
Detecting and Correcting User Activity Switches:
Algorithms and Interfaces

Jianqiang Shen, Jed Irvine, Xinlong Bao, Michael Goodman, Stephen Kolibaba, Anh
Tran, Fredric Carl, Brenton Kirschner, Simone Stumpf, Thomas G. Dietterich

1148 Kelley Engineering Center, School of EECS, Oregon State University
Corvallis, OR 97331, U.S.A.
shenj@eecs.oregonstate.edu

ABSTRACT
The TaskTracer system allows knowledge workers to define
a set of activities that characterize their desktop work. It
then associates with each user-defined activity the set of re-
sources that the user accesses when performing that activity.
In order to correctly associate resources with activities and
provide useful activity-related services to the user, the sys-
tem needs to know the current activity of the user at all times.
It is often convenient for the user to explicitly declare which
activity he/she is working on. But frequently the user forgets
to do this. TaskTracer applies machine learning methods to
detect undeclared activity switches and predict the correct
activity of the user. This paper presentsTaskPredictor2, a
complete redesign of the activity predictor in TaskTracer and
its notification user interface. TaskPredictor2 applies a novel
online learning algorithm that is able to incorporate a richer
set of features than our previous predictors. We prove an
error bound for the algorithm and present experimental re-
sults that show improved accuracy and a 180-fold speedup
on real user data. The user interface supports negotiated in-
terruption and makes it easy for the user to correct both the
predicted time of the task switch and the predicted activity.

ACM Classification Keywords
I.2.1 Artificial Intelligence: Applications and Expert Sys-
tems—Office automation; H.5.2 Information Interfaces and
Presentation: User Interfaces—Graphical user interfaces

Author Keywords
Activity recognition, online learning, resource management

General Terms
Algorithms, Design, Human Factors.

INTRODUCTION
The TaskTracer system [6, 13] is an intelligent activity man-
agement system [9, 10, 2, 7] that helps knowledge workers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’09, February 8-11, 2009, Sanibel Island, Florida, USA.Copyright 2009
ACM 978-1-60558-331-0/09/02...$5.00.

manage their work based on two assumptions: (a) the user’s
work can be organized as a set of ongoing activities such as
“Write TaskTracer Paper” or “CS534 Class”, (b) each ac-
tivity is associated with a set ofresources. “Resource” is
an umbrella term for documents, folders, email messages,
email contacts, web pages and so on. TaskTracer collects
events generated by the user’s computer-visible behavior,in-
cluding events from MS Office, Internet Explorer, Windows
Explorer, and the Windows XP operating system. The user
can declare a “current activity” (via a “Task Selector” UI),
and TaskTracer records all resources as they are accessed
and associates them with the current declared activity. Task-
Tracer then configures the desktop in several ways to support
the user:

• Task Explorer: This presents a unified view of all of the
resources associated with the current activity and makes it
easy to launch those resources in the appropriate applica-
tion. This supports interruption recovery by showing the
user the most recent resources that they were working on
for each activity (as opposed to the global Recent Docu-
ments facility of Windows).

• Folder Predictor: This modifies the Open/Save dialogs
so that they are activity-aware. Folder Predictor predicts
for all foldersf associated with the current activity, the
three folders that jointly minimize the expected number of
clicks to reachf . The Open/Save dialog is initialized in
the most likely of these folders, and shortcuts to all three
folders are made available in the dialogue box [1].

• Time Reporting: This allows the user to produce a report
showing how much time was spent on each activity during
the most recent day, week, month, year, etc.

• Email Tagging: Incoming and outgoing email messages
are automatically tagged (via another machine learning
component) with the activity (or activities) to which they
are associated.

All of these services (except incoming email tagging) require
TaskTracer to know the current activity of the user. Task-
Tracer provides a taskbar component, the Task Selector, that
makes it easy for the user to explicitly declare the current ac-
tivity. However, when the user forgets to do this, resources
become associated with incorrect activities. This will cause
errors in the resources displayed in Task Explorer, incorrect
folder predictions, and errors in time reporting.

To address this problem, we have previously developed two
machine learning methods for detecting activity switches and
predicting the current activity of the user [13, 12]. The first
of these was a “single window classifier” that based its pre-
dictions only on the file path (or URL) of the current re-
source and the title of the active window. An advantage of
this was that the predictions could be computed immediately
and rapidly each time the user switched focus from one win-
dow to another. The disadvantage was that with such im-
poverished features, the accuracy of the predictions was not
very high.

The second learning method was based on analyzing the
sequenceof recently-visited resources. It first applied the
single-window classifier to each of these resource visits. Then
it detected activity switches by applying a Viterbi algorithm
with a fixed switch cost. This led to somewhat improved
accuracy but had the side effect of introducing a potentially
significant delay between the time of the switch and the time
the switch was detected. This led in turn to major usabil-
ity problems. The UI that we developed for notifying the
user consisted of a pop-up window. By the time the switch
was detected, the user was typically deeply engaged in the
new activity, so that the pop-up window created an expensive
interruption. Furthermore, the pop-up window UI only al-
lowed the user to accept or correct the prediction. However,
if the true switch occurred at timet and the prediction was
accepted at timet′, then all resources visited betweent andt′

would be incorrectly associated with the old activity. There
was no way—short of going to Task Explorer and dragging
the incorrectly-associated resources to the right activity—to
fix these errors.

An additional drawback of both of these learning methods is
that they employed a batch SVM algorithm [8, 3]. This must
store all of the training examples and reprocess all of them
when retraining is required. SVM training time is roughly
quadratic in the number of examples, so the longer Task-
Tracer is used, the slower the training becomes. Further-
more, activity prediction is a multi-class prediction problem
over a potentially large number of classes. For example, our
busiest user worked on 299 different activities over a four-
month period. To perform multi-class learning with SVMs,
we employed the one-versus-rest approach. If there areK
classes, then this requires learningK classifiers. If there are
N examples per class, then the total running time is roughly
O(N2K). This is not practical in an interactive, desktop
setting.

The goal of the redesign of the Task Predictor (and of this
paper) was to address these four problems:

• Accuracy: How can we improve the accuracy of the activ-
ity switch predictor?

• Memory/CPU Cost: Can we switch to a more efficient
learning algorithm that requires constant memory and CPU
time to train and make predictions?

• Prediction Delay/Interruption Cost: Can we develop a user
interface that is able to manage the delay between the time

a switch occurs and the time it is predicted? How can this
UI minimize interruption costs?

• Retroactive Association Changes: When the user changes
the time of an activity switch, how can that change be
reflected in the associations between resources and activ-
ities?

This paper presentsTaskPredictor2, a new switch detection
system that fixes all of these problems.

SYSTEM ARCHITECTURE
TaskPredictor2 captures a set of richer contextual informa-
tion and provides a better user experience. It consists of the
following components (see Figure 1):

• TheAssociation Enginemanages the associations between
resources and activities. Each time the user visits a re-
source, an event is triggered. In response, the Association
Engine starts a 20-second timer. If the resource is still in
focus after 20 seconds and if it has not been previously as-
sociated with the current declared activity, then it is auto-
matically associated with the current declared activity. In
addition to recording the association in a data base table,
the Association Engine also places an entry in an Asso-
ciation History database table that keeps track of the time
the association was established, the id of the resource, and
the id of the activity. When the user accepts or corrects an
activity switch, the UI sends an “AssociationHistoryRevi-
sions” event specifying the time interval that is affected
by the change and the id of the activity that now should
be associated with this interval. The Association Engine
then revises the associations for this time interval.

• TheState Estimatormonitors desktop events. Once each
minute, it computes an information vector that summa-
rizes the state of the desktop and sends this to the Switch
Detector.

• The Switch Detector analyzes the information vectors
provided by the State Estimator and converts them into
a collection of feature vectors as described below. These
are processed by the learned classifier to predict whether
there has been an undeclared activity switch and (if so)
the time of the switch, the id of the new activity, and the
prediction confidence. This is passed to the Notification
Controller and the UI.

• The Notification Controller chooses when and how to
notify the user with the goal of minimizing both the inter-
ruption cost and association errors. When the system be-
comes confident that the user forgot to declare an activity
switch, the user might be busy with something. Notifying
the user right then would have a high interruption cost.

• The UI presents the switch notification to the user and
provides the user a variety of ways to respond to (and
correct) the predicted switch. It provides feedback to the
Switch Detector so that it can retrain its predictors.

The current version of the Notification Controller employs a
simple heuristic to determine when to issue the switch alert:
If the system is confident that an activity switch has occurred

Not i f i ca t i on
C o n t r o l l e r

A s s o c i a t i o n
E n g i n e

U I
S w i t c h

D e t e c t o r
S t a t e

E s t i m a t o r

Q u e r y

U s e r ’ s r e s p o n s e

D o N o t i f i c a t i o n P r e d i c t i o n

M o d i f y A s s o c i a t i o n s

Q u e r y

Figure 1. The system architecture of the activity recognition system.
Arrows indicate information flows.

a) Notification Controller issues a switch alert (the red triangle) + tool tip.

b) Hovering the mouse over the resource icon gives more information.

c) If a switch is changed, UI will ask for confirmation (the Save/Cancel box).

Figure 2. Interactions between TaskPredictor2 and the user.

and the user is at an operation boundary and likely has low
interruption cost (e.g., opening a file dialog box or switching
focus to another window), then an alert should be given. The
alert takes three forms depending on the confidence of the
predictor: (a) displaying a red switch icon (see Figure 2), (b)
shaking the timeline UI for one second, or (c) opening a pop-
up window. The rationale is that highly confident predictions
are more likely to be correct, so ignoring them is more likely
to lead to association errors.

Figure 2 shows an example of the interactions between UI
and the user. The UI consists of two rows of icons. The up-
per row displays one icon for each time that a resource was
visited by the user (in the order that these visits occurred).
Multiple visits result in multiple icons—however, very brief
visits are ignored. Information about each resource (path
name/URL, associated activity) is shown as a tool tip if the
user hovers the mouse over the resource icon (see Figure 2b).
The user can also double-click on an icon to cause that re-
source to be opened and brought into focus.

The lower row displays one icon for each activity switch.
The shape and color of the icon indicates the type of switch.

User-declared switches are displayed as green boxes. Un-
confirmed switch predictions are displayed as red triangles.
Confirmed switch predictions are displayed as a green “house”.
A tool tip shows the activity name, the type of switch, and
the time of the switch. The user can drag and drop a switch
icon to change the time of the switch. However, we do not
permit the drag operation to go past an other existing switch
time.

In the examples shown in Figure 2, the user first worked
on activity IUI-09. Then he explicitly switched toReading
Newsand browsed some webpages. The green box indicates
this switch. After reading the news, he resumed working
on activity IUI-09. Unfortunately he forgot to explicitly in-
dicate that switch. TaskPredictor2 detected this undeclared
switch and decided that it was the right time to notify the
user. So it drew a red triangle to indicate this switch and
shook UI to attract the user’s attention. The user then hov-
ered the mouse over the triangle to see the predicted task
(Figure 2a). To confirm that the prediction is correct, the user
can double-click the switch icon. The icon then turns into a
“house” (see Figure 2c). If the prediction is wrong (i.e., there
was no switch at all), the user can right click and select “Re-
move” from a pop-up menu. If the predictor has correctly
identified an activity switch but predicted the wrong activity,
the user can right click and choose “Change the Task”. This
brings up an Activity Chooser UI. If the switch is predicted
at the wrong time point, the user can drag the switch icon to
the correct point in time. As the icon moves, the UI provides
tool tips to show the full name of the resource, the time it was
accessed, and the activity to which it is currently assignedso
that the user can find the right switch point. In all cases,
the UI requests confirmation (“Save”) or allows the user to
cancel out of the changes (“Cancel”). If the user ignores
a notification, TaskPredictor2 does nothing. In most cases,
if the user ignores a notification long enough, it will disap-
pear because the user will continue to accumulate time on
an open resource, and this resource will become associated
with the current declared activity. This will, in turn, cause
TaskPredictor2 to stop predicting that an activity switch has
occurred, because it now has evidence that the open resource
is associated with the declared activity.

As in our earlier method, there can be a substantial delay
between the time the user switches activities and the time
TaskPredictor2 detects this. A key design goal of this UI was
to support this by providing asynchronous (negotiated) inter-
ruption and retroactive correction of incorrect associations.
After the user confirms a change, the information is sent to
the Association Engine to update the resource-activity asso-
ciations.

AN ONLINE LEARNING ALGORITHM
To address the accuracy and CPU cost of our previous pre-
dictors, we adopted an efficient online learning algorithm
and provided it with a richer set of features. Online learn-
ing algorithms have been shown efficient in many large-scale
problems. The algorithm is based on the Perceptron family
of algorithms [11] and, particularly, on the Passive-Aggressive
algorithm [4].

Feature Design and Scoring Function
The State Estimator monitors various desktop events (Open,
Close, Save, SaveAs, Change Window Focus, etc.). Ev-
ery s seconds (defaults=60) or when the user declares an
activity switch, it computes an information vectorXt de-
scribing the time intervalt since the last information vec-
tor was computed. This information vector is then mapped
into feature vectors by two functions:FA : (Xt, yj) →
Rk andFS : (Xt) → Rm. The first functionFA com-
putesactivity-specificfeatures for a specified activityyj; the
second functionFS computesswitch-specific features. The
activity-specific features include

• Strength of association of the active resource with activ-
ity yj : if the user has explicitly declared that the active
resource belongs toyj (e.g., by drag-and-drop in TaskEx-
plorer), the current activity is likely to beyj . If the active
resource was implicitly associated withyj for some dura-
tion (which happens whenyj is the declared activity and
then the resource is visited), this is a weaker indication
that the current activity isyj.

• Percentage of open resources associated with activityyj :
if most open resources are associated withyj , it is likely
thatyj is the current activity.

• Importance of window title wordx to activity yj . Given
the bag of wordsΩ, we compute a variant of TF-IDF [4]

for each wordx and activityyj: TF(x,Ω) · log
|S|

DF(x,S)
.

Here, S is the set of all feature vectors not labeled as
yj , TF(x,Ω) is the number of timesx appears inΩ and
DF(x, S) is the number of feature vectors containingx
that are not labeledyj .

These activity-specific features are intended to predict whether
yj is the current activity. The switch-specific features predict
the likelihood of a switch. They include

• Number of resources closed in the lasts seconds: if the
user is switching activities, many open resources will of-
ten be closed.

• Percentage of open resources that have been accessed in
the lasts seconds: if the user is still actively accessing
open resources, it is unlikely there is an activity switch.

• The time since the user’s last explicit activity switch: im-
mediately after an explicit switch, it is unlikely the user
will switch again. But as time passes, the likelihood of an
undeclared switch increases.

To detect an activity switch, we adopt a sliding window ap-
proach: at timet, we use two information vectors (Xt−1 and
Xt) to score every pair of activities for time intervalst − 1
andt. Given an activity pair〈yt−1, yt〉, the scoring function
g is defined as

g(〈yt−1, yt〉) = Λ1 · FA(Xt−1, yt−1) + Λ1 ·FA(Xt, yt)

+ φ(yt−1 6= yt) (Λ2 · FS(Xt−1) + Λ3 ·FS(Xt)) ,

whereΛ = 〈Λ1,Λ2,Λ3〉 ∈ R
n is a set of weights to be

learned by the system,φ(p) = −1 if p is true and0 oth-

erwise, and the dot (·) means inner product. The first two
terms ofg measure the likelihood thatyt−1 andyt are the
activities at timet − 1 andt (respectively). The third term
measures the likelihood that there is no activity switch from
time t − 1 to t. Thus, the third component ofg serves as a
“switch penalty” whenyt−1 6= yt.

We search for the〈ŷ1, ŷ2〉 that maximizes the score function
g. If ŷ2 is different from the current declared activity and the
score is larger than a specified threshold, then a switch pre-
diction and the score are sent to the Notification Controller.
At first glance, this search over all pairs of activities would
appear to require time quadratic in the number of activities.
However, the following algorithm computes the best score
in linear time:

y∗t−1 := arg max
y

Λ1 ·FA(Xt−1, y)

A(y∗t−1) := Λ1 ·FA(Xt−1, y
∗
t−1)

y∗t = arg max
y

Λ1 ·FA(Xt, y)

A(y∗t) = Λ1 ·FA(Xt, y
∗
t)

S = Λ2 ·FS(Xt−1) + Λ3 ·FS(Xt)

y∗ = arg max
y

Λ1 ·FA(Xt−1, y) + Λ1 ·FA(Xt, y)

AA(y∗) = Λ1 ·FA(Xt−1, y
∗) + Λ1 ·FA(Xt, y

∗)

Each pair of lines can be computed in time linear in the num-
ber of activities. We assumey∗t−1 6= y∗t . To compute the
best scoreg(〈ŷ1, ŷ2〉), we compare two cases:g(y∗, y∗) =
AA(y∗) is the best score for the case where there is no change
in the activity fromt− 1 to t, andg(y∗t−1, y

∗
t) = A(y∗t−1) +

A(y∗t) + S if there is a switch. Wheny∗t−1 = y∗t , we can
compute the best score for the “no switch” case by tracking
the top two scored activities at timet− 1 andt.

Regularized Passive-Aggressive Algorithm
In TaskPredictor2 we decided to adopt an error-driven on-
line approach [11] to trainΛ. Online learning algorithms
only need to process the most recent observation to update
the classifier. They have very limited requirements for CPU
time and memory. Their efficiency has made them popu-
lar for many large-scale learning problems. An advantage of
perceptron-style algorithms is that they are “conservative”—
that is, they only retrain when an error is made. This further
reduces the CPU cost of training, and it may also contribute
to prediction accuracy by avoiding overfitting on data points
that are already correctly classified.

We further chose to adopt a modification of thePassive-
Aggressive(PA) algorithm [4]. The basic idea of this al-
gorithm is that when an error is committed and feedback is
received, the algorithm updates the weights as little as pos-
sible while ensuring that the error would not be committed
again. More specifically, it chooses a step size that is exactly
large enough to ensure that the classifier will correctly clas-
sify the erroneous case with a margin of 1. This is highly
desirable in an intelligent user interface, because it avoids
the problem where the user provides feedback but the algo-
rithm only takes a small step in the right direction, so the
user must repeatedly provide feedback until enough steps

have been taken to fix the error, which has been reported to
be extremely annoying.

The standard Passive-Aggressive algorithm works as follows:
Let the real activities bey1 at timet − 1 andy2 at timet,
〈ŷ1, ŷ2〉 be the highest scoring incorrect activity pair. When
the system makes an error, it would updateΛ based on the
following constrained optimization problem:

Λt+1 = arg min
Λ∈Rn

1

2
‖Λ − Λt‖

2
2 + Cξ2

subject tog(〈y1, y2〉) − g(〈ŷ1, ŷ2〉) ≥ 1 − ξ. (1)

The first term of the objective function,
1

2
‖Λ − Λt‖

2
2, says

thatΛ should change as little as possible (in Euclidean dis-
tance) from its current valueΛt. The constraint,g(〈y1, y2〉)−
g(〈ŷ1, ŷ2〉) ≥ 1−ξ, says that the score of the correct activity
pair should be larger than the score of the incorrect activity
pair by at least1 − ξ. Ideally, ξ = 0, so that this enforces
the condition that the margin (between correct and incorrect
scores) should be 1.

The purpose ofξ is to introduce some robustness to noise.
We know that inevitably, the user will occasionally make a
mistake in providing feedback. This could happen because
of a slip in the UI or because the user is actually inconsistent
about how resources are associated with activities. In any
case, the second term in the objective function,Cξ2, serves
to encourageξ to be small. The constant parameterC con-
trols the tradeoff between taking small steps (the first term)
and fitting the data (drivingξ to zero). Crammer, et al. [4]
show that this optimization problem has a closed-form solu-
tion, so it can be computed in time linear in the number of
features and the number of classes.

The Passive-Aggressive algorithm is very attractive. How-
ever, one risk is thatΛ can still become large if the algo-
rithm runs for a long time, and this could lead to overfitting.
Hence, we modified the algorithm to include an additional
regularization penalty on the size ofΛ. The modified opti-
mization problem is the following:

Λt+1 = arg min
Λ∈Rn

1

2
‖Λ − Λt‖

2
2 + Cξ2 +

α

2
‖Λ‖

2
2

subject tog(〈y1, y2〉) − g(〈ŷ1, ŷ2〉) ≥ 1 − ξ. (2)

The third term in the objective function,
α

2
‖Λ‖2

2, encourages

Λ to remain small. The amount of the penalty is controlled
by another constant parameter,α.

We now derive a closed-form update rule for this modified
Passive-Aggressive algorithm. First, let us expand theg
terms. DefineZt =

〈

Z
1
t ,Z

2
t ,Z

3
t

〉

where

Z
1
t =FA(Xt−1, y1) + FA(Xt, y2)

− FA(Xt−1, ŷ1) − FA(Xt, ŷ2)

Z
2
t =(φ(y1 6= y2) − φ(ŷ1 6= ŷ2))FS(Xt−1)

Z
3
t =(φ(y1 6= y2) − φ(ŷ1 6= ŷ2))FS(Xt).

Plugging this into the above optimization problem allows us

to rewrite the inequality constraint as the following simple
form:

Λ · Zt ≥ 1 − ξ.

We can then derive the following result:

LEMMA 1. The optimization problem (2) has the closed-
form solution

Λt+1 :=
1

1 + α
(Λt + τtZt), (3)

where

τt =
1 − Λt · Zt + α

‖Zt‖
2
2 + 1+α

2C

. (4)

A detailed proof is presented in the Appendix. The update
rule (3) can be viewed as shrinking the current weight vec-
tor ΛT and then adding in the incorrectly-classified training
example with a step size ofτt/(1 + α). The step size is de-
termined (in the numerator of (4)) by the size of the error
(1 − Λt · Zt and (in the denominator) by the squared length
of the feature vector and a correction term involvingα and
C.

The time to compute this update is linear in the number of
features. Furthermore, the cost does not increase with the
number of classes, because the update involves comparing
only the predicted and correct classes.

It is worth asking how much accuracy is lost in order to ob-
tain such an efficient online algorithm compared to a batch
algorithm (or, more generally, to the best possible algorithm).
By extending existing results from computational learning
theory, we can provide a partial answer to this question. Let
us assume that the length of each vectorZt is no more than
some fixed valueR:

‖Zt‖2 ≤ R.

This is easily satisfied if every feature has a fixed range of
values. Suppose there is some other algorithm that computes
a better weight vectoru ∈ R

n. Let `t = max{0, 1−Λt ·Zt}
be the hinge loss ofΛt at time t. The hinge loss is the
amount by which the constraint in Problem (2) fails to be
satisfied. The hinge loss will be at least 1 for misclassified
examples. It is between 0 and 1 for examples that are cor-
rectly classified by only a small margin less than 1. Simi-
larly, let `∗t = max{0, 1−u ·Zt} denote the hinge loss ofu
at iterationt. With these definitions, we can obtain a result
that compares the accuracy of the online algorithm afterT
examples to the total hinge loss of the weight vectoru after
T examples:

THEOREM 1. Assume that there exists a vectoru ∈ R
n

which satisfiesh = 1−α2

R2+ 1+α

2C

− α
2+α

‖u‖2
2 > 0. Givenα < 1,

the number of prediction mistakes made by our algorithm is
bounded bym ≤ 1

h
‖u‖

2
2 + 2C

h(1+α)

∑T

t=0(`
∗
t)

2.

A detailed proof is presented in the Appendix. This theorem
tells us that the number of mistakes made by our online al-

gorithm is bounded by the sum of (a) the squared hinge loss
of the ideal weight vectoru multiplied by a constant term
and (b) the squared Euclidean norm ofu divided byh. This
bound is not particularly tight, but it does suggest that as long
asu is not too large, the online algorithm will only make a
constant factor more errors than the ideal (batch) weight vec-
tor.

Theoretical analysis can provide one more insight into the
behavior of the online algorithm. Because of the penalty
α
2 ‖Λ‖

2 on the weight vector, it turns out that this algorithm
automatically decreases the influence of older training in-
stances. LetIt be the set of instancesZi such thati < t
andZi caused an update. From Lemma 1, the learned score
function at iterationt can be rewritten as

gt(Z) = sign

(

∑

i∈It

τi
(1 + α)|It\Ii|

Zi · Z

)

(5)

where|It \Ii| is the number of elements in the set difference
of It andIi. This indicates that the algorithm shrinks the
influence of the old observations and puts more weight on
the recent ones.

Pragmatic Issues in Selecting Training Examples
If the user were behaving correctly all the time, then every
time the user declared an activity switch, we would obtain
a training example of a correct switch, and whenever the
user did not declare an activity switch, we would get an ex-
ample of a non-switch. But of course the whole reason to
include an intelligent switch predictor is because the user
makes mistakes. When can we reliably train the classifier?
We answer this question as follows. We create positive ex-
amples of activity switches whenever (a) the user declares
an activity switch or (b) the user confirms a predicted switch
(possibly after modifying the predicted activity and/or the
predicted switch point). We create negative examples of ac-
tivity switches for (a) the firstd = 10 minutes after a de-
clared or accepted activity switch and (b) the firstd = 10
minutes after the user Removes a predicted switch. The ra-
tionale for the 10-minute interval is that the declared activ-
ity is usually correct immediately after the user switches to
the activity. But as the amount of time since the confirmed
switch increases, it becomes more and more likely that the
user has switched without making an explicit declaration.
Using a fixed 10-minute window can be viewed as a crude
Bayesian prior over the likelihood of the user forgetting to
declare a switch. An interesting direction for future research
would be to learn such a model based on the actual behavior
of the user.

There is an additional pragmatic issue that results from the
combination of affordances provided by the UI. In particu-
lar, consider the “dragging” affordance. Consider Figure 2a,
where a prediction has been made immediately after five
Firefox web pages and just prior to two Word documents.
Suppose that this prediction was incorrect in that there was
no activity switch. Then the user would right-click and se-
lect “Remove” from the pop-up menu. Our current system
treats this as a negative training example, and this sets up the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.65

0.7

0.75

0.8

0.85

0.9

Recall

P
re

ci
si

on

Online Learning Method
SVM−based Method

Figure 3. User 1: Precision of different learning methods asa function
of the recall, created by varying the threshold.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Using switch−specific features
Not using switch−specific features

Figure 4. User 2: Precision of different learning methods asa function
of the recall, created by varying the threshold.

start of a 10-minute segment in which all user behavior will
be trusted and converted to training examples.

However, we can infer more from the user’s Remove ac-
tion. Suppose that there had been an activity switch at an
earlier point (e.g., immediately after the first two Firefox
web pages). In that case, the UI would have permitted the
user to drag the red triangle to that point and then confirm.
Therefore, under the assumption that the user knows about
this affordance, we can infer from the fact that the user did
not do this, that there wasnot an activity switch anywhere
in the time interval between the first Firefox page and the
last Word file. Our implementation does not currently do
this, but it raises an interesting question for future research.
We only discovered this issue after the UI was deployed. It
would be interesting to develop a design tool that could dis-
cover these kinds of counter-factual inferences earlier inthe
design process.

EXPERIMENTAL EVALUATION
We deployed TaskTracer on Windows machines in our re-
search group and collected data from two regular users, both
of whom were fairly careful about declaring switches. In
addition, an SVM-based version of TaskPredictor2 was run-
ning throughout this time, and the users tried to provide feed-
back to the system throughout.

The first user (User 1) is a “power user”, and this dataset
records 4 months of daily work, which involved 299 dis-
tinct activities, 65,049 instances (i.e., information vectors),
and 3,657 activity switches. The second user (User 2) ran
the system for 6 days, which involved 5 activities, 3,641 in-
stances, and 359 activity switches.

To evaluate the online learning algorithm, we make the as-
sumption that these activity switches are all correct, and we
perform the following simulation. Suppose the user forgets
to declare every fourth switch. We feed the information vec-
tors to the online algorithm and ask it to make predictions. A
switch prediction is treated as correct if the predicted activity
is correct and if the predicted time of the switch is within 5
minutes of the real switch point. When a prediction is made,
our simulation provides the correct time and activity as feed-
back.

The algorithm parameters were set based on experiments
with non-TaskTracer benchmark sets. We setC = 10 (which
is a value widely-used in the literature) andα = 0.001 (which
gave good results on the benchmark data sets).

Performance is measured byprecisionandrecall. Precision
is the number of switches correctly predicted divided by the
total number of switch predictions, and Recall is the number
of switches correctly predicted divided by the total number
of undeclared switches. We obtain different precision and
recall values by varying the score confidence threshold re-
quired to make a prediction.

The results comparing our online learning approach with our
previous approach [12] are plotted in Figures 3 and 4. Our
previous approach only uses the bag of words from the win-
dow titles and pathname/URL to do inference. The new ap-
proach incorporates much richer contextual information to
detect activity switches. This makes our new approach more
accurate. Compared with the previous approach which must
train multiple binary SVMs, the online learning approach is
also much more efficient. On an ordinary PC, it only took
4 minutes to make predictions for User 1’s 65049 instances
while the previous approach needed more than 12 hours!

Qualitative Evaluation and the User Experience
Within our group, we are currently using the SVM-based
version of the system. It is exactly the same as the system
described in this paper, except that it employs the LibSVM
implementation [3] to train the classifier. Table 1 shows the
actual results of the four-month usage period for User 1. A
total of 138 predictions were made. Of these, 42 (30.4%)
were ignored (probably because the user didn’t notice them
when the UI was buried under another window). Of the

96 non-ignored predictions, the user removed 36 (37.5%)
of them. The user confirmed 37 (38.6%) without change,
3 more (3.1%) after changing the activity, 19 (19.8%) after
changing the time, and 1 more (1.0%) after changing both
the time and the activity.

Qualitatively, User 1 reported that TaskPredictor2 was very
accurate. When it makes a prediction, the prediction is usu-
ally either correct or sensible, by which we mean that the
predicted activity is one that is related to the correct activity.
For example, a challenging case for activity prediction arises
when the user is working on activity A2 and accesses a re-
source that was previously only known to be associated with
activity A1. Two common scenarios where this arises are
(a) using a document as a template for a new activity (e.g.,
opening up an old syllabus, editing it to change the course
name, meeting time, etc., and then saving it) and (b) as-
sembling summary documents (project reports, curriculum
vitae, annual performance reviews) by copying information
from multiple source documents. In such cases, TaskPredic-
tor2 will predict that the user has switched to activity A1.
This is a sensible prediction, and users are not surprised by
these kinds of predictions. However, from the user’s point
of view, he/she is working on activity A2, so the user typi-
cally Removes or ignores such predictions. This causes the
source documents to become associated with A2. It isn’t
clear whether this result is good or bad. A good aspect of
this is that at some later time, when the user returns to work-
ing on activity A2, TaskTracer will include the source doc-
uments in the list of resources associated with A2. This can
provide an answer to the question “Where did I get those
slides from?”. A bad aspect of this is that when the user
accesses the source documents at some later time, TaskPre-
dictor2 may predict that the user is switching to activity A2
when the user is really switching to activity A1. We have
attempted to deal with this case by including the “strength
of association” feature in the information vector. Ideally, if a
resource is more strongly associated with A1 than with A2,
then this will cause the predictor to predict a switch to A1 in
this case.

CONCLUSION
This paper has described TaskPredictor2, a novel activity-
switch predictor for the desktop environment. Its user in-
terface displays activity switches [14, 5] on a time-line that
shows accessed resources. This gives the user contextual
hints and makes it easy for the user to adjust the time at
which an activity switch (declared or predicted) actually oc-
curred. Instead of simply reminding the user about the switch,
it allows the user to edit the activity switch history and thereby
adjust resource-activity associations. The learning compo-
nent exploits rich contextual information, including bothactivity-
specific features and switch-specific features, to predict ac-
tivity switches. The predictor parameters are trained via a
novel online learning algorithm. This algorithm is more ac-
curate, more efficient in memory, and runs 180 times faster
than our previous SVM-based method.

Table 1. Usage Statistics for User 1; SVM Version

Confirmed

Switch Type Ignored Removed No Change Change Activity Change Time Change Both

Low Confidence 1 1 1 1 2 0
Medium Confidence 10 2 4 0 3 0

High Confidence 31 33 32 2 14 1
User-Declared N/A 5 N/A 2 21 1

Acknowledgments
This work was supported by the Defense Advanced Research
Projects Agency (DARPA) under Contract No. FA8750-07-
D-0185/0004. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the DARPA,
or the Air Force Research Laboratory (AFRL).

APPENDIX
Proof of Lemma 1

PROOF. The Lagrangian of the optimization problem in
(2) is

L(Λ, ξ, τ) =
1

2
‖Λ − Λt‖

2
2 + Cξ2 +

α

2
‖Λ‖

2
2

+τ(1 − Λ · Zt − ξ), (6)

whereτ ≥ 0 is the Lagrange multiplier. Differentiating this
Lagrangian with respect to the elements ofΛ and setting the
partial derivative to zero gives

Λ =
1

1 + α
Λt +

τ

1 + α
Zt. (7)

Differentiating the Lagrangian with respect toξ and setting
the partial derivative to zero gives

ξ =
τ

2C
. (8)

Expressingξ as above and replacingΛ in Eq 6 with Eq 7,
the Lagrangian becomes

L(τ) =
1

2

∥

∥

∥

∥

τ

1 + α
Zt −

α

1 + α
Λt

∥

∥

∥

∥

2

2

+
τ2

4C

+
α

2

∥

∥

∥

∥

τ

1 + α
Zt +

1

1 + α
Λt

∥

∥

∥

∥

2

2

+ τ

(

1 −
Λt · Zt

1 + α
−
τ ‖Zt‖

2
2

1 + α
−

τ

2C

)

.

By setting the derivative of the above to zero, we get

1 −
τ

2C
−

τ

1 + α
‖Zt‖

2
2 −

(Λt · Zt)

1 + α
= 0 (9)

⇒ τ =
1 − (Λt · Zt) + α

‖Zt‖
2
2 + 1+α

2C

. (10)

Combining Eq 7 and Eq 10, completes the proof.

Proof of Theorem 1

PROOF. Let ∆t = ‖Λt − u‖2
2 − ‖Λt+1 − u‖2

2. We can
prove the bound by lower and upper bounding

∑

t ∆t.

SinceΛ0 is a zero vector and the norm is always non-negative,
∑

t ∆t = ‖Λ0 − u‖2
2 − ‖ΛT − u‖2

2 ≤ ‖Λ0 − u‖2
2 = ‖u‖2

2.

Obviously, only if t ∈ IT , ∆t 6= 0. We will only consider
this case here. LetΛ′

t = Λt + τtZt, Λt+1 = 1
1+α

Λ′
t. ∆t can

be rewritten as

(‖Λt − u‖
2
2 − ‖Λ′

t − u‖
2
2) + (‖Λ′

t − u‖
2
2 − ‖Λt+1 − u‖

2
2)

= δt + εt. (11)

We will lower bound bothδt andεt. Letψ2 = (1 + α)/2C.
For δt, we have

δt = ‖Λt − u‖
2
2 − ‖Λt + τtZt − u‖

2
2 (12)

= ‖Λt − u‖
2
2 − ‖Λt − u‖

2
2

− 2τtZt · (Λt − u) − ‖τtZt‖
2
2 (13)

≥2τt`t − 2τt`
∗
t − τ2

t ‖Zt‖
2
2 (14)

≥2τt`t − 2τt`
∗
t − τ2

t ‖Zt‖
2
2 − (ψτt − `∗t/ψ)2 (15)

=2τt`t − τ2
t (‖Zt‖

2
2 + ψ2) − (`∗t)

2/ψ2 (16)

We get Eq 15 because(ψτt − `∗t /ψ)2 ≥ 0. Plugging the
definition ofτt and considering̀t ≥ 1, we get

δt ≥
`2t − α2

‖Zt‖
2
2 + 1+α

2C

−
2C

1 + α
(`∗t)

2 (17)

≥
1 − α2

R2 + 1+α
2C

−
2C

1 + α
(`∗t)

2 (18)

For εt, we have

εt =(1 −
1

(1 + α)2
) ‖Λ′

t‖
2
2 − 2(1 −

1

1 + α
)Λ′

t · u. (19)

Using the fact that‖u − v‖2
2 ≥ 0 which equals to‖u‖2

2 −

2u · v ≥ −‖v‖
2
2, we get

(1 −
1

(1 + α)2
) ‖Λ′

t‖
2
2 − 2(1 −

1

1 + α
)Λ′

t · u (20)

≥−
1 − 1

1+α

1 + 1
1+α

‖u‖
2
2 = −

α

2 + α
‖u‖

2
2 (21)

Using Eq 18 and 21, we get

T
∑

t=0

∆t =
∑

t∈IT

∆t (22)

≥
∑

t∈IT

(

(
1 − α2

R2 + 1+α
2C

−
2C

1 + α
(`∗t)

2) −
α

2 + α
‖u‖

2
2

)

(23)

=m(
1 − α2

R2 + 1+α
2C

−
α

2 + α
‖u‖

2
2) −

∑

t∈It

2C

1 + α
(`∗t)

2 (24)

≥m(
1 − α2

R2 + 1+α
2C

−
α

2 + α
‖u‖2

2) −
2C

1 + α

T
∑

t=0

(`∗t)
2 (25)

Since
∑

t ∆t ≤ ‖u‖
2
2, we have

m(
1 − α2

R2 + 1+α
2C

−
α

2 + α
‖u‖2

2) −
2C

1 + α

T
∑

t=0

(`∗t)
2 ≤ ‖u‖2

2

(26)

Sinceh = 1−α2

R2+ 1+α

2C

− α
2+α

‖u‖
2
2 > 0, we get the result in

the theorem.

REFERENCES
1. X. Bao, J. Herlocker, and T. G. Dietterich. Fewer clicks

and less frustration: Reducing the cost of reaching the
right folder. InProc. of IUI-06, pages 178–185, 2006.

2. V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith.
Taking email to task: the design and evaluation of a
task management centered email tool. InCHI-03, pages
345 – 352, 2003.

3. C.-C. Chang and C.-J. Lin.LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

4. K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz,
and Y. Singer. Online passive-aggressive algorithms.
Journal of Machine Learning Research, 7:551–585,
2006.

5. M. Czerwinski, E. Horvitz, and S. Wilhite. A diary
study of task switching and interruptions. InProc. of
CHI’04, pages 175–182, 2004.

6. A. N. Dragunov, T. G. Dietterich, K. Johnsrude,
M. McLaughlin, L. Li, and J. L. Herlocker. Tasktracer:
A desktop environment to support multi-tasking
knowledge workers. InProc. of IUI-05, pages 75–82,
2005.

7. W. Geyer, M. Muller, M. Moore, E. Wilcox, L.-T.
Cheng, B. Brownholtz, C. Hill, , and D. R. Millen.
Activityexplorer: Activity-centric collaboration from
research to product.IBM Systems Journal - Special
Issue on Business Collaboration, 45(4):713–738, 2006.

8. T. Joachims.Learning to Classify Text Using Support
Vector Machines. Kluwer Academic Publishers, 2001.

9. V. Kaptelinin. UMEA: translating interaction histories
into project contexts. InSIGCHI, pages 353–360, 2003.

10. D. Quan and D. Karger. Haystack: Metadata-enabled
information management. InUIST-2003., 2003.

11. F. Rosenblatt. The Perceptron: a probabilistic model for
information storage and organization in the brain.
Neurocomputing: foundations of research, pages
89–114, 1988.

12. J. Shen, L. Li, and T. G. Dietterich. Real-time detection
of task switches of desktop users. InProc. of IJCAI-07,
pages 2868–2873, 2007.

13. J. Shen, L. Li, T. G. Dietterich, and J. Herlocker. A
hybrid learning system for recognizing user tasks from
desktop activities and email messages. InProc. of
IUI-06, pages 86–92, 2006.

14. G. Smith, P. Baudisch, G. Robertson, M. Czerwinski,
B. Meyers, D. Robbins, and D. Andrews. Groupbar:
The taskbar evolved. InProc. of OZCHI 2003, pages
34–43, 2003.

