveAttachment”

link.

• Email reference: some email messages contain information about specific

documents. For example, the user might receive an email regarding his paper

submission and asking for a response. There should be a “Reference” link

from this document to the email message. Such email usually contains the

paper title in the email body. We use a pre-trained key value extractor

[Cohen, 2004] and “false positive” regular expressions [Lam et al., 2002] to

extract key words such as document titles in email messages. We define the

first 200 words of a document to be the abstract of that document. If any

key word extracted from the email message appears in the abstract, there is

a potential connection. If an email matches multiple documents (this could

happen when the user edits and saves the document with several versions), we

only create one link from the document which has the closest time distance

to the email.

4.5 Mining Frequent Work Procedures

Given information flow graphs of desktop users, we can infer work procedures by

identifying recurring patterns within these graphs. For computational reasons, we
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do this in two steps. First, we ignore the labels on the links in the graph and

search for frequently-occurring subgraphs. Then, we choose action types for each

edge in the discovered subgraphs by analyzing all instances of those subgraphs to

choose the most frequently-occurring combinations of action types.

4.5.1 Mining Closed Frequent Relations

Our goal is to find closed weakly-connected patterns in the information flow graph

that are frequent (i.e., have at least s instances). A directed graph G is weakly

connected if replacing all of its directed edges with undirected edges will produce a

connected (undirected) graph. The frequency of a pattern graph P is the number

of instances of P in the information flow graph G. A pattern graph P is frequent

if its frequency is greater than or equal to a specified minimum support threshold

s. A frequent pattern P is closed if there is no graph P ′ such that P is a subgraph

of P ′ and they have the same frequency. In this sense, closed patterns are locally

“maximal” patterns that cannot grow any further without losing some instances.

Graph pattern mining [Inokuchi et al., 2002; Yan and Han, 2003; Nijssen and

Kok, 2004] follows the Apriori principle: the support of a subgraph is always no less

than the support of any of its super-graphs. Thus we can first consider frequent

small graphs, and then check whether larger graphs that contain them are still

frequent. There are two general approaches to efficient graph pattern mining [Yan

and Han, 2003]: Apriori-based approaches extend the Apriori-based candidate

generation-and-test approach while pattern-growth approaches grow patterns from
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Figure 4.3: Four occurrences of a frequent pattern. S: SaveAs, C: Copy&Paste, F:
File Copy, R: File Rename.

a single graph directly. Pattern-growth approaches are usually more efficient, since

they avoid some costly operations such as joining two subgraphs into a larger

graph. In this chapter, we extend the Gaston algorithm [Nijssen and Kok, 2004].

Recall that we ignore patterns that consist only of email messages and patterns

that involve fewer than k resources. The remaining closed patterns correspond to

candidate work procedures, except that their arcs are not labeled.

4.5.2 Searching For Frequent Activity Paths

The next step is to assign action type labels to the arcs. In principle, we could

consider all possible action type assignments and score them to see how many

work procedure instances they have. We would then retain only those assignments

that had at least the minimum number of instances. However, there are combina-

torially many possible assignments. Simply picking the most frequent individual

action type for each edge does not necessarily find patterns with many instances.

Figure 4.3 shows an example. If we pick the most frequent activity separately

for each edge, then the labels S, C, and S would be the result. However, pat-

tern (S,C, S) only appears once. Instead, the most frequent assignment should be

(C,C, S), which appears twice.



100

Algorithm 4.1 Search For Frequent Action Label Assignments

Require: P : frequent pattern, O: its occurrences in D
1: A = {〈∅, O〉}
2: for each edge e = u→ v in P do
3: A′ = ∅
4: for each label a appearing between u and v in O do
5: for each set 〈Acts, Occ〉 ∈ A do
6: Search for occurrence set

O′ = {o|Acts ∧ (a ∈ e) ∈ o, o ∈ Occ}
7: if |O′| ≥ the support threshold then
8: A′ = A′ ∪ {〈Acts ∧ (e = a), O′〉}
9: end if

10: end for
11: end for
12: if A′ = ∅ then
13: return fail
14: else
15: A = A′

16: end if
17: end for
18: return all activity paths in A
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We employ a dynamic programming approach, as described in the above al-

gorithm, to search for action assignments that appear no less than the minimum

support threshold in the information flow graph. The complexity of this algorithm

is O(|P | ·m · s) where |P | is the number of edges in pattern P , m is the maximal

number of labels that edges of P have, and s is the largest size of P ’s frequent

action subsets given different numbers of actions. Since m and s are usually small,

this algorithm can efficiently find the frequent action label assignments. Note that

there is a chance that no assignment of action types to the arcs in P can produce

a sufficiently frequent work procedure, in which case we discard P .

4.6 Workflow Recognition with Mined Models

The mined frequent work procedures are then converted into logical Hidden Markov

Models (LHMMs) [Kersting et al., 2006]. We apply those LHMMs for workflow

recognition. The observation is fed into a pool of work procedure instance candi-

dates, each corresponding to a logical Hidden Markov Model. If the probability

that an LHMM is in the “Begin” state is lower than the threshold, then it becomes

“active” and is moved into the pool of active work procedure instances. Meanwhile

a new work procedure instance candidate with the same LHMM will be created and

added into the candidate pool. If an active work procedure instance reaches the

“End” state, it will be removed from the pool of active work procedure instances.
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4.6.1 Converting Work Procedures into LHMMs

Each mined frequent work procedure is converted into one logical Hidden Markov

Model. We create the observation probabilities and transition probabilities accord-

ing to the following:

• Each edge in the work procedure corresponds to a distinct state in the

LHMM. We also create a “Begin” state, an “End” state, and one “Back-

ground” states for each edge. The “Background” states correspond to those

background actions irrelevant to the work procedures.

• All observations are treated as deterministic, as in previous LHMM applica-

tions [Natarajan et al., 2008]. This means that a “SaveAttachment” state

will produce a “SaveAttachment” observation with probability 1, a “SaveAs”

state will produce a “SaveAs” observation with probability 1, and so on.

• For transition probabilities, we generate the transitions based on the training

set of work procedure instances. Given states P and Q, if there is a work

procedure instance in which state Q is reached by an information flow edge

from state P , then we create a transition from state P to state Q. The

probability P → Q is estimated as (N(P → Q) + 1)/(N(P ) + κ), where

N(P ) is the number of occurrences of state P , N(P → Q) is the number of

observed transitions from P to Q and κ is a smoothing factor.

• The probability of staying in the “Begin” state is set to α for all LHMMs,

and the probability of statying in a “Background” state is set to β for all
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SaveAttachment

Begin SaveAs

ReplyTo

AttachDoc

End

(a) Generated LHMM. Each dotted edge can be replaced by the model in Figure 4.4(b).

BackgroundAction

(b) The model corresponding to the “Background” actions.

Figure 4.4: The logical Hidden Markov Model corresponding to “providing com-
ments on a document”.

LHMMs. We set α = 0.9 and the default β = 0.8.

As an example, the work procedure “providing comments on a document” is

converted into the logical Hidden Markov Model shown in Figure 4.4(a).

4.6.2 Tracking the State of Workflows with LHMMs

We integrate the converted logical Hidden Markov Models into the WARP system

[Natarajan et al., 2008] of CALO [SRI, 2009] for workflow recognition. We maintain

two pools of LHMMs. The candidate pool stores the LHMMs that have not been

“activated”. The active pool stores those “active” LHMMs, each corresponding

to a work procedure instance that has executed at least one action but has not

executed all necessary actions and reached the “End” state.



104

There are many kinds of events in the TaskTracer event stream. We make an

inference only if the type of the event matches at least one edge in a mined work

procedure. This is because observations are deterministic, so we can filter out

irrelevant events to improve inference efficiency.

Each valid event is fed into every LHMM in both the candidate pool and the

active pool. If the probability that an LHMM Lc in the candidate pool is in the

state “Begin” is smaller than a specified threshold (the default value is 0.1), then

we conclude that the user has started a work procedure instance corresponding to

Lc. So we move Lc into the active pool. We create another LHMM with the same

structure with Lc and add it into the candidate pool to detect future instances of

this work procedure.

For each LHMM Li in the active pool, we search for the non-background state

ŝi which has the maximal posterior probability given the seen observations. We

let its corresponding probability be Pi. If the largest Pi is larger than a specified

threshold (the default value is 0.5), then we conclude that the user is not executing

a background action. The LHMM with the largest Pi will be predicted as the one

that generated the current observation and the current state is its corresponding

non-background state. Otherwise, we predict that the observation is generated by

a background action.

If the probability that an LHMM La in the active pool is in the state “End”

is larger than a specified threshold (the default value is 0.9), then we conclude

that the user has completed the corresponding work procedure. We remove this

workflow instance from the active pool.
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4.7 Experimental Results

To evaluate our approach, we conducted experiments based on data from real users.

In December, 2007, the TaskTracer system was deployed on Windows machines

at SRI International as part of a 3-day data collection exercise. Four staff mem-

bers participated in an exercise of knowledge work in which they submitted and

reviewed papers for a conference, filed travel documents, and prepared quarterly

reports. These activities were interleaved with other things (e.g., reading online

newspapers). We combined the actions identified through desktop instrumentation

with the additional actions described above to produce information flow graphs for

each user. We manually analyzed the data and identified all of the work procedures

that the users executed. We identified 24 instances of work procedures involving

118 resources and 106 actions.

4.7.1 Accuracy of Mining Work Procedures

We applied our learning algorithm to these information flow graphs to discover

work procedures. We evaluate the results by measuring the extent to which the

discovered work procedures match the manually-identified instances without in-

cluding false steps or omitting steps.

We measure the accuracy of our algorithm in a leave-one-out cross-validation

style. For each person, we hold out his/her data for testing and mine frequent

work procedures from the remaining data. Then we examine the test data and

predict the subgraphs that exactly match the mined models as the work procedure
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Figure 4.5: Part of a user’s resource relationship graph. Shaded circles are received
emails. Non-shaded circles are sent emails. Boxes are non-email resources.

instances. We average the precision and recall values to measure the performance

of our algorithm. Precision is defined as the number of true relevant resources and

actions in the set of detected occurrences divided by the total number of resources

and actions in the set of detected occurrences, and Recall is defined as the number

of relevant resources and actions in the set of detected occurrences divided by

the total number of true relevant resources and actions (which should have been

retrieved by the set of occurrences). We evaluate the algorithms with the F1 score

[Joachims, 2001] which is 2×precision×recall /(precision+recall).

A portion of one user’s resource relationship graph is shown in Figure 4.5. It

contains some interesting work procedures. For example, Email28 from User2 is the
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Figure 4.6: The accuracy of the mined frequent work procedures.
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saved attachment

edited versionreceived email

replied email

Figure 4.7: The discovered most frequent work procedure: edit and return Docu-
ment. The box with a dot inside means zero to multiple “SaveAs” resources.

start of a work procedure asking User1 to comment on User2’s paper and Email19

from User3 is the start of a work procedure asking User1 to make a contribution

to a quarterly report.

Figure 4.6(a) plots F1 as a function of the minimum support threshold of the

discovery algorithm. When the threshold is small, the algorithm falsely treats

many irrelevant resources and actions as work procedures. This produces high

recall but very low precision. As the threshold increases, the number of false

work procedures decreases, since such false procedures don’t happen very often in

the data. The best trade-off between precision and recall is achieved when the

threshold is 3. Our approach successfully discovers most work procedures without

including many false resources or actions.

Figure 4.6(b) plots F1 as a function of the minimum number k of resources that

must be present in the work procedure. When k is small, the algorithm falsely

treats some random patterns as work procedures. This produces low precision.

Most work procedures involve fewer than 6 resources. Thus the recall is very low

when k becomes too large. The best performance is achieved when we require that

a work procedure involves at least 3 resources.
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The most frequent work procedure we discovered was “edit and return a docu-

ment”, as shown in Figure 4.7. In this procedure, the user receives an email with

an attachment, asking him to edit this attachment and return it. So he saves that

attachment and begins editing it. He sometimes uses SaveAs to save the edited

document with a new name. After editing the file, he replies to the original email

message and attaches the edited file. This general work procedure includes at

least two cases: “comment on another person’s paper” and “contribute to CALO

quarterly report”. Other mined work procedures are shown in the Appendix.

4.7.2 Accuracy of Tracking the States of Workflows

We convert the mined work procedures into Logical HMMs and apply those models

to predict the states of the user’s workflows. This includes two problems:

• Is an action part of a work procedure instance or just a background action?

• If it belongs to a work procedure instance, which state is it in?

Again, we evaluate the models with precision and recall: precision is defined as

the number of work procedure states correctly identified by our algorithm divided

by the total number of work procedure states predicted by our algorithm, and

recall is defined as the number of work procedure states correctly identified by

our algorithm divided by the total number of work procedure states (which should

have been predicted).
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The evaluation is carried out online: after we predict the workflow state of the

current observation, the user provides feedback by correcting any errors. The main

purpose of this is to provide a reliable approach to control the number of active

workflows.

With the default threshold values, the performance of our algorithm is the

following:

• Recall: 0.6667

• Precision: 0.913

• F1 score: 0.7706

We set a high threshold to predict if a new work procedure instance starts. The

low recall is mainly caused by the “deterministic” observation rules: most work

procedures start by observing an incoming email message. This depends entirely on

the “receiving email” action and doesn’t analyze the contents of emails at all. As a

result, our method often misses the start of a workflow instance, and the user must

correct this. There are some other things contributing to the low recall: sometimes

there is no information flow connection between the “call for paper” email and the

submitted paper. The users were supposed to follow a workflow in which they

received the call for papers (with a hyperlink to the template), downloaded the

paper template, edited it to create their conference paper, and then submitted it.

However, sometimes users just modified some existing paper and then submitted it.

We could have considered this as an alternative work procedure to be discovered by
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the system, but instead we treated this as an error compared to the gold standard

work procedure. In the future, we also want to design a better rule to determine

if a new work procedure instance has just started. This might be achieved by

analyzing the email content.

4.8 Discussion

The focus of this chapter is on discovering work procedures frequently executed by

users and apply them for workflow recognition. The procedures that we discover

do not contain non-deterministic choices or conditionals (except for the resource-

action chains). The procedures also do not capture partial order constraints on the

steps. One can imagine learning models that include “choice” branches that require

the user to choose one of several paths to reach a goal (which would support op-

tional steps and alternative ways of performing a task) and “parallel” branches that

require the user to finish a set of parallel paths in order to reach a goal [Medeiros et

al., 2003] (which would support partially-ordered actions). With these extensions,

different executions of one procedure could lead to different observations or to ob-

servations occurring in different orders. With enough data, it should be possible

to discover these more complex procedures.

We would also like to integrate our workflow mining and recognition methods

into Towel, a smart To-Do item management system [Conley and Carpenter, 2007].

It currently adopts a programming by demonstration approach [Lau et al., 2003;

Gervasio et al., 2008] to learn the user’s workflow model. It then uses those models
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to monitor the progress of the user’s workflows. We can reduce the user’s burden

by applying our automatic workflow model mining approach.
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Chapter 5 – Conclusion and Discussion

5.1 Summary of Contributions

This dissertation has proposed a set of approaches to recognizing activities. We

classify activities into three levels. At the highest level is the kind of weak activity

model that TaskTracer [Dragunov et al., 2005] has: an activity is a collection

of “resources” (web pages, folders, documents, email messages, email contacts).

Typical examples are “Advising student YY”, “Project ZZ”, and so on. We call

such activities tasks. The next level is a kind of workflow model. A workflow

can be thought as a “To-Do” item, consisting of several steps with some temporal

constraints. A workflow usually involves an initiation (typically the receipt of an

email message with some information such as a URL or an attached file and a

request or command), a partially-ordered sequence of steps, and a termination.

The “task” above usually consists of several workflows. The third level is the

functional operation, such as retrieving a paper, saving a file in the “reading”

folder, and printing a copy of a file, and so on. A workflow usually consists of

several operations. In this thesis, we focus on recognizing the higher levels of

activity – “task” and “workflow”.

This research is partially motivated by the user requirements of TaskTracer.

TaskTracer is an intelligent activity management system [Kaptelinin, 2003] that
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helps knowledge workers manage their work based on two assumptions: (a) the

user’s work is organized as a set of ongoing tasks, and (b) each task is associ-

ated with a set of resources. TaskTracer collects events generated by the user’s

computer-visible behavior, including events from MS Office, Internet Explorer,

Windows Explorer, and the Windows XP operating system. The user can declare

a “current task”, and TaskTracer records all resources as they are accessed and

associates them with the current declared task. TaskTracer then configures the

desktop in various ways to support the user based on the task-resource associa-

tions.

We presented two learning systems for predicting the current task of the user.

The first system is called TaskPredictor, which predicts the user’s current task

based on the title and document pathname (or URL) of the window currently in

focus. It applies three machine learning techniques in order to “do less” but do it

correctly: 1) feature selection via mutual information, 2) a threshold for making

classification decisions, and 3) a hybrid approach in which a generative model

(Naive Bayes) is first applied to decide whether to make a prediction and then

a discriminative model (linear support vector machines) is applied to make the

prediction itself. To reduce false alarms, we proposed to make our decision based

on multiple informative observations—observations exhibiting one or more of the

200 most informative features. We tested this framework in the TaskTracer system

and compared three switch metrics, each computed from information produced by

a learned Single Window Classifier (SWC).

The second system described in this thesis is TaskPredictor2, a novel task-



115

switch predictor for the desktop environment. Its user interface displays task

switches on a time line that shows accessed resources. This gives the user contex-

tual hints and makes it easy for the user to adjust the time at which a task switch

(declared or predicted) actually occurred. Instead of simply reminding the user

about the switch, it allows the user to edit the task switch history and thereby

adjust resource-task associations. The learning component exploits rich contextual

information, including both task-specific features and switch-specific features, to

predict task switches. The predictor parameters are trained via a novel online

learning algorithm. This algorithm is more accurate, more efficient in memory,

and runs 180 times faster than our previous method applied in TaskPredictor.

We also investigated how to estimate the states of the executed workflows. In

order to do this, we need a set of workflow models. Traditionally, researchers

address this problem by providing easy ways for users to define the workflow pro-

cedures themselves (e.g., CoScripter [Leshed et al., 2008]). This thesis investigated

how to discover a special kind of workflow model – work procedures from the user

desktop activity. A work procedure is defined as a directed labeled graph, with

nodes corresponding to the resources involved and edges corresponding to the ac-

tions executed. To discover work procedures frequently executed, we first built

an information flow graph of resources based on the provenance information cap-

tured by TaskTracer (and manually extended by analyzing resource content). We

then applied a two-phase algorithm to find frequently-occurring work procedures

in these graphs. The mined models were converted into logical Hidden Markov

models [Kersting et al., 2006] for workflow recognition. Experimental results show
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that our approach can accurately discover almost all of the known work procedure

instances without introducing many false work procedures.

5.2 Future Work

I have tried hard to make machine learning systems practical in the real world. In

the future, there are many interesting research problems that I like to explore.

5.2.1 Unsupervised Version of TaskTracer

In the current version of TaskTracer, we rely on the user to define a set of tasks.

Then the user declares the current task and TaskTracer monitors the events hap-

pening in the desktop. By building associations between resources and tasks, we

aggregate resources into a set of groups, i.e., “tasks”. In the future, I would like

to explore how to aggregate resources into clusters without explicitly defining any

task.

Researchers have tried to automatically cluster resources into activities (e.g.,

[Mitchell et al., 2006]). Such approaches are usually carried out by analyzing

the resource content and assigning resources with the similar content to the same

cluster. By monitoring the events happening in the desktop, we can do a much

better job than content analysis. For example, if the user copies and pastes some

content from resource A to resource B, then it is a strong indicator that A and B

might belong to the same cluster. If resource A is accessed just after B is accessed,
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it is also a strong indicator that they might belong to the same cluster.

5.2.2 Natural Communications between Users and Computers

I am also interested in investigating new human-computer-interaction solutions for

knowledge workers. Desktop users have to handle thousands of files (documents,

pictures, video clips, and so on.). It is desirable that an intelligent personal as-

sistant helps the user find the information in a shorter time and in an easier way

than current desktop search tools.

To find the resource they want, users typically conduct a search using desktop

tools. However, such search tools cannot search based on the meaning of the

resources. For example, “I want to find some pictures in which my friends and

I appear and I am smiling”. As a very first step, we can support an easy way

for the user to annotate the resources and then analyze the semantic meaning

of those annotations. Then we can analyze the user’s search query and map to

the corresponding resources. Such annotations also provide some “unstructured”

labels for the resources. It would be interesting to abstract keywords from the

annotations and train some classifiers to automatically assign annotations to new

resources.
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5.2.3 Personalizing the Notification

When to interrupt the user and issue the switch alert is important: the user

could be busy doing something when the system is confident about a task switch.

The interruption cost can be very high. Thus, we should defer the alert to an

appropriate time when the user is interruptible. Different users have different

working habits, and their tolerance to interruptions can be quite different.

Currently, the system uses simple rules to control when to issue the switch

alert. It does not fit different users’ requirements. We can make the notification

controller adaptive by applying reinforcement learning technology. The notifica-

tion control problem can be readily formalized as a Partially Observable Markov

Decision Process (POMDP) [Monahan, 1982; Cassandra et al., 1994].

To succeed in practice, the system must employ a strong initial policy, and

must efficiently exploit the sparse data. We can initialize the policy with other

users’ data. We can rely on a parametric form of the value function. We can

compute the gradient with respect to the parameters of the average reward, and

then improve the policy by adjusting the parameters in the gradient direction. Such

policy gradient search methods have been shown to be very effective in finding good

policies [Baxter and Bartlett, 2001; Ng et al., 2004].

There have been some works attempting to employ Markov Decision Process

models to design intelligent assistants (e.g., [Singh et al., 2002; Rudary et al., 2004;

Shani et al., 2005; Boger et al., 2005; Fern et al., 2007a]). When reinforcement

learning is applied, they typically adopt Q-Learning because of its simplicity. For
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adaptive user interfaces, we will need a more efficient learning algorithm that can

learn a reasonable policy within a limited number of trials.

5.2.4 Avoiding Unnecessary Inference Computations

In most machine learning settings, the system first computes all necessary feature

values and then makes inferences based on them. However, it is not really necessary

to compute all feature values: usually the decision can be made based on a small

subset of the feature values. For an interactive intelligent desktop application, we

need a very efficient inference method that can avoid unnecessary computations as

much as possible.

If we use decision trees as the learning algorithm, the problem is simple: we first

compute the value of the root splitting condition, and then go to the corresponding

child. We continue compute the value of the node splitting conditions until we

reach a leaf. When we adopt the kernel methods such as SVMs, the problem

becomes more complicated. The SVM learns a decision boundary as the decision

tree does, however it is more difficult to determine which features are relevant

when making decisions (with kernelized SVMs). One approach is to convert this

decision boundary into a set of nested decision rules, so the expected count of

feature value computations is minimal. Another approach is to treat the inference

process as a functional expression, and use the optimization technique of functional

programming languages to avoid unnecessary computations [Asperti and Guerrini,

1998].
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5.2.5 Using Active Sequential Learning to Reduce Noise

To collect the labeled training data, we rely on the user to indicate the task by

selecting the task name from a special drop-down box, and it’s likely that the

user sometimes will forget to do this, especially in a busy time period. This will

make the labeled data quite noisy and lead to poor predictions. To reduce the

noise in the training data, previously we employed an active EM algorithm that

combines the EM algorithm and active learning [Shen and Dietterich, 2007]. This

can significantly improve the prediction precision. However, this algorithm is based

on the i.i.d assumption. We could improve its performance even further if we could

exploit sequential information.

There has been some work on active sequential learning [Anderson and Moore,

2005; Culotta and McCallum, 2005]. These approaches ask the user to label a

specific instance or an entire sequence. We can also ask the user to indicate whether

two instances belong to the same segment. Such queries usually require much

less effort from the user: the user just needs to answer yes or no, instead of

contemplating the real labels of instances.

5.2.6 Transferring Other Users’ Data

Knowledge workers usually have similar working patterns, especially if they are in

the same group and working on the same project. Currently, our intelligent system

only utilizes an individual user’s personal data and just ignores other users’ data.

We could improve the system’s performance by exploiting other users’ data.
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As a use case, we can think about the notification controller: the system should

decide an appropriate time when the user is interruptible to issue the switch alert.

If we adopt the reinforcement learning approach, the system must learn an appro-

priate policy quickly enough to succeed in practice. The simplest solution is to use

the policy learned from other users’ data as the initial policy, and then update it

as usual. We can also try a hierarchical Bayesian approach: we can assume the

optimal policy for each user is generated from a “parent policy”, and update our

belief about a specific user’s optimal policy according to the data seen so far.



122

APPENDICES



123

Proof of Lemma 1

Proof The Lagrangian of the optimization problem in (3.2) is

L(Λ, ξ, τ) =
1

2
‖Λ − Λt‖2

2 + Cξ2 +
α

2
‖Λ‖2

2

+τ(1 − Λ · Zt − ξ), (1)

where τ ≥ 0 is the Lagrange multiplier. Differentiating this Lagrangian with

respect to the elements of Λ and setting the partial derivative to zero gives

Λ =
1

1 + α
Λt +

τ

1 + α
Zt. (2)

Differentiating the Lagrangian with respect to ξ and setting the partial derivative

to zero gives

ξ =
τ

2C
. (3)

Expressing ξ as above and replacing Λ in Eq 1 with Eq 2, the Lagrangian becomes

L(τ) =
1

2

∥∥∥∥ τ

1 + α
Zt − α

1 + α
Λt

∥∥∥∥
2

2

+
τ 2

4C

+
α

2

∥∥∥∥ τ

1 + α
Zt +

1

1 + α
Λt

∥∥∥∥
2

2

+ τ

(
1 − Λt · Zt

1 + α
− τ ‖Zt‖2

2

1 + α
− τ

2C

)
.
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By setting the derivative of the above to zero, we get

1 − τ

2C
− τ

1 + α
‖Zt‖2

2 −
(Λt · Zt)

1 + α
= 0 (4)

⇒ τ =
1 − (Λt · Zt) + α

‖Zt‖2
2 + 1+α

2C

. (5)

Combining Eq 2 and Eq 5, completes the proof.

Proof of Theorem 1

Proof Let ∆t = ‖Λt − u‖2
2 − ‖Λt+1 − u‖2

2. We can prove the bound by lower and

upper bounding
∑

t ∆t.

Since Λ0 is a zero vector and the norm is always non-negative,
∑

t ∆t =

‖Λ0 − u‖2
2 − ‖ΛT − u‖2

2 ≤ ‖Λ0 − u‖2
2 = ‖u‖2

2.

Obviously, only if t ∈ IT , ∆t �= 0. We will only consider this case here. Let

Λ′
t = Λt + τtZt, Λt+1 = 1

1+α
Λ′

t. ∆t can be rewritten as

(‖Λt − u‖2
2 − ‖Λ′

t − u‖2
2) + (‖Λ′

t − u‖2
2 − ‖Λt+1 − u‖2

2)

= δt + εt. (6)
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We will lower bound both δt and εt. Let ψ2 = (1 + α)/2C. For δt, we have

δt = ‖Λt − u‖2
2 − ‖Λt + τtZt − u‖2

2 (7)

= ‖Λt − u‖2
2 − ‖Λt − u‖2

2

− 2τtZt · (Λt − u) − ‖τtZt‖2
2 (8)

≥2τt�t − 2τt�
∗
t − τ 2

t ‖Zt‖2
2 (9)

≥2τt�t − 2τt�
∗
t − τ 2

t ‖Zt‖2
2 − (ψτt − �∗t/ψ)2 (10)

=2τt�t − τ 2
t (‖Zt‖2

2 + ψ2) − (�∗t )
2/ψ2. (11)

We get Eq 10 because (ψτt − �∗t/ψ)2 ≥ 0. Plugging the definition of τt and

considering �t ≥ 1, we get

δt ≥ �2t − α2

‖Zt‖2
2 + 1+α

2C

− 2C

1 + α
(�∗t )

2 (12)

≥ 1 − α2

R2 + 1+α
2C

− 2C

1 + α
(�∗t )

2. (13)

For εt, we have

εt =(1 − 1

(1 + α)2
) ‖Λ′

t‖2
2 − 2(1 − 1

1 + α
)Λ′

t · u. (14)

Using the fact that ‖u− v‖2
2 ≥ 0 which equals to ‖u‖2

2 − 2u · v ≥ −‖v‖2
2, we
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get

(1 − 1

(1 + α)2
) ‖Λ′

t‖2
2 − 2(1 − 1

1 + α
)Λ′

t · u (15)

≥− 1 − 1
1+α

1 + 1
1+α

‖u‖2
2 = − α

2 + α
‖u‖2

2 . (16)

Using Eq 13 and 16, we get

T∑
t=0

∆t =
∑
t∈IT

∆t (17)

≥
∑
t∈IT

(
(

1 − α2

R2 + 1+α
2C

− 2C

1 + α
(�∗t )

2) − α

2 + α
‖u‖2

2

)
(18)

=m(
1 − α2

R2 + 1+α
2C

− α

2 + α
‖u‖2

2) −
∑
t∈It

2C

1 + α
(�∗t )

2 (19)

≥m(
1 − α2

R2 + 1+α
2C

− α

2 + α
‖u‖2

2) −
2C

1 + α

T∑
t=0

(�∗t )
2. (20)

Since
∑

t ∆t ≤ ‖u‖2
2, we have

m(
1 − α2

R2 + 1+α
2C

− α

2 + α
‖u‖2

2) −
2C

1 + α

T∑
t=0

(�∗t )
2 ≤ ‖u‖2

2 . (21)

Since h = 1−α2

R2+ 1+α
2C

− α
2+α

‖u‖2
2 > 0, we get the result in the theorem.
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Mined Work Procedures

There are five work procedures that can be reliably discovered in the leave-one-

out cross-validation style:

saved attachment

edited versionreceived email

replied email

Figure 1: The discovered frequent work procedure: edit and return Document. The
box with a dot inside means zero to multiple “SaveAs” resources. User Person1
receives an email with an attachment, asking him/her to edit this attachment
and return it. So Person1 saves that attachment and begins editing it. Person1
sometimes uses SaveAs to save the edited document with a new name. After editing
the file, Person1 replies to the original email message and attaches the edited file.

a doc needing comments
exchanged email

sent email replied email

saved attachment

Figure 2: The discovered frequent work procedure: request comments from an-
other user. The box with a dot inside means zero to multiple exchanged email
messages. User Person1 attaches a document to an email message and sends it
to user Person2. Person1 might exchange several email messages with Person2
regarding the document. After the final feedback comes in, Person1 saves it into
the right folder.
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paper draft

edited versionCFP email

converted PDF file review feedback result notification

submission email

Figure 3: The discovered frequent work procedure: submit a paper to a conference.
User Person1 receives a CFP email. So Person1 prepares a doc file and then
converts it into a pdf file. Person1 then submits the pdf file through email. He/She
will receive an email message asking for the feedback regarding the review and an
email message regarding the final decision.

attached paper

review notereview request

submission receipt

Figure 4: The discovered frequent work procedure: provide reviews on a paper.
User Person1 receives an email asking him/her to provide reviews on the attach-
ment. Person1 saves this pdf file and creats a doc file to write down the reviews.
A notification email will be sent out once Person1 submits the reviews.

CFP email

submission email

saved paper

Figure 5: The discovered frequent work procedure: call for papers. User Person1
sends out an email message, calling for papers. When the submission comes in,
Person1 saves the attached pdf file into the right folder.
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