Off-The-Shelf Classifiers

1 A method that can be applied directly to
data without requiring a great deal of time-
consuming data preprocessing or careful
tuning of the learning procedure

1L et's compare Perceptron, Logistic
Regression, and LDA to ask which
algorithms can serve as good off-the-shelf
classifiers

Off-The-Shelf Criteria

Natural handling of “mixed” data types
— continuous, ordered-discrete, unordered-discrete

Handling of missing values
Robustness to outliers in input space
Insensitive to monotone transformations of input features

Computational scalability for large data sets
Ability to deal with irrelevant inputs

Ability to extract linear combinations of features
Interpretability

Predictive power

Handling Mixed Data Types with
Numerical Classifiers

1 Indicator Variables
— sex: Convert to 0/1 variable

— county-of-residence: Introduce a 0/1 variable for each
county

1 Ordered-discrete variables
— example: {small, medium, large}
— Treat as unordered

— Treat as real-valued

1 Sometimes it is possible to measure the “distance” between
discrete terms. For example, how often is one value
mistaken for another? These distances can then be
combined via multi-dimensional scaling to assign real values

Missing Values

1 Two basic causes of missing values

— Missing at random: independent errors cause
features to be missing. Examples:
1 clouds prevent satellite from seeing the ground.
1 data transmission (wireless network) is lost from time-to-time

— Missing for cause:

1 Results of a medical test are missing because physician
decided not to perform it.

1 Very large or very small values fail to be recorded
1 Human subjects refuse to answer personal questions

Dealing with Missing Values

1 Missing at Random
P(x,y) methods can still learn a model of P(x), even when some
features are not measured.

The EM algorithm can be applied to fill in th emissing features with the
most likely values for those features

A simpler approach is to replace each missing value by its average
value or its most likely value

There are specialized methods for decision trees

8 Missing for cause
— The “first principles” approach is to model the causes of the missing
data as additional hidden variables and then try to fit the combined
model to the available data.

— Another approach is to treat “missing” as a separate value for the
feature
1 For discrete features, this is easy

1 For continuous features, we typically introduce an indicator feature that is 1
if the associated real-valued feature was observed and O if not.

Robust to Outliers in the Input
Space

1 Perceptron: Outliers can cause the
algorithm to loop forever

1 Logistic Regression: Outliers far from the

decision boundary have little impact —
robust!

1 LDA/QDA: Outliers have a strong impact
on the models of P(x|y) — not robust!

Remaining Criteria

Monotone Scaling: All linear classifiers are sensitive to non-linear
transformations of the inputs, because this may make the data less
linearly separable

Computational Scaling: All three methods scale well to large data
sets.

Irrelevant Inputs: In theory, all three methods will assign smalll
weights to irrelevant inputs. In practice, LDA can crash because the
> matrix becomes singular and cannot be inverted. This can be
solved through a technique known as regularization (later!)

Extract linear combinations of features: All three algorithms learn
LTUs, which are linear combinations!

1 Interpretability: All three models are fairly easy to interpret
1 Predictive power: For small data sets, LDA and QDA often perform

best. All three methods give good results.

Summary So Far

(we will add to this later)

Criterion

Perc Logistic LDA

Mixed data

Missing values

Outliers

Monotone transformations
Scalability

Irrelevant inputs

Linear combinations
Interpretable

Accurate

no no no

no no

no

no

The Top Five Algorithms

1 Decision trees (C4.5)
1 Neural networks (backpropagation)

1 Probabilistic networks (Naive Bayes;
Mixture models)

1 Support Vector Machines (SVMs)
1 Nearest Neighbor Method

Learning Decision Trees

1 Decision trees provide a very popular and
efficient hypothesis space

— Variable size: any boolean function can be
represented

— Deterministic
— Discrete and Continuous Parameters

1 Learning algorithms for decision trees can be
described as

— Constructive Search: The tree is built by adding
nodes

— Eager
— Batch (although online algorithms do exist)

Decision Tree Hypothesis Space

1 Internal nodes: test the value of particular features x; and
branch according to the results of the test

1 Leaf nodes: specify the class h(x)

Sunny Overcast Rain

|

High Normal Strong Weak

N\ / N\

Yes No

1 Features: Outlook (x,), Temperature (x,), Humidity (X5),
and Wind (x,)

1 X = (sunny, hot, high, strong) will be classified as No.

Decision Tree Hypothesis Space (2)

1 If the features are continuous, internal nodes
may test the value of a feature against a
threshold

Sunny Overcast Rain

|

>T75% <=75% >20 <=20

N\ N\

Decision Tree Decision Boundaries

1 Decision Trees divide the feature space into
axis-parallel rectangles and label each rectangle
with one of the K classes

Decision Trees Can Represent Any
Boolean Function

1 |[n the worst case, exponentially many nodes will
be needed, however

Decision Trees Provide Variable-
Sized Hypothesis Space

1 As the number of nodes (or depth) of tree
increases, the hypothesis space grows

— Depth 1 ("decision stump™) can represent any
boolean function of one feature

— Depth 2: Any boolean function of two features
and some boolean functions involving three
features:

1(X4 A X) V(= X4 A 2 X))

Objective Function

1 Let h be a decision tree

1 Define our objective function to be the number of
misclassification errors on the training data:

Jh)=[{(x,y)eS:h(x)=y}]
1 Find h that minimizes J(h)

Solution: Just create a decision tree with one path from root to
leaf for each training example

Bug: Such a tree would just memorize the training data. It would
not generalize to new data points

Solution 2: Find the smallest tree h that minimizes J(h).
Bug 2: This is NP-Hard
Solution 3: Use a greedy approximation

Learning Algorithm for Decision Trees

CIOAICEE))
If (y= 0 for all (x,y) € S) return new leaf(0)
else if (y =1 for all (x,y) € S) return new leaf(1)
else
Cchoose best attribute z;
So = all (x,y) € S with z; = 0;
S1 = all {(x,y) € S with z; = 1,
iIf Sop = 0 return new leaf(majority(S));
else if S; = 0 return new leaf(majority(S));
else return new node(z,;, GrowTree(Sy), GrowTree(Sq))

Choosing the Best Attribute (Method 1)

1 Perform 1-step lookahead search and choose
the attribute that gives the lowest error rate on
the training data

ChooseBestAttribute(S)
choose 537 to minimize Jj, computed as follows:
all (x,y) € S with z; = 0;
all (x,y) € S with z; = 1;
the most common value of y in Sp
the most common value of y in Sy
number of examples (x,y) € Sg with y # yg
;= number of examples (x,y) € S1 with y # 41
Jj=Jo+ J1 (total errors if we split on this feature)

return j

— O+ O OO

O— 010 O

OO -H =00 -

OO0 ™™~

An Example

Training
Examples

)
e
>
—
| -
=
<
e
(7p)
)
an
)
L
e
(@)
=
(7p)
O
O
i
@)

Choosing the Best Attribute (3)

1 Unfortunately, this measure does not always work well,
because it does not detect cases where we are making
‘progress” toward a good tree

A Better Heuristic from Information Theory

1 Let V be a random variable with the following probability
distribution

P(V=0) | P(V=1)
0.2 0.8
The surprise S(V=v) of each value of V is defined to be

S(V=v) = —log, P(V =vV)

1 An event with probability 1 has zero surprise
1 An event with probability 0 has infinite surprise

1 The surprise is equal to the asymptotic number of bits of
information that need to be transmitted to a recipient who
knows the probabilities of the results. Hence, this is also
called the description length of V.

Entropy

1 The entropy if V, denoted H(V), is defined as

1
HWV)= > —PV =v)logoP(V =)
v=0

1 This is the average surprise describing the result of one
trial of V (one coin toss). It can be viewed as a measure
of uncertainty

Mutual Information

1 Consider two random variables A and B that are not
necessarily independent. The mutual information
between A and B is the amount of information we learn
about B by knowing the value of A (and vice versa — it is
symmetric). It is computed as follows:

I(A;B)= H(B) - Y P(A=a) - H(B|A=a)

1 Consider the class y of each training example and the
value of feature x, to be random variables. The mutual
information quantifies how much x, tells us about y.

H(Y) = 0.9183
x1

P(x1=0) = Wl) = 0.3333
H(Y|x1=0) = 0.9710 H(Y|x1=1) = 0.7219

I(Y;x1) = 0.0304

Choosing the Best Attribute
(Method 2)

1 Choose the attribute x; that has the highest
mutual information with vy.

argmax I(zj;y) = H(y) —) P(z; =v)H(y|z; = v)

J

= argminZP(xj = v)H(y|z; = v)
J v

1 Define J(j) to be the expected remaining
uncertainty about y after testing x;

J(G) =) P(z; =v)H(ylz; = v)

Choosing the Best Attribute
(Method 2)

ChooseBestAttribute(S)

choose 3 to minimize]j, computed as follows:
= all (x,y) € S with z; = 0;
= all (x,y) € S with z; = 1;

= |Sol/ISl;

no := [Sol;

‘= number of examples in Sy with class y
PO,y = mQ,y/no Probability of examples from class y in Sp;
H(ylz; =0) = =X, po,y09p0,y;
compute p; and H(y|z; = 1) in the same way
Ji :=poH(y|r; =0) 4+ p1H(y|lz; = 1)

return j

Non-Boolean Features

1 Multiple discrete values
— Method 1: Construct multiway split
— Method 2: Test for one value versus all of the others

— Method 3: Group the values into two disjoint sets and
test one set against the other

1 Real-valued variables
— Test the variable against a threshold

1 |n all cases, mutual information can be
computed to choose the best split

Efficient Algorithm for Real-Valued
Features

1 To compute the best threshold 6; for attribute |

— Sort the examples according to x;.
1Let 6 be the smallest observed x; value

1Let ny :=0 and n,, :=0 be the number of examples from class
y=0 and y=1 such that X; < 0

I1Let nyg := Ny and n,g := N, be the number of examples from
class y=0 and y=1 such that x; > 6
— Increase 0

1Lety, be the class of the next instance
— ify, =0, then ny ++ and nyz--
— else n, ++ and n,gp—
1 Compute J(6) from ny , Ny , N, and nyg.
1 Remember the smallest value of J and the corresponding 6

Real-Valued Features

1 Mutual information of 0 = 1.2 is 0.2294

2, O 0 1 o1 1 0o 1 1
ri; 0.2 0.4 07 1113 1.7 1.9 2.4 29

no,L =3 |nor=1

nir=1(nir=4

1 Mutual information only needs to be computed at
points between examples from different classes

Handling Missing Values:
Proportional Distribution

Attach a weight w; to each example (x,Y;).
— At the root of the tree, all examples have a weight of 1.0

Modify all mutual information computations to use weights instead
of counts

When considering a test on attribute j, only consider those examples
for which x; is not missing

When splitting the examples on attribute |:

— Let p, be the probability that a non-missing example is sent to the left
child and pg be the probability that it is sent to the right child

— For each example (x,y;) that is missing attribute j, sent it to both
children. Send it to the left child with weight w; := w. - p, and to the right
child with weight w, := w;, - pg

When classifying an example that is missing attribute |:
— Send it down the left subtree. Let P(y, |x) be the resulting prediction
— Send it down the right subtree. Let P(yg|x) be the resulting prediction

— Return p, - P(y,|X) + pg - P(YrIX)

Handling Missing Values:
Surrogate Splits

1 Choose an attribute | and a splitting threshold 6;
using all examples for which x; is not missing

— Let u, be a variable that is O if (x; y) IS sent to the left
subtree and 1 if (X.,y;) Is sent to the right subtree

— For each remaining attribute q, find the splitting

threshold 6, that best predicts u;. Sort these by their
predictive power and store them in node x; of the
decision tree

1 WWhen classifying a new data point (x,y) that is
missing x;, go through the list of surrogate splits
until one is found that is not missing in x. Use X,
and 6, to decide which child to send x to.

Failure of Greedy Approximation

1 Greedy heuristics cannot distinguish random
noise from XOR

8
=
8
N

o)
o)
o)
o)
1
1
1
1

H OO, EFEOO
~OrOrOor ol
OO R KRR RO O

Decision Tree Evaluation

Criterion Perc Logistic LDA Trees

Mixed data no no no yes
Missing values no no yes
Outliers no yes
Monotone transformations no yes
Scalability yes
Irrelevant inputs somewhat
Linear combinations no
Interpretable

Accurate

Decision Tree Summary

1 Hypothesis Space
— variable size (contains all functions)
— deterministic
— discrete and continuous parameters

1 Search Algorithm
— constructive search
— eager
— batch

