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1 Bias-Variance Decomposition for Regression

1 Bias-Variance Decomposition for Classification
1 Bias-Variance Analysis of Learning Algorithms
1 Effect of Bagging on Bias and Variance

1 Effect of Boosting on Bias and Variance

1 Summary and Conclusion




Bias-Variance Analysis In
Regression

1 True functionisy = f(x) + ¢

—where ¢ Is normally distributed with zero mean
and standard deviation c.

1 Given a set of training examples, {(x, v,)},
we fit an hypothesis h(x) =w - x+ b to
the data to minimize the squared error

% [y = h(x)?




Example: 20 points
y =X + 2 sin(1.5x) + N(0,0.2)

fitted hypothesis




50 fits (20 examples each)




Bias-Variance Analysis

1 Now, given a new data point x* (with
observed value y* = f(x*) + €), we would
like to understand the expected prediction
error

E[ (y* — h(x*))?]




Classical Statistical Analysis

1 Imagine that our particular training sample
S Is drawn from some population of
possible training samples according to
P(S).

1 Compute E; [ (y* — h(x*))?]

1 Decompose this into “bias”, “variance”,
and “noise”




Lemma

1 Let Z be a random variable with probability

distribution P(2)

1 letZ=E;|Z]be the average value of Z.
1 Lemma: E[(Z-2)?]=E[Z4] - Z?
E[(Z-2)°]=E[Z°-2ZZ + Z°]
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1 Corollary: E[22] = E[ (Z — 2)2] + Z2




Bias-Variance-Noise

Decomposition
E[ (h(x*) — y*)2 ] = E[ h(x*)2 = 2 h(x*) y* + y*2 ]
= E[ h(x*)2] — 2 E[ h(x*) ] E[y*] + E[y*?]
= E[ (h(x*) — h(x*))2] + h(x*)2  (lemma)
— 2 h(x*) f(x*)

+ E[ (y* = f(x*))2 ] + f(x*)? (lemma)

= E[ (h(x*) — h(x*)2 ] + [variance]
(h(x*) — f(x*))> + [bias?]
E[ (y*— f(x*))?] [noise]




Derivation (continued)

E[ (h(x*) —y*)?] =
= E[ (h(x*) —h(x*)*] +
(h(x*) —f(x*))> +
E[ (y*— f(x*))?]
= Var(h(x*)) + Bias(h(x*))? + E[ €2 ]
= Var(h(x*)) + Bias(h(x*))? + c?
Expected prediction error = Variance + Bias? + Noise?




Bias, Variance, and Noise

1 Variance: E[ (h(x*) — h(x*))? ]

Describes how much h(x*) varies from one
training set S to another

1 Bias: [h(x*) — f(x*)]
Describes the average error of h(x*).

1 Noise: E[ (y* — f(x*))2] = E[¢2] = 52
Describes how much y* varies from f(x*)




50 fits (20 examples each)




true function




Variance







50 fits (20 examples each)




Distribution of predictions at
x=2.0




50 fits (20 examples each)
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X=5.0

variance of predictions r,r’
f

I
r
f
r
r

ean prediction true value




Measuring Bias and Variance

1In practice (unlike in theory), we have only
ONE training set S.

1 \We can simulate multiple training sets by
bootstrap replicates

— S’ = {x | xIs drawn at random with
replacement from S} and |S’| = |S].




Procedure for Measuring Bias

and Variance

1 Construct B bootstrap replicates of S (e.qg.,
B=200):S,, ..., Sg

1 Apply learning algorithm to each replicate
S, to obtain hypothesis h,

ilet T, =S\ S, be the data points that do
not appear in S, (out of bag points)

1 Compute predicted value h,(x) for each x
in T,




Estimating Bias and Variance
(continued)

1 For each data point x, we will now have
the observed corresponding value y and
several predictions y,, ..., Y.

1 Compute the average prediction h.

1 Estimate bias as (h—y)

1 Estimate variance as %, (Y, — h)%/(K — 1)
1 Assume noise is O




Approximations in this
Procedure

1 Bootstrap replicates are not real data

1 \We ignhore the noise
— If we have multiple data points with the same

X value, then we can estimate the noise

— We can also estimate noise by pooling y
values from nearby x values




Ensemble Learning Methods

1 Given training sample S
1 Generate multiple hypotheses, h;, h,, ...,
h,.
1 Optionally: determining corresponding
weights w,, W, ..., W,
1 Classify new points according to
2w, h >0




Bagging: Bootstrap Aggregating

iForb=1,...,Bdo
— S, = bootstrap replicate of S
— Apply learning algorithm to S, to learn h,

1 Classify new points by unweighted vote:
— [2p hp(¥)/B >0




Bagging

1 Bagging makes predictions according to
y=2%2, h,(x)/B
1 Hence, bagging’s predictions are h(x)




Estimated Bias and Variance of
Bagging

1 If we estimate bias and variance using the same

B bootstrap samples, we will have:

— Bilas=(h—-y) [same as before]
— Variance =%, (h—h)?/(K-1) =0

1 Hence, according to this approximate way of
estimating variance, bagging removes the
variance while leaving bias unchanged.

1 In reality, bagging only reduces variance and
tends to slightly increase bias




Bias/VVariance Heuristics

1 Models that fit the data poorly have high bias:
“Inflexible models” such as linear regression,
regression stumps

1 Models that can fit the data very well have low
bias but high variance: “flexible” models such as
nearest neighbor regression, regression trees

1 This suggests that bagging of a flexible model
can reduce the variance while benefiting from
the low bias




Bias-Variance Decomposition
for Classification

1 Can we extend the bias-variance decomposition
to classification problems?

1 Several extensions have been proposed; we will
study the extension due to Pedro Domingos

(2000a; 2000b)

1 Domingos developed a unified decomposition
that covers both regression and classification




Classification Problems:
Noisy Channel Model

1 Data points are generated by y; = n(f(x;)),
where
— f(x) Is the true class label of x;
— n(-) iIs a noise process that may change the true label

f(x,).

1 Given a training set {(X;, Y1), ---» Xmy Ym)}, OUN
learning algorithm produces an hypothesis h.

1 Let y* = n(f(x*)) be the observed label of a new
data point x*. h(x*) is the predicted label. The
error (“loss”) is defined as L(h(x*), y*)




Loss Functions for Classification

1 The usual loss function is 0/1 loss. L(y’,y)
IsO0Ify =y and 1 otherwise.

1 Our goal is to decompose E [L(h(x*), y*)]

INto blas, variance, and noise terms




Discrete Equivalent of the
Mean: The Main Prediction

1 As before, we imagine that our observed training
set S was drawn from some population
according to P(S)

1 Define the main prediction to be

Ym(X*) = argminy, Ep[ L(y’, h(x*)) ]
1 For 0/1 loss, the main prediction is the most
common vote of h(x*) (taken over all training
sets S weighted according to P(S))

1 For squared error, the main prediction is h(x*)




Bias, Variance, Noise

1 Bias B(x*) = L(y™, f(x*))
— This is the loss of the main prediction with respect to
the true label of x*

1 Variance V(x*) = E[ L(h(x*), yM) ]

— This Is the expected loss of h(x*) relative to the main
prediction

1 Noise N(x*) = E[ L(y*, f(x*)) |

— This Is the expected loss of the noisy observed value
y* relative to the true label of x*




Squared Error Loss

1 These definitions give us the results we
have already derived for squared error
loss L(y.y) = (Y’ —Y)?

— Main prediction y™ = h(x*)
— Bias®: L(h(x*), f(x*)) = (h(x*) — f(x*))
— Variance:
E[ L(h(x*), h(x*)) ] = E[ (h(x*) — h(x*))* ]
— Noise: E[ L(y*, f(x*)) ] = E[ (y* — f(x*))* ]




O/1 Loss for 2 classes

1 There are three components that
determine whether y* = h(x*)

— Noise: y* = f(x*)?
— Blas: f(x*) =ym?
— Variance: ym = h(x*)?
1 Bias is either 0 or 1, because neither f(x*)
nor y™ are random variables




correct

Case Analysis of Error

y™ = h(x*)?

error
[noise]

f(x*) = ym?

no [variance]

error
[variance]

no [noise]

correct
[noise
cancels
variance]

no [bias]

y™ = h(x*)?

yes no [variance]

y* = 1(x*)? y* = 1(x*)?

yes no [noise] yes no [noise]

error  correct correct  error
[bias] [noise  [variance [noise
cancels cancels cancels
bias] bias] variance
cancels
bias]




Unbiased case

et P(y* # f(x*)) = N(x*) ==

et P(y" = h(x*)) =V(X*) = o

f (f(x*) = y™m), then we suffer a loss If
exactly one of these events occurs:
L(h(x*), y*) = 1(1-0) + o(1-1)
=t+0—210

= N(X*) + V(X*) — 2 N(x*) V(x*)




Biased Case

et P(y* = f(x*)) = N(X*) ==

et P(y" = h(x*)) =V(X*) = o

f (f(x*) = y™), then we suffer a loss If either
ooth or neither of these events occurs:
L(h(x*), ¥*) = tc + (1-0)(1-1)

=1-(t+oc-21t0)

= B(x*) = [N(x*) + V(x*) — 2 N(x*) V(x*)]




Decomposition for O/1 Loss
(2 classes)

1 We do not get a simple additive decomposition
In the O/1 loss case:

E[ L(h(x*), y*) ] =
if B(x*) = 1: B(x*) — [N(X*) + V(x*) — 2 N(x*) V(x*)]

If B(x*) = 0: B(x*) + [N(x*) + V(x*) — 2 N(x*) V(x*)]
1 In biased case, noise and variance reduce error;

In unbiased case, noise and variance increase
error




Summary of 0/1 Loss

1 A good classifier will have low bias, In
which case the expected loss will
approximately equal the variance

1 The interaction terms will usually be small,
because both noise and variance will
usually be < 0.2, so the interaction term 2
V(x*) N(x*) will be < 0.08




0/1 Decomposition in Practice

1 In the noise-free case:
E[ L(h(x*), y*) ] =
If B(x*) = 1. B(Xx*) — V(x*)
If B(x*) = 0: B(x*) + V(x*)
1|t Is usually hard to estimate N(x*), so we
will use this formula




Decomposition over an entire
data set

1 Given a set of test points

T ={(X*1,Y*1)--- (XY 0
we want to decompose the average loss:

L =2 E[ L(h(x*), y*) ]/n
1 \We will write it as
L=B+Vu-Vb

where B Is the average bias, VU Is the average
unbiased variance, and Vb is the average
biased variance (We ignore the noise.)

1 Vu — Vb will be called “net variance”




Classification Problems:
Overlapping Distributions Model

1 Suppose at each point x, the label Is
generated according to a probability
distribution y ~ P(y|x)

1 The goal of learning is to discover this

probability distribution

1 The loss function L(p,h) = KL(p,h) Is the
Kullback-Liebler divergence between the
true distribution p and our hypothesis h.




Kullback-Lelbler Divergence

1 For simplicity, assume only two classes: vy
e {0,1}

1Let p be the true probability P(y=1|x) and h
be our hypothesis for P(y=1|x).

1 The KL divergence is
KL(p,h) = p log p/h + (1-p) log (1-p)/(1-h)




Bias-Variance-Noise
Decomposition for KL

1 Goal: Decompose E¢[ KL(y, h) ] into noise,
bias, and variance terms

1 Compute the main prediction:

h = argmin, Eg[ KL(u, h) ]

1 This turns out to be the geometric mean:
log(h/(1-h)) = Eg[ log(h/(1-h)) ]
h=1/Z*exp(Eg[logh])




Computing the Noise

1 Obviously the best estimator h would be p.

What loss wou

E[ KL(y,p) ] =Ely
=Ely

(1-

d it recelve?

og y/p + (1-y) log (1-y)/(1-p)
ogy-—ylogp+

y) log (1-y) — (1-y) log (1-p) ]

=-p log p - (1-p) log (1-p)

= H(p)




Bias, Variance, Noise

1Variance: E¢[ KL(h, h) ]

1Bias: KL(p, h)

1 Noise: H(p)

1 Expected loss = Noise + Bias + Variance

E[ KL(y, h) | = H(p) + KL(p, h) + Eg[ KL(h, h) ]




Consequences of this Definition

1If our goal Is probability estimation and we
want to do bagging, then we should
combine the individual probability
estimates using the geometric mean

log(h/(1-h)) = Eg[ log(h/(1-h)) ]
1In this case, bagging will produce pure
variance reduction (as in regression)!




Experimental Studies of Bias
and Variance

1 Artificial data: Can generate multiple
training sets S and measure bias and
variance directly

1 Benchmark data sets: Generate bootstrap
replicates and measure bias and variance
on separate test set




Algorithms to Study

K-nearest neighbors: What is the effect of
K?

Decision trees: What Is the effect of
oruning?

1 Support Vector Machines: What is the
effect of kernel width c?




K-nearest neighbor
(Domingos, 2000)

1 Chess (left): Increasing K primarily reduces Vu

1 Audiology (right): Increasing K primarily
Increases B.




Size of Decision Trees

1 Glass (left), Primary tumor (right): deeper
trees have lower B, higher Vu




Example: 200 linear SVMs
(training sets of size 20)

Error: 13.7%
Bias: 11.7%
Vu: 5.2%
Vb: 3.2%




Example: 200 RBF SVMs
c=5

Error: 15.0%
Bias: 5.8%
Vu: 11.5%
Vb: 2.3%




Example: 200 RBF SVMs
c =50

Error: 14.9%
Bias: 10.1%
Vu: 7.8%
Vb: 3.0%




SVM Bias and Variance

Error Bias Vary Varg Net var Tot var
linear 0.137 0.117 0.052 0.032  0.020 0.084
rbf ¢ =5 0.150 0.058 0.115 0.023 0.092  0.137
rbt ¢ =50 0.149 0.101 0.078 0.030 0.048 0.109

1 Bias-Variance tradeoff controlled by o

1 Biased classifier (linear SVM) gives
better results than a classifier that can
represent the true decision boundary!




B/V Analysis of Bagging

1 Under the bootstrap assumption,
bagging reduces only variance

— Removing Vu reduces the error rate
— Removing VDb increases the error rate

1 Therefore, bagging should be applied to
ow-bias classifiers, because then Vb will
ne small

Reality Is more complex!




Bagging Nearest Neighbor

Bagging first-nearest
neighbor Is equivalent
(in the limit) to a
weighted majority vote
In which the k-th
neighbor receives a
weight of

exp(-(k-1)) — exp(-k)
Neighbor Fle;nk

Since the first nearest neighbor gets more than half of the vote, it will
always win this vote. Therefore, Bagging 1-NN is equivalent to 1-NN.




Bagging Decision Trees

1 Consider unpruned trees of depth 2 on the
Glass data set. In this case, the error is
almost entirely due to bias

1 Perform 30-fold bagging (replicated 50
times; 10-fold cross-validation)

1 What will happen?




Bagging Primarily Reduces
Bias!

Effect of Bagging for Depth=2
E—\
\—E Mean Error
Bias

L\q Vu Unbiased Variance
Vb Biased Variance,

bagged-c4




Questions

1s this due to the failure of the bootstrap
assumption in bagging?
1s this due to the failure of the bootstrap

assumption in estimating bias and
variance?

1 Should we also think of Bagging as a
simple additive model that expands the
range of representable classifiers?




Bagging Large Trees?

1 Now consider unpruned trees of depth 10
on the Glass dataset. In this case, the
trees have much lower bias.

1 What will happen?




Answer: Bagging Primarily
Reduces Variance

Effect of Bagging for Depth=10

-—a Mean Error

+ Bias

Vu Unbiased Varjance

——= \/b Biased VariaRce

bagged-c4




Bagging of SVMs

1 \We will choose a low-bias, high-variance
SVM to bag: RBF SVM with ¢=5




RBF SVMs again: o =5

True boundary
Bias =1

varll = 0.3
varll = 0.2

8




Effect of 30-fold Bagging:
Variance Is Reduced




Effects of 30-fold Bagging

Error Bias Vary Varg Net var Tot var
rhf o =5 0.150 0.058 0.115 0.023 0.092 0.137
bagged rbf o =5 0.145 0.063 0.105 0.023 0.082 0.128

1 VU is decreased by 0.010; Vb is
unchanged

1 Bias Is increased by 0.005
1 Error Is reduced by 0.005




Bagging Decision Trees
(Freund & Schapire)
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Boosting

Input: aset S, of m labeled examples: S = {(zi,4),i =1,2,...,m},
labels y; € Y = {1,..., K}
Learn (a learning algorithm)

a constant L.

initialize the weights

for all i: pel(i) ;= weli) [(Ziwe(i)) compute normalized weights
hy := Learn(py) call Learn with normalized weights.
ep := i po(i) [ he(zi) # ui calculate the error of hy
if ¢, > 1/2 then
L=F(-1
exit
Be = e/ (1 — €)

. - o al= gl z; V5 .
for all i: we1(2) == we(i)3, [helzi)#ui compute new weights

Output: h(z) = ATgImax Z (lﬂg ) [he(z) = y]

yEY f=1




Bias-Variance Analysis of
Boosting

1 Boosting seeks to find a weighted
combination of classifiers that fits the data
well

1 Prediction: Boosting will primarily act to
reduce bias




Boosting DNA splice (left) and
Audiology (right)
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Early iterations reduce bias. Later iterations also
reduce variance




Boosting vs Bagging
(Freund & Schapire)

=
L
=
=
-4
[=15]
[
o
o
B
=
B
o
(i

L L5 20
Error rate of AdaBoost with C4




Review and Conclusions

1 For regression problems (squared error loss),
the expected error rate can be decomposed
Into
— Bias(x*)? + Variance(x*) + Noise(x*)

1 For classification problems (0/1 loss), the
expected error rate depends on whether bias
IS present:

— if B(x*) = 1: B(x*) — [V(X*) + N(x*) — 2 V(x*) N(x*)]
— 1f B(X*) = 0: B(x*) + [V(X*) + N(X*) — 2 V(X*) N(x*)]
— or B(x*) + Vu(x*) — Vb(x*) [ignoring noise]




Review and Conclusions (2)

1 For classification problems with log loss,
the expected loss can be decomposed Into
noise + bias + variance

E[ KL(y, h) ] = H(p) + KL(p, h) + Eg[ KL(h, h) ]




Sources of Bias and Variance

1 Bias arises when the classifier cannot
represent the true function — that is, the
classifier underfits the data

1 Variance arises when the classifier overfits
the data

1 There Is often a tradeoff between bias and
variance




Effect of Algorithm Parameters

on Bilas and Variance

1 k-nearest neighbor: Increasing k typically
Increases bias and reduces variance

1 decision trees of depth D: increasing D
typically increases variance and reduces

bias
1 RBF SVM with parameter c: increasing o
Increases bias and reduces variance




Effect of Bagging

1 If the bootstrap replicate approximation
were correct, then bagging would reduce
variance without changing bias

1 In practice, bagging can reduce both bias
and variance

— For high-bias classifiers, it can reduce bias
(but may increase Vu)

— For high-variance classifiers, it can reduce
variance




Effect of Boosting

1In the early iterations, boosting Is primary
a bias-reducing method

1In later iterations, it appears to be primarily
a variance-reducing method




