
Action Refinement in Reinforcement Learning
by Probability Smoothing

Thomas G. Dietterich tgd@cs.orst.edu

Department of Computer Science, 102 Dearborn Hall, Oregon State University, Corvallis, OR, 97331

D́ıdac Busquets didac@iiia.csic.es
Ramon López de Màntaras mantaras@iiia.csic.es
Carles Sierra sierra@iiia.csic.es

Artificial Intelligence Research Institute (IIIA), Spanish Council for Scientific Research (CSIC), Campus UAB,
08193 Bellaterra, Barcelona, Spain

Abstract
In many reinforcement learning applications,
the set of possible actions can be partitioned
by the programmer into subsets of similar ac-
tions. This paper presents a technique for
exploiting this form of prior information to
speed up model-based reinforcement learn-
ing. We call it an action refinement method,
because it treats each subset of similar ac-
tions as a single “abstract” action early in
the learning process and then later “refines”
the abstract action into individual actions as
more experience is gathered. Our method es-
timates the transition probabilities P (s′|s, a)
for an action a by combining the results of ex-
ecutions of action a with executions of other
actions in the same subset of similar actions.
This is a form of “smoothing” of the probabil-
ity estimates that trades increased bias for re-
duced variance. The paper derives a formula
for optimal smoothing which shows that the
degree of smoothing should decrease as the
amount of data increases. Experiments show
that probability smoothing is better than two
simpler action refinement methods on a syn-
thetic maze problem. Action refinement is
most useful in problems, such as robotics,
where training experiences are expensive.

1. Introduction

In model-based reinforcement learning, experience
gained during exploration is employed to learn mod-
els of the state-action transition function and the re-

ward function. From these learned models, the opti-
mal policy can be computed by incremental or batch
dynamic programming algorithms such as prioritized
sweeping (Moore & Atkeson, 1993) and value itera-
tion (Bertsekas, 1995). Model-based methods are ap-
propriate when the state and action spaces are rel-
atively small and finite and when the exploration is
being performed on a physical system (as opposed to
a simulator). In such cases, each exploratory action is
expensive, and we seek reinforcement learning meth-
ods that can find near-optimal policies with very little
exploratory training data. In contrast, if the reinforce-
ment learner is interacting with an inexpensive simula-
tor, then model-free methods such as SARSA(λ) and
Q learning may be preferred. Although they gener-
ally require many more training experiences to learn a
good policy (Moore & Atkeson, 1993), they require less
storage space, because they do not need to represent
the model.

In all forms of learning, the primary way to reduce
the need for training data is to incorporate some kind
of prior knowledge. Previous work on abstraction in
reinforcement learning has studied prior knowledge in
the form of subgoals, subroutines, and state abstrac-
tion (Parr & Russell, 1998; Sutton et al., 1999; Di-
etterich, 2000). These allow the user to express prior
knowledge about the structure of the policy and about
which state variables are relevant for different subgoals
or subroutines. By applying such prior knowledge, the
reinforcement learning algorithm can generalize across
states—that is, it can identify cases in which the op-
timal policy in one state s1 is identical to the optimal
policy in another state s2.

In this paper, we explore a weaker form of prior knowl-
edge that does not generalize across states, but instead
generalizes across actions. We study the case in which
the user knows that two actions a1 and a2 have sim-
ilar effects in the world, independent of the states in
which they are executed. This allows the learning al-
gorithm to conclude that the transition probabilities
and rewards for a1 and a2 are similar.

There are many situations in which a reinforcement
learning agent may have actions with similar effects
and rewards. For example, consider a mobile robot
whose set of available actions includes two forward
motion actions. One action moves the robot until the
wheel shaft encoders indicate that the robot has moved
one meter. Another action moves the robot for 5 sec-
onds. Much of the time these two actions will have
similar effects, but there are situations (e.g., when the
robot is stuck and the wheels do not turn) in which the
one-meter action will loop forever, so the 5-second ac-
tion would be a better choice. Another example might
arise in routing packets on the internet using Q-routing
(Boyan & Littman, 1994), where each action corre-
sponds to routing a packet to a neighboring switch.
Some of the neighboring switches might be very close
to each other, and therefore, routing a packet to any
one of them would have similar effects.

Even in cases where the final reinforcement learning
agent does not have several similar actions, it may be
useful to consider many similar actions when designing
the agent. To illustrate this point, consider the mobile
robot navigation problem that we have been study-
ing (Busquets et al., 2002). Our robot has low level
primitive actions (operating motors to turn wheels and
cameras, invoking various image processing routines),
but learning at the level of such actions would be very
inefficient. Instead, as many others have done (e.g.,
(Asada et al., 1996)), we have designed a state space
and an action space that focus the reinforcement learn-
ing on the aspects of the navigation task that we are
unable to directly program by hand.

The robot navigates by finding visual landmarks. The
robot’s camera has a viewing angle of 60 degrees. We
partitioned the space around the robot into six 60-
degree sectors such that if the robot points the camera
successively in the center of each sector, it will obtain a
complete view of the surrounding environment. Then
we designed a high-level action called “Move While
Looking for Landmarks (MLL)” in which the robot
moves forward while aiming its camera in one of the
six sectors to search for new visual landmarks. We
defined this action such that the robot always looks in
the sector having the fewest known landmarks. But we

can imagine many variants of this action that might
be useful in some states. For example, we could have
high-level actions in which the camera always looks in
the direction of forward motion or always looks in the
sector having the most distant landmarks or always
looks in the sector containing the goal landmark. We
could also define six MLL actions, one for each sector
and let the robot decide which sector to examine with
the camera.

As designers, we do not know which of these actions (or
action sets) would be most useful. One way to find out
would be to include all of these actions in the MDP and
let the reinforcement learning system determine which
actions are useful. But this would vastly increase the
amount of exploration required to learn a good policy.
Another possibility would be to train the robot several
times, each time with a different set of actions. But
that would require even more training experiences.

One thing we know about these different variants of
“Move While Looking for Landmarks” is that they all
have similar behavior. This suggests that we could
somehow treat them as an equivalence class early in
the learning process and then later allow the learning
algorithm to discriminate among them.

We will employ the term action refinement to describe
any process by which a reinforcement learning algo-
rithm initially treats a set of similar actions as a single
abstract action and later refines that abstract action
into individual actions. We will assume that the pro-
grammer has partitioned the available actions into ac-
tion sets A1, A2, . . . , AL. Each action set Al is a subset
of the set A of available actions, and by defining Al,
the programmer is specifying the prior knowledge that
any two actions a, a′ ∈ Al have similar effects and re-
ceive similar rewards. We will assume that each action
a belongs to exactly one of the action sets.

In this paper we investigate a method of action refine-
ment based on smoothing probability estimates. The
paper begins with a mathematical derivation of the
probability smoothing method. This derivation tells
us the form of the optimal smoothing procedure, but it
makes some unrealistic assumptions. We replace those
assumptions with some more conservative ones that we
verify experimentally give reasonable behavior. The
paper then introduces two competing action refine-
ment methods and compares them experimentally on
a stochastic maze problem. The results show that the
probability smoothing method is the best method. To
finish the paper, we investigate the sensitivity of the
method to the size and correctness of the action sets
Al and to the correctness of the conservative assump-
tions introduced in the derivation of the method. The

paper shows that probability smoothing is a very effi-
cient and easy-to-implement action refinement method
with excellent performance.

2. The Probability Smoothing Method

2.1 Definitions

We consider the standard case where a reinforcement
learning agent is interacting with an unknown but
fully-observable Markovian environment. The Marko-
vian environment contains a finite set of states S and
affords a finite set of actions A. At each time t, the
agent observes the current state st of the environment,
chooses an action at ∈ A, and executes the action.
The environment makes a transition to state st+1 and
returns an immediate reward rt. The programmer
has grouped the actions A into L disjoint action sets
A1, . . . , AL to indicate subsets of actions that are “sim-
ilar”.

The agent explores the environment by choosing ac-
tions according some exploration policy and recording
the resulting 〈st, at, rt, st+1〉 experience tuples. At cer-
tain chosen times t, the agent computes a model Mt

of the environment by computing statistics from the
stored tuples. Let Nt(s, a) be the number of times ac-
tion a has been executed in state s and Nt(s, a, s′) be
the number of times this resulted in a transition to
state s′. Let Wt(s, a, s′) be the total of the rewards
in the corresponding tuples 〈s, a, r, s′〉 (i.e., the total
of the rewards r received when a caused a transition
from s to s′).

The maximum likelihood model Mt consists of Pt and
Rt defined as follows:

Pt(s′|s, a) =
Nt(s, a, s′)
Nt(s, a)

Rt(s, a, s′) =
Wt(s, a, s′)
Nt(s, a, s′)

.

Let us define the probability smoothing model, Mt, to
consist of Pt and Rt computed as follows:

Pt(s′|s, a) =

∑
a′∈Al

λa′Nt(s, a′, s′)∑
a′∈Al

λa′Nt(s, a′)
(1)

Rt(s, a, s′) =

∑
a′∈Al

λa′Wt(s, a′, s′)∑
a′∈Al

λa′Nt(s, a′, s′)
. (2)

In these formulas, Al represents the action set contain-
ing action a. To estimate the transition and reward
functions for a, we combine the counts and rewards of
all of the actions a′ in Al, each weighted by a parame-
ter λa′ . For action a, we will fix λa to have the constant
value 1, but for the other actions, we must determine
the optimal values of the smoothing parameters λa′ .

2.2 Derivation of Optimal Smoothing
Parameters

The approach we will pursue to determine the optimal
smoothing parameters is the following. First, we will
select a measure of the error between the true probabil-
ity P (s′|s, a) and the predicted probability P(s′|s, a).
Then we will compute the expected value of this er-
ror with respect to fixed-sized samples of action a and
its fellow actions in Al. This expected value will be a
function of the λ values, so we can determine the op-
timal values of the λ’s by differentiating with respect
to each λ, setting to zero, and solving the resulting
system of equations.

The error measure that we will employ is the squared
difference between P (s′|s, a) and P(s′|s, a):

J(s, a) =
∑
s′

[P (s′|s, a) − P(s′|s, a)]2.

We will begin with the simplest possible case and then
elaborate it later. Suppose Al comprises only two ac-
tions: a1 and a2. Let us focus on predicting P (s′|s, a1)
for specific states s and s′. Let p1 = P (s′|s, a1) and
p2 = P (s′|s, a2). We can view these as two coins
with probability of heads p1 and p2, respectively. Let
H1 = N(s, a1, s

′) be the number of heads observed
for the first coin after N1 = N(s, a1) coin tosses, and
define H2 and N2 analogously. In this simple case,

P(s′|s, a1) = p̂1 =
H1 + λH2

N1 + λN2
.

Let D be the joint probability distribution of H1 and
H2 given samples of fixed size N1 and N2. Then our
goal is to choose λ to minimize the expected total pre-
diction error:

TPE(λ) = ED[J(s, a)]
= ED[(p1 − p̂1)2 + (1 − p1 − (1 − p̂1))2]
= ED[2(p1 − p̂1)2]
= 2ED[(p1 − p̂1)2]
= 2ED[p2

1 − 2p1p̂1 + p̂2
1]

= 2
(
p2
1 − 2p1ED[p̂1] + ED[p̂2

1]
)
.

In the last line, we have employed the fact that p1 is a
constant and expectation is a linear operator. Now we
must determine the first and second moments of p̂1,
which are ED[p̂1] and ED[p̂2

1].

We can compute the first moment by substituting the
definition of p̂1 and using the fact that H1 and H2

are binomial random variables. Recall that the first
moment of a binomial random variable with sample

size N and parameter p is pN . Hence,

ED[p̂1] = ED

[
H1 + λH2

N1 + λN2

]

=
ED[H1] + λED[H2]

N1 + λN2

=
p1N1 + λp2N2

N1 + λN2
.

We follow the same procedure to compute the second
moment:

ED[p̂2
1] = ED

[(
H1 + λH2

N1 + λN2

)2
]

= ED

[
H2

1 + 2λH1H2 + λ2H2
2

(N1 + λN2)2

]

=
ED[H2

1] + 2λED[H1H2] + λ2ED[H2
2]

(N1 + λN2)2

To simplify this further, we exploit the fact that
ED[H1H2] = ED[H1]ED[H2], because H1 and H2 are
independent random variables. We also use the sec-
ond moment of a binomial random variable, which is
pN(1 − p + pN). Combining these, we have

ED[p̂2
1] =

p1N1(1 − p1 + p1N1) + 2λp1N1p2N2+
λ2p2N2(1 − p2 + p2N2)

(N1 + λN2)2

Now we substitute the expressions for the first and
second moments back into the expression for TPE(λ)
and simplify to obtain

TPE(λ) = 2
N1p1(1 − p1) + λ2N2

2 ε2 + λ2N2p2(1 − p2)
(N1 + λN2)2

,

where we have introduced ε = |p1−p2| to represent the
difference between the probabilities of the two coins.

Differentiating this and setting it to zero gives

λ =
p1(1 − p1)

N2ε2 + p2(1 − p2)
.

We can also write this as

λ =
V1

N2ε2 + V2
, (3)

where V1 = p1(1− p1) is the variance of the first coin,
and V2 = p2(1− p2) is the variance of the second coin.

This formula has the following properties. If the vari-
ance of coin 1 is high, then λ increases, because there is
a greater need to reduce this high variance by smooth-
ing with the second coin. If the variance of coin 2 is

high, λ decreases, because the second coin is less useful
for smoothing. As the coins become less similar (i.e.,
as ε increases), λ decreases, because smoothing with
the second coin will increase the bias. Finally, as N2

gets larger, λ decreases, again to avoid increasing the
bias. Note that N1 does not appear in the formula. If
N1 grows large while N2 remains constant, then the
counts H1 from the first coin will dominate the esti-
mate p̂1, and no change in λ is needed. We can state
this as a theorem:

Theorem 1 p̂1 is a consistent estimator of p1 even if
N2 also grows without bound. In other words,

lim
N1→∞

p̂1 = p1 and lim
N1→∞

lim
N2→∞

p̂1 = p1

Proof: If N2 is constant, then

lim
N1→∞

p̂1 = lim
N1→∞

H1/N1 + λH2/N1

1 + λN2/N1

=
p1 + 0
1 + 0

= p1

If N2 is allowed to grow, then either ε = 0, in which
case λ = 1 and p̂1 is always unbiased or else ε > 0, and
limN2→∞ λ = 0, which makes p̂1 unbiased in the limit.
Q.E.D.

A consequence of this theorem is that in the limit,
model-based reinforcement learning with probability
smoothing will converge to the optimal policy.

Figure 1 plots λ for the case where p1 = 0.5 and N1 =
N2. Note that even when ε = 0.3 and N1 = N2 = 20,
it is still worthwhile to use a non-zero λ. Also note
that if ε = 0.1, and we have 100 samples of each coin,
the optimal value of λ is still around 0.2, which is
surprisingly large.

There are two ways that we must extend the analysis.
First, suppose Al contains more than two different ac-
tions. For the case where we have a third coin with
H3 heads observed in N3 tosses (and with probability
p3 of heads), p̂1 becomes

p̂1 =
H1 + λ2H2 + λ3H3

N1 + λ2N2 + λ3N3
.

Let ε2 = p2 − p1 and ε3 = p3 − p1, then the optimal
values for λ2 and λ3 are

λ2 =
ε23N3V1 − ε2ε3N3V1 + V1V3

ε23N3V2 + ε22N2V3 + V2V3

λ3 =
ε22N2V1 − ε2ε3N2V1 + V1V2

ε23N3V2 + ε22N2V3 + V2V3
.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

λ

Sample Size

ε = 0.05

ε = 0.1

ε = 0.2ε = 0.3

Figure 1. Optimal values of λ for sample size N1 = N2 and
various values of ε.

This expression is complicated, because if ε2 and ε3
are of opposite sign, then their biases counteract each
other, so the value of λ can be increased. On the other
hand, if ε2 = ε3 = ε, then p2 = p3, and λ2 = λ3 =
V1/(ε2(N2 + N3) + V2). Hence, the λ values decrease
significantly.

The second way to extend the analysis is to consider
actions with B > 2 possible outcomes. In this case, we
view P (·|s, a1) as a multinomial distribution with pa-
rameters p

(1)
1 , p

(2)
1 , . . . , p

(B)
1 . Let the transition proba-

bilities of action a2 be defined analogously as {p(i)
2 }B

i=1,
and define ε(i) = p

(i)
2 −p

(i)
1 . With these definitions, the

optimal value for λ has the same form as Eqn. 3, but
with the following substitutions:

V1 :=

[
B−1∑
i=1

p
(i)
1

(
1 − p

(i)
1

)]
−


B−1∑

i<j

p
(i)
1 p

(j)
1




V2 :=

[
B−1∑
i=1

p
(i)
2

(
1 − p

(i)
2

)]
−


B−1∑

i<j

p
(i)
2 p

(j)
2




ε2 :=

[
B−1∑
i=1

(
ε(i)

)2
]

+


B−1∑

i<j

ε(i)ε(j)




2.3 Determining the Level of Smoothing in
Practice

During reinforcement learning, we will not know the
true values of p1, p2, or ε, so we cannot use Eqn. 3
directly. A naive approach to choosing λ would be to
plug the maximum likelihood estimates of p1, p2, and
ε into Eqn. 3. However, these maximum likelihood
estimates have such high variance that the computed
values of λ tend to vary wildly, and the resulting esti-

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0 0.05 0.1 0.15 0.2 0.25

M
S

E

epsilon

No Smoothing

Smoothing

Optimal Smoothing

Figure 2. Comparison of Mean Squared Error of Adaptive
Smoothing with assumed values p1 = 0.1, ε = 0.05, and
Laplace smoothing of 0.50 when the true value of p1 = 0.1
and for various values of the true ε.

mates of p̂1 are poor.

Instead, we adopt an approach we call “default
smoothing” in which we assume default values for p1,
p2, and ε in the λ formula, and plug in the value of
N2 from the real data. To choose these default values,
we plotted TPE curves for various assumed and true
values of the probabilities. When the true value of p1

is near 0.5, any non-zero value of λ gives excellent re-
sults, because coin 1 has maximum variance. But as
the true value of p1 becomes small, the variance of coin
1 becomes quite small, and it is harder to choose good
default values to plug into the formula. After some
trial and error, we selected default values of p1 = 0.1,
p2 = 0.15, and (hence) ε = 0.05. Although these val-
ues will be conservative (i.e., they will never produce
λ = 1), they work well when ε < 0.15 for all values of
p1.

In addition, we found that incorporating mild Laplace
smoothing into the estimator helped slightly. Specifi-
cally, we employ

Pt(s′|s, a) =
1

2|S′| +
∑

a′∈Al
λa′Nt(s, a′, s′)

1
2 +

∑
a′∈Al

λa′Nt(s, a′)
, (4)

where S′ is the set of all states that have resulted from
executing any of the actions a′ ∈ Al.

Figure 2 shows the behavior of default smoothing
based on simulated data. It plots the mean squared
error (which is TPE(λ) − V1) against the true value
of ε when the true value of p1 = 0.1 and N1 = N2 = 5
examples. It compares no smoothing (in which the
maximum likelihood estimate is employed), with op-
timal smoothing (in which the true values of p1 and

Table 1. Transition probability distribution for the four ac-
tion modifiers.

Probability of moving
Modifier: Straight Left Right

Left 0.7 0.2 0.1
Right 0.7 0.1 0.2
Left2 0.6 0.3 0.1

Right2 0.6 0.1 0.3

ε are used to compute λ) and default smoothing. We
see that for ε < 0.14, default smoothing gives better
performance than no smoothing. This represents the
worst case that we simulated. Plots for larger true val-
ues of p1 show default smoothing performing nearly as
well as optimal smoothing.

In the multinomial case (i.e., where the actions have
more than two possible resulting states), we employed
the binary formula with the same default values. That
is, we fixed V1 = 0.09, V2 = 0.1275, and ε2 = 0.0025.
In the case where Al contains more than 2 actions, we
considered the worst case where εi = 0.05 for all of the
other actions ai, i > 1. In other words, we replaced
N2 in Eqn. 3 with

∑
i>1 Ni.

In all cases, we employed the same λ values to estimate
R(s, a, s′) as we used for estimating P(s′|s, a).

3. Experimental Study of Action
Refinement

To evaluate the effectiveness of probability smoothing
for action refinement, we designed a toy maze problem
(see Figure 3). There are 81 non-terminal states and
16 actions grouped into four action sets: {NorthLeft,
NorthLeft2, NorthRight, NorthRight2}, {SouthLeft,
SouthLeft2, SouthRight, SouthRight2}, {EastLeft, East-
Left2, EastRight, EastRight2}, {WestLeft, WestLeft2,
WestRight, WestRight2}. These 16 actions are con-
structed from the cross-product of the four compass
directions {North, South, East, West} with four mod-
ifiers {Left, Left2, Right, Right2}. Each modifier cor-
responds to a probability distribution that gives the
probability of moving straight (in the selected com-
pass direction), left, and right. Table 1 shows these
four probability distributions. According to this ta-
ble, for example, the probabability of moving north
(straight) when executing a NorthLeft action is 0.7;
the probability of moving west (left) is 0.2; and the
probability of moving east (right) is 0.1.

A reward of −0.04 is given for each action (including
cases where the agent bumps into a wall). There are
two terminal states, one of which gives a reward +1

+1

−1

Figure 3. Maze world employed in the experiments. The
squares marked +1 and −1 are terminal states with the
indicated terminal rewards.

(for a net reward of 0.96) and the other of which gives a
reward of −1 (for a net reward of −1.04). In each trial,
the agent is started in a random non-terminal state,
and the trial terminates when the agent enters one of
the two terminal states. This problem is based on the
4x3 world in Russell & Norvig’s (1995) textbook.

To measure the performance of a policy π on this prob-
lem, we compute the value function V π and then sum
the values of all 81 non-terminal states. By this crite-
rion, the optimal policy has a total value of 43.37.

We employed the following model-based learning pro-
cedure. At each time t, the agent chooses an action
at random and executes it. It collects the resulting
tuple 〈st, at, rt, st+1〉 and saves these tuples. Every
100 steps, it computes estimates Pt and Rt and ap-
plies value iteration to compute the optimal policy of
the corresponding estimated MDP. The total value of
this policy (applied to the true MDP) is computed and
output. This process was repeated for 100,000 action
steps. The entire learning procedure was repeated 100
times (with different random number seeds), and the
results analyzed to compute 95% confidence intervals
on the total value of the policy every 100 steps. (Repli-
cating only 30 times gives the same results but with
slightly wider confidence intervals.)

We compared probability smoothing with three alter-
native methods. First, we performed the experiment
with no smoothing at all by setting λ = 0.

Second, we performed the experiment with λ = 1.
This treats all actions in each action set as being com-
pletely equivalent, and the resulting probability esti-
mates P (·|s, a) will be identical.

Finally, we performed the experiment with only
four actions (NorthRight, SouthRight, EastRight, and

WestRight), one from each action set. The rationale for
this fourth method is that because the actions within
each action set are very similar, perhaps it would suf-
fice to just choose one of them.

Figure 4 compares no smoothing with probability
smoothing. The horizontal axis shows the number
of exploratory actions that have been performed per
state-action pair. The graph shows that probability
smoothing gives significantly better performance than
the non-smoothing methods. Consider, for example,
the amount of training required for the performance
of each policy to reach a total value of 35. Without
smoothing, each action must be executed 51.2 times in
every state (on the average). With probability smooth-
ing, each action must only be executed 10.2 times—a
speedup of a factor of 5. This shows that we can train
16 actions with probability smoothing using less expe-
rience than we would need to train only 4 actions with-
out probability smoothing. From a design perspective,
probability smoothing allows us evaluate four versions
of each action at no additional cost. (We repeated this
experiment (data not shown) with different values for
V1, V2, and ε in Eqn. 3. The results are nearly identical
even when V1 = 0.25, V2 = 0.8, and ε = 0.3.)

Figure 5 compares probability smoothing with fixed
smoothing (λ = 1) and with the four-action method.
There are no statistically significant differences un-
til approximately 9.3 exploration steps, at which
point both probability smoothing and the four-action
method do significantly better than λ = 1 smoothing.
At about 23 exploration steps, probability smooth-
ing begins to significantly out-perform the four-action
method. At 77 steps, probability smoothing has at-
tained a total reward of 41.5, the four-action method a
total reward of 38.9, and the fixed smoothing method a
total reward of 34.8. This shows that λ = 1 smoothing
and the four-action method both give speedups simi-
lar to probability smoothing during the early phases
of training. They fail later in the process for differ-
ent reasons. The λ = 1 smoothing fails because it is
biased. The four-action method fails because the four
actions are not sufficient to produce the optimal policy.

These results show that probability smoothing per-
forms better than any of the three alternatives. It
is vastly superior to no smoothing, and in the limit
of large training sets, it performs better than either
fixed smoothing (which will introduce large biases into
the probability estimates) or the four-action method
(which will not be able to find the optimal policy).

We were curious about the sensitivity of probability
smoothing to the correctness and size of the action
sets. We conducted two experiments. First, we var-

-200

-150

-100

-50

0

50

1 10

T
ot

al
 V

al
ue

 o
f A

ll
N

on
te

rm
in

al
 S

ta
te

s

Mean Exploratory Steps per State-Action Combination

smoothing no smoothing

Figure 4. Comparison of probability smoothing with no
smoothing (λ = 0). Note log scale on horizontal axis.

26

28

30

32

34

36

38

40

42

8 9 10 20 30 40 50 60 70

T
ot

al
 V

al
ue

 o
f A

ll
N

on
te

rm
in

al
 S

ta
te

s

Mean Exploratory Steps per State-Action Combination

smoothing

4 actions

lambda = 1

Figure 5. Comparison of probability smoothing with fixed
smoothing (λ = 1) and the four-action method

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

1 10

T
ot

al
 V

al
ue

 o
f A

ll
N

on
te

rm
in

al
 S

ta
te

s

Mean Exploratory Steps per State-Action Combination

12 4 8 16

1 set
2 sets
8 sets
4 sets

16 sets

Figure 6. Comparison of probability smoothing with differ-
ent numbers of equivalence classes

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

1 10

T
ot

al
 V

al
ue

 o
f A

ll
N

on
te

rm
in

al
 S

ta
te

s

Mean Exploratory Steps per State-Action Combination

good random bad none

4 good sets
4 random sets

4 bad sets
no smoothing

Figure 7. Behavior of probability smoothing with action
sets of varying quality

ied the number of action sets from 1, 2, 4, 8, and 16.
The actions were distributed equally across the action
sets, and similar actions were grouped together to the
extent possible. Figure 6 shows that by varying the
number and size of the action sets, we can produce
different bias/variance tradeoff points. 16 separate ac-
tion sets gives high variance (because it defeats proba-
bility smoothing). A single action set gives high bias,
because probability smoothing combines the probabil-
ity transition models of all of the actions. Four sets
of 4 actions and two sets of 8 actions gave the best
performance during the early part of the curve.

In the second experiment, we varied the degree to
which the actions within an action set were similar.
Figure 7 shows that at small sample sizes, a poor
grouping of actions can be worse than no smoothing at
all. At intermediate sample sizes, even random group-
ings give better performance than no smoothing, be-
cause they are able to trade some increased bias for a
reduction in variance. At large sample sizes, however,
the bias in the random and bad groupings leads to
worse performance than either no smoothing or well-
chosen action sets. This is because, not surprisingly,
the default smoothing parameters are setting λ too
large for the poorly-chosen action sets.

4. Concluding Remarks

This paper has introduced a simple method, proba-
bility smoothing, for achieving action refinement in
model-based reinforcement learning. Action refine-
ment can be employed to speed up RL applications
in which there are many actions but where the ac-
tions can be partitioned into sets of similar actions.
In addition, with probability smoothing, the problem

of designing a set of good actions in a reinforcement
learning application is significantly eased, because all
of the different actions can be included in the rein-
forcement learning problem with little or no increase
in the training cost.

The parameter settings for probability smoothing can
be determined from theoretical computations—no tun-
ing or calibration is required on the actual MDP (un-
like TD(λ) or Q learning). In addition, probability
smoothing can be easily implemented within the code
for performing Bellman backups in value iteration, pol-
icy iteration, and prioritized sweeping. We are cur-
rently applying it to help design actions in our robot
navigation project.

Acknowledgements

The authors acknowledge the support of the US NSF
under grant IIS-0083292, the Commission for Cultural,
Educational, and Scientific Exchange between Spain
and the US, and the Spanish Plan Nacional Project
DPI 2000-1352-C02-02. Dı́dac Busquets holds the
CIRIT doctoral scholarship 2000FI-00191.

References

Asada, M., Noda, S., Tawaratsumida, S., & Hosoda, K.
(1996). Purposive behavior acquisition for a real robot
by vision-based reinforcement learning. Machine Learn-
ing, 23, 279–303.

Bertsekas, D. P. (1995). Dynamic programming and opti-
mal control. Belmont, MA: Athena Scientific.

Boyan, J. A., & Littman, M. L. (1994). Packet routing in
dynamically changing networks: A reinforcement learn-
ing approach. NIPS-94 (pp. 671–678). Morgan Kauf-
mann, San Francisco.

Busquets, D., Lopez de Mantaras, R., Sierra, C., & Di-
etterich, T. G. (2002). Reinforcement learning for
landmark-based robot navigation. AAMAS-02.

Dietterich, T. G. (2000). Hierarchical reinforcement learn-
ing with the MAXQ value function decomposition. Jour-
nal of Artificial Intelligence Research, 13, 227–303.

Moore, A. W., & Atkeson, C. G. (1993). Prioritized sweep-
ing: Reinforcement learning with less data and less time.
Machine Learning, 13, 103.

Parr, R., & Russell, S. (1998). Reinforcement learning
with hierarchies of machines. NIPS-98 (pp. 1043–1049).
Cambridge, MA: MIT Press.

Russell, S. J., & Norvig, P. (1995). Artificial intelligence. A
modern approach. Englewood Cliffs, NJ: Prentice-Hall.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between
MDPs and Semi-MDPs: A framework for temporal ab-
straction in reinforcement learning. Artificial Intelli-
gence, 112, 181–211.

