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Abstract

We consider the problem of learning heuristics for
controlling forward state-space beam search in Al
planning domains. We draw on a recent framework
for “structured output classification” (e.g. syntac-
tic parsing) known as learning as search optimiza-
tion (LaSO). The LaSO approach uses discrimi-
native learning to optimize heuristic functions for
search-based computation of structured outputs and
has shown promising results in a number of do-
mains. However, the search problems that arise in
Al planning tend to be qualitatively very different
from those considered in structured classification,
which raises a number of potential difficulties in di-
rectly applying LaSO to planning. In this paper, we
discuss these issues and describe a LaSO-based ap-
proach for discriminative learning of beam-search
heuristics in Al planning domains. We give conver-
gence results for this approach and present experi-
ments in several benchmark domains. The results
show that the discriminatively trained heuristic can
outperform the one used by the planner FF and an-
other recent non-discriminative learning approach.

Introduction

ported successes. While there has been a substantial body
of work on learning heuristics or value functions to control
search, e.g[Boyan and Moore, 2000; Zhang and Dietterich,
1995; Buro, 1998 virtually all such work has focused on
search optimization problems. These problems involve find-
ing “least cost” configurations of combinatorial objects and
have a much different flavor than the types of domains en-
countered in benchmarks from Al planning. To our knowl-
edge, no such previous system has been demonstrated on
benchmark domains from Al planning.

Recent worK Yoon et al., 2004 has made progress toward
learning heuristics for planning domains. The work focused
on improving the heuristic used by the state-of-the-art planner
FF [Hoffmann and Nebel, 2001 In particular, the approach
used linear regression to learn an approximation of the differ-
ence between FF’s heuristic and the observed distances-to-
goal of states in the training plans. The primary contribution
of the work was to define a generic knowledge representa-
tion for features and a features-search procedure that allowed
learning of good regression functions across a range of plan-
ning domains. While the approach showed promising results,
the learning mechanism has a number of potential shortcom-
ings. Most importantly, the mechanism does not consider
the actual search performance of the heuristic during learn-
ing. That is, learning is based purely on approximating the
observed distances-to-goal in the training data. Even if the

A number of state-of-the-art planners are based on théearned heuristic performs poorly when used for search, the

old idea of forward state-space heuristic sedi8bnet and
Geffner, 1999; Hoffmann and Nebel, 2001; Nguyetnal.,

learner makes no attempt to correct the heuristic in response.
In this paper, we consider a learning approach that tightly

2004. The success is due to the recent progress in definingouples learning with the actual search procedure, iteratively
domain-independent heuristic functions that work well acrossipdating the heuristic in response to observed search errors.
a range of domains. However, there remain many domainghis approach is discriminative in the sense that it only at-
where these heuristics are deficient, leading to planning failtempts to learn a heuristic that discriminates between “good”
ure. One way to improve the applicability and robustness ofind “bad” states well enough to find the goal, rather than at-
such planning systems is to develop learning mechanisms thigmpting to precisely model the distance-to-goal. In many
automatically tune the heuristic to a particular domain base@reas of machine learning, such discriminative methods have
on prior planning experience. In this work, we consider thebeen observed to outperform their non-discriminative coun-
applicability of recent developments in machine learning toterparts. A main goal of this work is to demonstrate such
this problem. In particular, given a set of solved planningbenefits in the context of planning.
problems from a target domain, we consider using discrim- Our learning approach is based on the recent framework
inative learning techniques for acquiring a domain-specificof learning as search optimization (LaS{Daume Il and
heuristic for controlling beam search. Marcu, 2005, which was developed to solve “structured out-
Despite the potential benefits of learning to improve for-put classification” problems. Such problems involve map-
ward state-space planning heuristics, there have been few rping structured inputs (e.g. sentences) to structured outputs



(e.g. syntactic parses) and classification can be posed as psmall width beam search to the same solutions. The hope is
forming a search over candidate outputs guided by a heurighat the learned heuristic will then quickly solve new prob-
tic. LaSO provides an approach for discriminative learninglems that could not be practically solved prior to learning.
of such heuristics and has demonstrated good performance Heuristic Representation.We consider learning heuristic
across several structured classification problems. Howevefunctions that are represented as linear combinations of fea-
the search problems corresponding to structured classificadres, i.e.H(n) = X,w; - f;(n) wheren is a search nod¢; is
tion are qualitatively very different from those typical of Al a feature of search nodes, amglis the weight of featurd;.
planning domains. For example, in structured classificatiorOne of the challenges with this approach is defining a generic
the search problems typically have a single or small numbefeature space from which features are selected and weights
of solution paths, whereas in Al planning there are often are learned. The space must be rich enough to capture im-
very large number of equally good solutions. Given theseportant properties of a wide range of domains, but also be
differences, the utility of LaSO in our context is not clear.  amenable to searching for those properties. For this purpose
The main contributions of this paper are to describe ave will draw on prior work[Yoon et al, 2004 that defined
LaSO-inspired algorithm for learning beam-search heuristicssuch a feature space, based on properties of relaxed plans,
to prove the convergence of the algorithm, and to provide amnd described a search approach for finding useful features.
empirical evaluation in a number of Al planning domains. In this investigation, we will use the features from that work
Our empirical results show that the approach is able to learim addition to using the relaxed-plan length heuristic.
heuristics that improve beam-search compared to using the The approach ofYoon et al, 2006 used a simple weight
heuristic from the planner FF. In addition, the results showlearning method, where weights were tuned by linear regres-
that discriminative learning appears to have an advantage oveion to predict the distance-to-goal of search nodes in the
the existing non-discriminative approach. training set. While this approach showed promise, it is obliv-
In what follows, we first give our problem setup for learn- ious to the actual performance of the heuristic when used for
ing planning heuristics. Next, we give an overview of the search. In particular, even if the heuristic provides poor guid-
LaSO framework for structured classification, followed by aance for search on the training problems no further learning
description of our LaSO variant and convergence analysis. Fiwill occur. The main objective of this work is to improve per-
nally, we present experiments and conclude. formance by investigating a more sophisticated weight learn-
ing mechanism that is tightly integrated with the search pro-
2 Learning Planning Heuristics cess, iteratively adapting the heurisjtic in response to observed
search errors. Below we first describe prior work from struc-
Planning Domains. A planning domainD defines a set of tured classification upon which our approach is based, and
possible actionsAd and a set of stateS in terms of a set of then describe its adaptation to our setting.
predicate symbolg>, action typesY’, and constantg’. A
state fact is the application of a predicate to the approprialg | earning Heuristics for Structured
number of constants, with a state being a set of state facts. Classification
Each actioms € A consists of: 1) an action name, which is
an action type applied to the appropriate number of constantStructured classification is the problem of learning a map-
2) a set of precondition state facts Rrg 3) two sets of state  ping from structured inputs to structured outputs. An example
facts Adda) and Del(a) representing the add and delete ef- problem is part-of-speech tagging where the goal is to learn a
fects respectively. As usual, an actiois applicable to a state  mapping from word sequences (i.e. sentences) to sequences
s iff Pre(a) C s, and the application of an (applicable) action of part-of-speech tags. Recent progress in structured classi-
a to s results in the new staté = (s \ Del(a)) U Add(a). fication includes methods based on condition random fields
Given a planning domain, a planning problem is a tuple[Lafferty et al, 2001, Perceptron updatd€ollins, 2002,
(s,A,g), whereA C Ais a set of actionss € S is the ini-  and margin optimizatiofiTaskaret al, 2003.
tial state, andy is a set of state facts representing the goal. A recent alternative approaclDaume Il and Marcu,
A solution plan for a planning problem is a sequence of ac2003 views structured classification as a search problem and
tions(ay,...,a;), where the sequential application of the se-learns a heuristic for that problem based on training data. In
quence starting in statdeads to a goal staté whereg C s’.  particular, given a structured input the problem of labeling
In this paper, we will view planning problems as directedz by a structured outpuj is treated as searching through an
graphs where the vertices represent states and the edges remeponentially large set of candidate outputs. For example, in
sent possible state transitions. Planning then reduces to graplart-of-speech tagging whereis a sequence of words and
search for a path from the initial state to goal. y is a sequence of word tags, each node in the search space
Learning to Plan. We focus on learning heuristics in the is a pair(z,y’) wherey’ is a partial labeling of the words in
simple, but highly successful, framework of forward state-z. Learning corresponds to inducing a heuristic that quickly
space search planning. Our goal is to learn heuristics thatirects search to the search nadey) wherey is the de-
can quickly solve problems using breadth-first beam searchired output. This framework, known &sarning as search
with a small beam width. Given a representative trainingoptimization (LaSO), has demonstrated state-of-the-art per-
set of problems from a planning domain, our approach firsformance on a number of structured classification problems
solves the problems using potentially expensive search amahd serves as the basis of our work.
then uses the solutions to learn a heuristic that can guide a LaSO assumes a feature-vector functidi(n) =



(fi(n),..., fm(n)) that maps search nodes to descriptivegorithm under certain assumptions about the structure of the
features. For example, in part-of-speech tagging, the featuresnultiple good solutions relative to the target solution.

may be indicators that detect when particular words are la- Below we describe a variant of LaSO used in our p|anning
beled by particular tags, or counts of the number of times arxperiments. Our variant is based on the use of breadth-first
article-tag was followed by a noun-tag in a partial labelingheam search, which is not captured by the original LaSO and
y/. The heuristic is a linear combination of these feature&hat we found to be more useful in the context of p|anning_
H(n) = F(n) - w, wherew is a weight vector. LaSO at- e will refer to the modified procedure as LaSO

tempts to select & that guides search to the target solution  goam search.In breadth-first beam search. a be#hof

by directly integrating learning into the search process. FOpeam widthp is generated at each search ste,p resulting in a
each training example, LaSO conducts a search guided by the, - .. o# nodes. At each step, all of the nodes on the cur-

heuristic given by the current weights. Whenever a “searchgn heam are expanded and the taghildren, as scored by
error” is made, the weights are updated so as to avoid thg\e heritic, are taken to be the next beam. This process
same type of error in the future. The process repeats untE-‘ontinues until a goal node appears on the beam, at which
convergence or a stopping conditions. Convergence resulg,int 5 solution plan has been found. When the beam width
have been _state[Daume lll and Marcu, 200Sfor certain is small, many nodes in the search space are pruned away, of-
types of weight updates. ten resulting in the inability to find a solution or finding very
sub-optimal solutions. When the beam width increases, the

4 Learning Heuristics for Planning quality of the solutions tend to improve, however, both the

. ) L time and space complexity increases linearly with the beam
Given the success of LaSO in structured classification, ifyigth, leading to practical limitations. The goal of our work
is interesting to consider its applications to a wider ranggs g |earn a domain-specific heuristic that allows for beam
of search problems. Here we focus on search in Al plansearch with smalb to replicate the result of using a large
tnl_ng. IRecaII thatbclJur “Ieatrr?ltng tot p""l‘”:_ tra'”'_?ﬁ_ set Cb?n_ This can be viewed as a form of speedup learning.
ains planning problems with target solutions. This problem . . . . . . .
can be viewed as structured classification with a training se% (5'593'?:)??;?;3\%223" Ih& Inp;jtistoaotl;;ilr?i?l;n?):(;%% rsnet
{(xs,5:)}, where eachr; = (s, g) is a planning problem ¢} %ﬁe target pianning aomai?{ g@d = (80,81,--,57)

:nsilizgrr?iplzn(fg&s-l’Wésgz;nlic?wsggxgigg gg)&tjazsl_ﬂgg is a state sequence corresponding to a solution plam;for
A X ur training procedure will attempt to find weights such that
to learn a heuristic that guides a forward state-space search %’r each pr%k?lem the¢'th state in thpe solution isgcontained in
fmsvthhle ;olutloryi fOT gachxi: hif d lanni the j'th beam of the search. A search error is said to occur
lle in concept it s straightforward to map planning 10 \,nanever this is not the case. Figure 1 gives pseudo-code

the LaSO framework, it is not so obvious that the approach, o verall learning approach. The top-level procedure

W'ILYVO{ k well. ;— his is bec da_l#se tqe ﬁearc? p_rct)_blems arISIngrepeatedly cycles through the training set passing each exam-
In 7\l planning have very dilferent characteristics compare ple to LaSO to arrive at updated weights. The procedure

to those tackled by LaSO so far. Most notably, there are typizominates when the weights remain unchanged after cycling
cally a large number of good (even optimal) solutions to an

ythrough all examples or a user defined stopping condition.

given planning problem. These solutions may take very dif- ~ _. -
ferent paths to the goal or may result by simply reordering the C!VEn a training examplér;, y;), LaSO conducts a beam

steps of a particular plan. For example, in the Blocks world S€8rch starting with the initial beafiiz;, (s))}, i.e. a sin-

in any particular state, there are generally many possible goo%‘efsiamh no%e _‘%VL'Ih an empty plan. After _generatlnghbeam
next actions as it does not matter which order the various god] ©' isearc ; ™ = (xivr(]s()’ 51, " ﬁ.ﬂ')) IS not on tde H
towers are constructed. Despite the possibility of many goo@€aM then we have a search error. In this case, we update the

solutions, LaSO will attempt to learn a heuristic that strictly\’_Veiglhts in a way that makes™ more preferred by the heuris-

prefers the training-set solutions over other equally good soli¢: ideally enough to remain on the beam next time through

lutions that are not n the training set. This raises the potentiaf€ Séarch. We use a weight updating rule, similar to the Per-
for the learning problem to be impossible to solve or very dif-ceptron update proposed [Daume 11l and Marcu, 2005
ficult since many of the other good solutionsatpmay be
inherently identical tay;. In such cases, it is simply not clear >oner F(n) .
whether the weights will converge to a good solution or not. w=wto (T —F(n ))

One approach to overcoming this difficulty might be to in-
clude many or all possible solutions in the training set. In where0 < a < 1is a learning rate parametdr,(n) is the
general, this is not practical due to the enormous number dieature vector of search nodeandB is the current beam. In-
possible good plans, though studying methods for computinguitively this update rule moves the weights in a direction that
compact representations of such plan sets and using them decreases the heuristic value (increase the preference) of the
LaSO is of interest. Rather, in this work we continue to usedesired search node€* and increases the heuristic value for
a single target solutions and evaluate an algorithm very mucthe nodes in the beam. After the weight update, the beam is
like the original LaSO, noting the potential practical prob-replaced by the single search nadeand the search contin-
lems that might arise due to multiple solutions. Interestingly,ues. Note that each call to LaS® guaranteed to terminate
below we are able to derive a convergence result for this alin 7' search steps, generating training examples as necessary.



HeuristicLearn ({(xi,y:)}, b)
w «— 0
repeatuntil w is unchangedr a large number of iterations
for every(x;, y:)
LaSO™ (w4, yi), w, b)
return w

LaSO* ((z,y), w, b)
I z is a planning problenfsg, g)
I y is a solution trajectorysg, s1, . . .
I/l w current weight vector
B «— {(z, (s0))} /'initial beam
forj=0,...,T—1
B «— BeamExpand B, w, b)
n* «— (z, (s1,...,s541)) /l desired node
if n* ¢ Bthen
w « Update(w, B, n™)
B — {n*}

,8T)

BeamExpand(B, w, b)
candidates— {}
for everyn € B
candidates— candidatels Successorg)
for everyn € candidates
H(n) < w - F(n) Il compute heuristic score of n
return b nodes in candidates with lowest heuristic value

Figure 1: The discriminative learning algorithm.

5 Convergence of LaSO
We now prove that under certain assumptions La@uar-

with width b > &’ using weightav will solve all of the train-

ing problems. The case whebé = 0 corresponds to the
more typical definition of margin (also used by the original
LaSO), where the target is required to be ranked higher than
all other nodes. By considering the case whigre- 0 we

can show convergence in cases where no such “dominating”
weight vector exists, yet there are weight vectors that allow
search to correctly solve the training problems. The following
theorem shows that if LaSQuses a large enough beam width
relative to the beam margin, then it is guaranteed to converge
after a finite number of mistakes.

Theorem 1. If there exists a weight vectaw, such that
|lw]| = 1 andw has beam margii’, §;, d2) on the training

set, then for any beam width> (1 + g—f) b, the number of

2
mistakes made by LaS@ bounded b)(ﬁ) :

Proof. (Sketch) Letw* be the weights before thg'th mis-
take is made. Themnw! = 0. Suppose the’th mis-
take is made when the beam at depth;j does not con-

tain the target node:” = nj;. Using the fact that for
n € B, w* - F(n*) > wF - F(n), one can derive that

lwkH|? < [lw*||? + R?%, which by induction implies that

anteed to converge in a finite number of iterations to a set ofw"*!||? < kR2. Next, using the definition of beam margin

weights that solves all of the training examples. In particu-one can derive that - wk+! > w - wk + (b—% —
lar, we extend the convergence results of the original LaSO to
the case of “multiple good solutions”. The proof is a simple
generalization of the one used to prove convergence of pel?9

ceptron updates for structured classificafiGollins, 2003.

Consider a set of training problenfs;, y;), wherex;
(so,9) andy; = (so, s1,...,sr). Foreachx;,y;) we denote
by ’I’Lz} = (.’EZ', (8()7 ey
path at deptly for examplei. Also let D;; be the set of all
nodes that can be reachedjisearch steps from;,. That is,

D;; is the set of all possible nodes that could be in the bea

afterj beam updates. In our result, we will IBtbe a constant
suchthavi, j,Vn € D;;, [|[F(n)—F(nj;)|| < RwhereF(n)
is the feature vector of nodeand|| - || denotes 2-norm.

Our results will be stated in terms of the existence of

weight vector that achieves a certain margin on the trainingp,o mistake b

weight vector that ranks the target solutions as strictly bestyoreases
i.e. there can be other solutions that look just as good or betyq intuitio

ter. As defined below &eam margin is a triple (b, 1, d2)
whereb’ is a non-negative integer, aag, 5, > 0.

Definition 1 (Beam Margin). A weight vectorw has beam
margin (b', 41, d2) on a training set{(z;, y;)} if for eachi, j
thereis a seDQj C D;; of size at mosk’ such that
Vn € DLJ — D;J s
Vn € ng ,

w- F(n) —w- F(nj;) > 6 and,
0 >w-F(n)—w-F(nj;) > —d
Weight vectorw has beam margi(’, 61, d») if at each search

depth it ranks the target nods; better than most other nodes

by a margin of at leasi;, and ranks at modt nodes bet-
ter thann}; by a margin no greater thafz. Whenever this

s;)) the node on the desired search

b'sy
b 1

Which implies thatw - wh+l > =80=%  compin-

these inequalities and noting tHQbW = 1 we get that

1> I\w\l.\lluuf:ll\ > k(b_bliz}%;b/‘;‘z, implying the theorem. OJ

Notice that whery’ = 0, i.e. there is a dominating weight

2
vector, the mistake bound reduces| tg) , which does not
depend on the beam width and matches the result stated in

nLDaume Il and Marcu, 2005 This is also the behavior when

b >> b'. In the case whet, = J, and we use the minimum
beam width allowed by the theoretn= 20’ + 1, the bound

’ 2
is W) , Which is a factor of(2v’ + 1)? larger than
8whenb >> b'. Thus, this result points to a trade-off between

ound and computational complexity of LASO
computational complexity of each iteration in-

as the beam width becomes large. This agrees with
n that the more computation time we are willing to
put into search at planning time, the less we need to learn.

6 Experimental Results

We present experiments in five STRIPS domains: Blocks
world, Pipesworld, Pipesworld-with-tankage, PSR and
Philosopher. We set a time cut-off of 30 CPU minutes and
considered a problem to be unsolved if a solution is not found
within the cut-off. Given a set of training problems we gener-
ated solution trajectories by running both FF and beam search
with different beam widths and then taking the best solution
found as the training trajectory. For Blocks world, we used
a set of features learned in previous wévkon et al., 2005;

condition is satisfied we are guaranteed that a beam searéernet al, 2003; Yoon, 200B6and for the other domains we



h . Blocks World
used the those learned|ivoon et al, 2006; Yoon, 2005 In SrobiTS Soved FeTagE pIan e
all cases, we include FF's heuristic as a feature. b | [EN [ U [laso [ R [ LEN | U | [a50° | IR
We used LaSOto learn weights with a learning rate of L
0.01. For Philosopher, LaSQwas run for 10000 iterations 0 [ 22 | 0 25 19 | 2589 | - 1035 | 368
with a learning beam width of 1. For the other domains, 55—t 5 a2
LaSO* was run for 1000 or 5000 iterations with a learn- 0 | 19 [ © 24 20 | 200 | - 218 | 157
ing beam width of 10 (this beam width did not work well [ 20| T [ 0 [ 17 [ 2 [ 10| - | 122 | &
for Philosopher). The learning times varied across domains, ST
depending on the number of predicates and actions, and the Problems soived Average plan length
1 i i 1 _ b LEN U LaSO" LR LEN U LaSO" LR
!ength pf solution trajectories. Th_e average time for process > N AN P LSS S S
ing a single problem in a single iteration was about 10 sec- 5 6 [ 17 | 28 19 | 1467 | 3176 | 1409 | 1300
onds for PSR, 2 seconds for Pipesworld-with-tankage, and | 10 | 17 | 17 26 21 | 2192 | 2252 1 740 | 800
. 20 17 17 27 22 161 1287 173 885
less than 1 seconds for the other domains. 50 [ 18 [ 19| 27 71 | 264 | 643 84 | 4111
Domain Details. Blocks world problems were generated 100 | 18 | 16 | 27 21 ] 8 | 2% 2 165
L. 500 21 18 25 21 39 73 67 74
by the BWSTATES generatdSIaney and Tl&baux, 2001 1000 | 20 | 18 22 20 31 a7 52 38
Thirty problems with 10 or 20 blocks were used as training Fipesworld-with-Tankage
data, and 30 problems with 20, 30, or 40 blocks were used for . — PerlemLs s;cl;ed [ e plfm Slggrh —
. . . .. . , al a
testing. There are 15 _fegtures in this domain |n.clud|ng FF's T =12 = 135 2950 1491 1678
relax-plan-length heuristic. The other four domains are taken 5 6 | 8 8 6 | 466 | 914 | 427 | 1556
from the fourth international planning computation (IPC4). e N LA
Each domain included 50 or 48 problems, roughly ordered 50 6 |5 10 6 | 8L | 289 | 417 | 548
by difficulty. We used the first 15 problems for training and g5 o1 [ 166 [ 5 | 5
the remaining problems for testing. Including FF’s relaxed- 000 5 |6 8 7 | 69 | o1 79 100
plan-length heuristic, there were 35 features in Pipesworld, PSR
11 features in Pipesworld-with-tankage, 54 features in PSR e oblems soved | Averageplaniength
and 19 features in Philosopher. 1 0o [ o 0 0 - - - -
f H H H h _ 5 0 4 14 9 - 231 275 228
Performance Across Beam Sizegsigure 2 gives the per 5 —— = T e
formance of beam search in each domain for various beam [0 7 [ 18] 12 17 | 374 | 151 | 183 | 146
widths. The columns correspond to four algorithms: LEN N L e
- beam search using FF’s relaxed-plan-length heuristic, U - 500 | 4 | 4 2 2 | 55 | 6l 53 8
beam search using a heuristic with uniform weights for all 1000] 1 ]2 E 1] 39 ] %0 39 43
features, LaSO- beam search using the heuristic learned us- - | dPhilosorJher . —
ing LaSO" (with learning beam width specified above), and e S e S
LR - beam search using the heuristic learned from linear re- 1 0 [33 0 3 [ - 383 - 363
. d [M t | 2006 E h _ 5 0 33 24 33 - 363 5469 363
gression as was done [Moonet al., . Each row corre o B I B B B e R
sponds to a beam width and shows the number of solved test gg 8 3;32 ig g; - ggg %%162 ggg
problems and the average plan length ofd¢bked problems. ' o0 0T 16 5 T — 27 1348 | 281
In general, for all algorithms we see that as the beam width 500 [ 0 |7 2 7 - [25] 254 [ 220
1000 0 1 1 4 - 198 214 204

increases the number of solved problems increases and solu-
tion lengths improve. However, after some point the number _ _ _ _ _
of solved problems typically decreases. This behavior is typ- Figure 2: Experimental results for five planning domains.
ical for beam search, since as the beam width increases there — ) ,
is a greater chance of not pruning a solution trajectory, but the L@SO" significantly improves over U in Blocks world,
computational time and memory demands increase. Thus, fariPesworld and Pipesworld-with-tankage.  Especially in
a fixed time cut-off we expect a decrease in performance. Blocks world, where U does not solve any problem. For PSR,
LaSO* Versus No Learning. Compared to LEN, Laso ~ LaSO" only improves over U at beam width 5 and is always
tended to significantly improve the performance of beamOrse in Philosopher (see discussion below).
search, especially for small beam widths—e.g. in Blocks The results show that LaSOs able to improve on the
world with beam width 1 LaSOsolves twice as many prob- State-of-the-art heuristic LEN and that in the majority of our
lems as LEN. The average plan length has also been reducé@mains learning is beneficial compared to uniform weights.
significantly for small beam widths. As the beam width In general, the best performance for LaS@as achieved for
increases the gap between LaSénd LEN decreases but small beam widths close to those used for training.
LaSO still solves more problems with comparable solution Comparing LaSO* with Linear Regression. To com-
quality. In Pipesworld, LaSOhas the best performance with pare with prior non-discriminative heuristic learning work we
beam width 5, solving 12 more problems than LEN. As thelearned weights using linear regression as donkYaon et
beam width increases, again the performance gap decreasé$, 2004 utilizing the Weka linear regression tool. The re-
but LaSO consistently solves more problems than LEN. Thesults for the resulting learned linear-regression heuristics are
trends are similar for the other domains, except that in PSRghown in the columns labeled LR.
LEN solves slightly more than LaSQor large beam widths. For Blocks world, LR solves fewer problems than LaSO



with beam widths smaller than 100 but solves more prob-analysis in LaSO to convert the totally ordered training plans
lems than LaSO with beam widths larger than 100. For to partially-order plans, which would help deal with the prob-
Pipesworld and Pipesworld-with-tankage, LaS@ways lem of “many inherently identical solutions” experienced in
solves more problems than LR. In PSR, LaSO better domains such as Philosopher. Finally, we plan to consider
than LR with beam width 5, but becomes slightly worse asother search spaces and settings such as partial-order plan-
the beam width increases. In Philosopher, LR outperform®iing, temporal-metric planning, and probabilistic planning.
LaSO, solving all problems with small beam widths.

The results indicate that LaS@an significantly improve Acknowledgments

over non-discriminative learning (here regression) and that., . )
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to search. The results also indicate that LAR%@n fail to
converge to a good solution in some domains where regrei:-a
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