Sequential Supervised Learning




Many Application Problems Require
Sequential Learning

1 Part-of-speech Tagging
1 Information Extraction from the Web
1 Text-to-Speech Mapping




Part-of-Speech Tagging

1 Given an English sentence, can we assign
a part of speech to each word?

1 “Do you want fries with that?”
1 <verb pron verb noun prep pron>




Information Extraction from the
Web

<dI><dt><b>Srinivasan Seshan</b> (Carnegie Mellon
University) <dt><a href=...><i>Making Virtual Worlds
Real</i></a><dt>Tuesday, June 4, 2002<dd>2:00 PM ,
322 Sieg<dd>Research Seminar

* % %

name name * * affiliation affiliation affiliation * * * *
title title title title * * * date date date date * time time *
location location * event-type event-type




Text-to-Speech Mapping

1 “photograph” => /F-0t@graf-/




Sequential Supervised Learning
(SSL)

1 Given: A set of training examples of the
form (X.,Y.), where

X = (X1, --- » Xj;) @nd

Y, = (Y1 ---» Yi7i) @re sequences of length
T

1 Find: A function f for predicting new
sequences: Y = f(X).




Examples of
Sequential Supervised Learning

Domain Input X, Output Y.

Part-of-speech |sequence of |sequence of
Tagging words parts of speech

Information sequence of |sequence of field
Extraction tokens labels {name, ...}

Test-to-speech |sequence of |sequence
Mapping letters phonemes




Two Kinds of Relationships

1 “Vertical” relationship between the x,'s and y,’s
— Example: “Friday” is usually a “date”

1 “Horizontal” relationships among the y,’s
— Example: “name” is usually followed by “affiliation”

1 SSL can (and should) exploit both kinds of
information




Existing Methods

1 Hacks
— Sliding windows
— Recurrent sliding windows
1 Hidden Markov models
— joint distribution: P(X,Y)
1 Conditional Random Fields
— conditional distribution: P(Y|X)
1 Discriminant Methods: HM-SVMs, MMMs, voted
perceptrons
— discriminant function: f(Y; X)




Sliding Windows




Properties of Sliding Windows

1 Converts SSL to ordinary supervised
learning

1 Only captures the relationship between
(part of) X and y,. Does not explicitly
model relations among the y,’s

1 Assumes each window is independent




Recurrent Sliding Windows




Recurrent Sliding Windows

1 Key ldea: Include y, as input feature when
computing Vi, .

1 During training:
— Use the correct value of y;

— Or train iteratively (especially recurrent neural
networks)

1 During evaluation:
— Use the predicted value of y,




Properties of Recurrent Sliding
Windows

1 Captures relationship among the y’s, but
only in one direction!

1 Results on text-to-speech:

Method Direction| Words Letters
sliding window | none 12.5% 69.6%
recurrent s. w. | left-right | 17.0% 67.9%
recurrent s. w. | right-left | 24.4% 74.2%




Hidden Markov Models

1 Generalization of Nalve Bayes to SSL

1P(y,)
1P(y; | Yi.1) assumed the same for all t

1P(X; | y) = P(Xeq | V) - P(Xeol Vo) - P(Xe,Ye)
assumed the same for all t




Making Predictions with HMMs

1 Two possible goals:
— argmaxy P(Y|X)

1find the most likely sequence of labels Y given the
Input sequence X

— argmax,, P(y, | X) forall t

1find the most likely label y, at each time t given the
entire input sequence X




Finding Most Likely Label Sequence:

The Trellis

s verb pronoun verb noun  noun
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Do you want  fries  sir? f

Every label sequence corresponds to a path through the
trellis graph.

The probability of a label sequence is proportional to

P(y,) - P(x4lyq) - P(Yaly4) - P(Xoly2) - P(y1 [ Y1q) - P(X¢ | yp)

verb
pronoun
noun

adjective




Converting to Shortest Path Problem

s verb pronoun verb noun  noun

verb

N1\

A'/b A\'/b g pronoun

/
W '7“\ IV
/XN (“ noun

V"\V V"\V V"\V

2\ W/ B\

Do you want  fries  sir? f

adjective

- P(y,) - P(X4ly) - P(Yaly4) - P(XolYs) -+ P(Y1 | Y1.9) - P(% | Y1) =

117109 [P(yy) - P(x4lyy)] + —log [P(yaly,) - P(X,|yp)] + --- + —log [P(yr | yr.4) -
P(X7 | y1)l

shortest path through graph. edge cost = —log [P(y|Y..1) - P(XY,)]




Finding Most Likely Label Sequence:
The Viterbi Algorithm

verb pronoun verb noun  noun

@ @ O verb

pronoun

@ © @
@ @ @ noun
@ @ @

adjective

want  fries sir? @

Step t of the Viterbi algorithm computes the possible successors of state
Yi«_and computes the total path length for each edge




Finding Most Likely Label Sequence:
The Viterbi Algorithm

verb pronoun verb noun  noun

@ verb
@ pronoun
@ noun

@ adjective

Do you want  fries sir? @

Each node y,=k stores the cost n of the shortest path that reaches it from
s and the predecessor class y, , = k' that achieves this cost

K = argminyt_1 —log [P(Y; | Yiq) - P | Yol + 1(Yiq)
(k) = minyt_1 —log [P(Y; | Yiq) - P | Yol + 1(Yyq)




Finding Most Likely Label Sequence:
The Viterbi Algorithm

verb pronoun verb noun  noun

verb
pronoun
noun

adjective

want fries sir?

Compute Successors...




Finding Most Likely Label Sequence:
The Viterbi Algorithm

verb pronoun verb noun  noun

verb
pronoun
noun

adjective

want  fries sir? @

Compute and store shortest incoming arc at each node




Finding Most Likely Label Sequence:
The Viterbi Algorithm

verb pronoun verb noun  noun

verb
pronoun
noun

adjective

want fries sir?

Compute successors




Finding Most Likely Label Sequence:
The Viterbi Algorithm

verb pronoun verb noun  noun

verb
pronoun
noun

adjective

want  fries sir? @

Compute and store shortest incoming arc at each node




Finding Most Likely Label Sequence:
The Viterbi Algorithm

verb pronoun verb noun  noun

verb
pronoun
noun

adjective

you want  fries sir?

Compute successors...




Finding Most Likely Label Sequence:
The Viterbi Algorithm

verb pronoun verb noun  noun

verb
pronoun
noun

adjective

want fries sir?

Compute and store shortest incoming edges




Finding Most Likely Label Sequence:
The Viterbi Algorithm

verb pronoun verb noun  noun

verb
pronoun
noun

adjective

want fries sir?

Compute successors (trivial)




Finding Most Likely Label Sequence:
The Viterbi Algorithm

verb pronoun verb noun  noun

verb
pronoun
noun

adjective

want fries sir?

Compute best edge into f




Finding Most Likely Label Sequence:
The Viterbi Algorithm

verb pronoun verb noun  noun

verb
pronoun
noun

adjective

you want  fries sir? f

Now trace back along best incoming edges to recover the predicted Y
sequence: “verb pronoun verb noun noun”




Finding the Most Likely Label
at time t: P(y, | X)

verb pronoun verb noun  noun

verb
pronoun
noun

adjective

want fries sir?

P(y;=2 | X) = probability of reaching y,;=2 from the start *
probability of getting from y,=2 to the finish




Finding the most likely class at
each time t

goal: compute P(y, | X4, ..., X7)
o Zy1:t_1 zyt+1:T P(y,) - P(X4lyq) - P(Yalyq) - P(Xaly2) - P(yr | Yr.4) - P(X7ly)

X Zy1:t_1 P(y,) - P(X4lyq) - P(Yalyq) - P(Xaly2) -+ P(YilYq) - POXe | ) -
zyt+1:-|- P(YeerlYd) PXeealYier) ==+ POY7 | Y1) - P(X7 | Y1)

o 2y Lo 2y [y, P(Y1) - POXlY4) - POy2lyq)] - P(Xaly2) - P(ysly2)] -
P(yily.o)l-

P(xlys) -

ZyH [P(YesalYe) - P(Xesa Y1) - Zy-l-_1 [P(Yralyr2) - POXqlyroq) - 2 [P(y+lyr
) PO Tyl -+ 1




Forward-Backward Algorithm

1 oY) = Zyt_1 P(Yi | Yiq) - POt [ Ye) - 0 4(Yieq)
— This is the sum over the arcs coming into y, =
K

— It is computed “forward” along the sequence
and stored in the trellis

1B,(Yy) = Zyt+1P(yt+1|yt) - P(Xtaq | Yeer): Brer(Yesr)

— It is computed “backward” along the sequence
and stored in the trellis

1P(y, | X) = oulyy) BiYe) / [2 ou(K) By(K)]




Training Hidden Markov Models

1 If the inputs and outputs are fully-
observed, this is extremely easy:

1 P(y,=K) = [# examples with y,=Kk] / m
1P(y=K |y =K) =

[# <k,k’> transitions] / [# of times y, = K]
1P(x,=v|[y=k)=

[# times y=k and x;=v ] / [# times Yy, = K]

1 Should apply Laplace corrections to these
estimates




Conditional Random Fields
@— @@
) () )

1 The y,'s form a Markov Random Field
conditioned on X: P(Y|X)

Lafferty, McCallum, & Pereira (2001)




Markov Random Fields

1 Graph G = (V,E)
— Each vertex v € V represents a random variable vy,

— Each edge represents a direct probabilistic
dependency.

1 P(Y)=1/Z exp [2. Y.(c(Y))]
— ¢ Indexes the cliques in the graph

— Y. is a potential function

— ¢(Y) selects the random variables participating in
clique c.




A Simple MRF

1 Cliques:

— singletons: {y}, {Y,}, {Y3}
— pairs (edges); {Y1,Yo}, {Y2,Y3}

1P((Y1,Y2,Y3) = 1/Z exp[¥y(y,) + Pa(y,) +
Wilys) + WialYq,Ya) + Wos(Ya,Ys)]




CRF Potential Functions are
Conditioned on X

PO @®
®@ @ @

1 Y (y,X): how compatible is y, with X?

1 ¥ 1(YoYr1,X): how compatible is a transition from y, ; to
y; with X?




CRF Potentials are Log Linear
Models

1 Wiy, X) = 2p By 9p(Ye.X)
Y (Ye Y X) = 20 M Ba(Yo Vit X)

1 where g, and f, are user-defined boolean
functions (“features”)

— Example: g,5; = [X; = “0" and y, = /@/]

1 we will lump them together as
YiYo Y1, X) = 25 Aa Fa(Yo Yier,X)




Making Predictions with CRFs

1 Viterbi and Forward-Backward algorithms
can be applied exactly as for HMMs




Training CRFs

i1let 0 ={B,, By, ---s Ay, Ay, ...} De all of our
parameters

1let F, be our CRF, so F,(Y,X) = P(Y|X)

1 Define the loss function L(Y,F,(Y,X)) to be
the Negative Log Likelihood

L(Y,

1 Goa
likeli

:O(Y’X)) - - |Og FG(Y=X)
. Find 6 to minimize loss (maximize

nood)

1 Algorithm: Gradient Descent




Gradient Computation
9 P(Y|X)
oy O |
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Gradient of Z

Z T exp We(ys, vi—1, X)
t

Z exp Yy Wi(ys, yi—1, X)
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Gradient Computation

qu(ytayt—laX) — ZP(Y/‘X) {Z fCI(yéayélaX)}
t Y/ t

Number of times feature q is true minus the expected number of times
feature q is true. This can be computed via the forward backward
algorithm. First, apply forward-backward to compute P(y, 4,Y; | X).

1
P(yr—1,y|X) = EZ > ap_1(y—1) - exp V(Y ye—1, X) - Be(yt)
v Ui 1

Then compute the gradient with respect to each 2,

qu(ytayt LX) =Y > Plye—1,91X) fq(ys, ye—1, X)

Yt Yt—1




Discriminative Methods

1 Learn a discriminant function to which the
Viterbi algorithm can be applied

— “Just get the right answer”
1 Methods:
— Averaged perceptron (Collins)

— Hidden Markov SVMs (Altun, et al.)
— Max Margin Markov Nets (Taskar, et al.)




Collins’ Perceptron Method

1If we ignore the global normalizer in the
CRF, the score for a label sequence Y
given an input sequence X Is

score(Y) = 3 Aafa(yi1,yt X)
1 a

1 Collin’s approach is to adjust the weights
A, so that the correct label sequence gets
the highest score according to the Viterbi
algorithm




Sequence Perceptron Algorithm

1 |nitialize weights A, =0
iForf{=1,...,Ldo
— For each training example (X,,Y))

1apply Viterbi algorithm to find the path Y with the
highest score

1for all a, update A, according to
A = hg *+ 24 [fa(Yo Y, X) = Fa(¥e Yirs X))
1 Compares the “viterbi path” to the “correct
path”. Note that no update is made Iif the
viterbi path is correct.




Averaged Perceptron

1Let 1Y be the value of A, after processing
training example I in iteration ¢

1 Define A" = the average value of A, =
1/(LN) X, 2,4

1 Use these averaged weights in the final
classifier




Collins Part-of-Speech Tagging with
Averaged Sequence Perceptron

1 Without averaging: 3.68% error
— 20 iterations

1 With averaging: 2.93% error
— 10 iterations




Hidden Markov SVM

1 Define a kernel between two input values
X and X' K(x,x).

1 Define a kernel between (X,Y) and (X',Y")
as follows:
K((X,Y), (X,Y')) =

25t Ys1 = Y11 & Ys =Y+ 1Iys = Vil k(X X')
Number of (y,_4,Y;) transitions that they share +
Number of matching labels (weighted by
similarity between the x values)




Dual Form of Linear Classifier

1 Score(Y|X) =
25 2.0 04(Ya) K((X;,Y3), (X,Y))

a indexes support vector” label sequences Y,

1 |_earning algorithm finds
— set of Y label sequences
— weight values o,(Y,)




Dual Perceptron Algorithm

1 Initialize o = 0
iForf{from1toLdo

— Forifrom1to N do
1Y = argmax, Score(Y | X))
1if Y # Y, then
— oy(Y;) = oy(Y;) + 1
— oy(Y) = oy(Y) — 1




Hidden Markov SVM Algorithm

1 For all i inttialize

— S, ={Y;} set of “support vector sequences” for i
— oc(Y) 0 forall Yin S,

2 For £ from 1 to L do
— Forifrom 1to N do
1Y = argmaxy..y. Score(Y | X)
1lf Score(Y; | X) < Score(Y | X))
—~AddYto S

— Solve quadratic program to optimize the a.(Y)
for all Y in S, to maximize the margin between
Y, and all of the other Y’s in S,

—If o;(Y) = 0, delete Y from S,




Altun et al. comparison

Named Entity Classification

@ Error




Maximum Margin Markov Networks

1 Define SVM-like optimization problem to
maximize the per time step margin
1 Define
AF(Xi’Yi’Y) = F(X;,Yi) — F(Xiy)
AY(Y, Y) =3, NS
1 MMM SVM formulation:
min [lw|[¢ + C X &
subject to
w - AF(X,Y,Y) > AY(Y,, Y) + & forall Y, forall |




Dual Form

maximize Y >y ai(Y) A (Y,, Y) -
\%

22 2. 25 2y oi(Y) a ( ) [AF(X,Y,Y) -
AF(X,Y, )

subject to

> ai(Y)=C forall
ou(Y) > 0 forall i, forall Y

Note that there are exponentially-many Y label
sequences




Converting to a Polynomial-Sized
Formulation

1 Note the constraints:
> ai(Y)=C forall
ou(Y) > 0 forall i, forall Y
1 These imply that for each i, the a.(Y) values are

proportional to a probability distribution:
QY | X)) = a(Y)/C
1 Because the MRF is a simple chain, this

distribution can be factored into local
distributions:

QY | X)) = IT; QFes, 91 1 X))
1 Let (Y4, ;) be the unnormalized version of Q




Reformulated Dual Form
max Y > > ui(g)Ige # yitl—

’Z: t yt

—S‘S‘ > 2 2 miGe- 1, 915 (T 15 Ys)

©J U Ynyi—1 % gLyl 4
AF(G_1, 9, X;) - AF (Y _1,7s, X ;)

subject to
> wi(G—1,0t) = pi(ge)
Yi—1

> pi(ge) C
Yt

22) (gt— 1, @t)




Variables in the Dual Form

1 1(K,k') for each training example i and
each possible class labels k, k’: O(NK?)

11.(K) for each trianing example i and
possible class label k: O(NK)

1 Polynomial!
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Taskar et al. comparison
Handwriting Recognition

O linear

M quadratic

[ cubic

log-reg: logistic regression
sliding window

CRF:

mSVM: multiclass SVM
sliding window

MA3N: max margin markov
net




Current State of the Art

1 Discriminative Methods give best results
— not clear whether they scale

— published results all involve small numbers of training
examples and very long training times

1 Work is continuing on making CRFs fast and
practical

— new methods for training CRFs
— potentially extendable to discriminative methods




