
Sequential Supervised LearningSequential Supervised Learning



Many Application Problems Require Many Application Problems Require 
Sequential LearningSequential Learning

PartPart--ofof--speech Taggingspeech Tagging
Information Extraction from the WebInformation Extraction from the Web
TextText--toto--Speech MappingSpeech Mapping



PartPart--ofof--Speech TaggingSpeech Tagging

Given an English sentence, can we assign Given an English sentence, can we assign 
a part of speech to each word?a part of speech to each word?

““Do you want fries with that?Do you want fries with that?””
<verb <verb pronpron verb noun prep verb noun prep pronpron>>



Information Extraction from the Information Extraction from the 
WebWeb

<dl><dt><b>Srinivasan Seshan</b> (Carnegie Mellon 
University) <dt><a href=…><i>Making Virtual Worlds 
Real</i></a><dt>Tuesday, June 4, 2002<dd>2:00 PM , 
322 Sieg<dd>Research Seminar

* * * name name * * affiliation affiliation affiliation * * * * 
title title title title * * * date date date date * time time * 
location location * event-type event-type



TextText--toto--Speech MappingSpeech Mapping

““photographphotograph”” => /=> /ff--Ot@grafOt@graf--//



Sequential Supervised Learning Sequential Supervised Learning 
(SSL)(SSL)

Given:  A set of training examples of the Given:  A set of training examples of the 
form (form (XXii,,YYii), where ), where 
XXii = = hhxxi,1i,1, , …… , , xxi,Ti,Tiiii andand
YYii = = hhyyi,1i,1, , …… , , yyi,Ti,Tiiii are sequences of length are sequences of length 
TTii

Find:  A function f for predicting new Find:  A function f for predicting new 
sequences: sequences: YY = = f(f(XX).).



Examples Examples ofof
Sequential Supervised LearningSequential Supervised Learning

sequence sequence 
phonemesphonemes

sequence of sequence of 
lettersletters

TestTest--toto--speech speech 
MappingMapping

sequence of field sequence of field 
labels {name, labels {name, ……}}

sequence of sequence of 
tokenstokens

Information Information 
ExtractionExtraction

sequence of sequence of 
parts of speechparts of speech

sequence of sequence of 
wordswords

PartPart--ofof--speech speech 
TaggingTagging

Output Output YYiiInput Input XXiiDomainDomain



Two Kinds of RelationshipsTwo Kinds of Relationships

““VerticalVertical”” relationship between the relationship between the xxtt’’ss and and yytt’’ss
–– Example: Example: ““FridayFriday”” is usually a is usually a ““datedate””

““HorizontalHorizontal”” relationships among the relationships among the yytt’’ss
–– Example: Example: ““namename”” is usually followed by is usually followed by ““affiliationaffiliation””

SSL can (and should) exploit both kinds of SSL can (and should) exploit both kinds of 
informationinformation

y1 y2 y3

x1 x2 x3



Existing MethodsExisting Methods
HacksHacks
–– SlidingSliding windowswindows
–– Recurrent sliding windowsRecurrent sliding windows

Hidden Markov Hidden Markov models models 
–– joint distribution: P(X,Y)joint distribution: P(X,Y)

Conditional Random Fields Conditional Random Fields 
–– conditional distribution: P(Y|X)conditional distribution: P(Y|X)

Discriminant Methods: HMDiscriminant Methods: HM--SVMs, MMMs, voted SVMs, MMMs, voted 
perceptrons perceptrons 
–– discriminant function: f(Y; X)discriminant function: f(Y; X)



Sliding WindowsSliding Windows

______thatthatwithwithfriesfrieswantwantyouyouDoDo______

verbverb→→youyouDoDo______

verbverb→→friesfrieswantwantyouyou

nounnoun→→withwithfriesfrieswantwant

prepprep→→thatthatwithwithfriesfries

pronpron→→______thatthatwithwith

pronpron→→wantwantyouyouDoDo



Properties of Sliding WindowsProperties of Sliding Windows

Converts SSL to ordinary supervised Converts SSL to ordinary supervised 
learninglearning
Only captures the relationship between Only captures the relationship between 
(part of) X and (part of) X and yytt.  Does not explicitly .  Does not explicitly 
model relations among the model relations among the yytt’’ss
Assumes each window is independentAssumes each window is independent



Recurrent Sliding WindowsRecurrent Sliding Windows

______thatthatwithwithfriesfrieswantwantyouyouDoDo______

______ verbverb→→youyouDoDo______

pronpron verbverb→→friesfrieswantwantyouyou

verbverb nounnoun→→withwithfriesfrieswantwant

nounnoun prepprep→→thatthatwithwithfriesfries

prepprep pronpron→→______thatthatwithwith

verbverb pronpron→→wantwantyouyouDoDo



Recurrent Sliding WindowsRecurrent Sliding Windows

Key Idea:  Include Key Idea:  Include yytt as input feature when as input feature when 
computing computing yyt+1t+1..
During training:During training:
–– Use the correct value of Use the correct value of yytt
–– Or train iteratively (especially recurrent neural Or train iteratively (especially recurrent neural 

networks)networks)
During evaluation:During evaluation:
–– Use the predicted value of Use the predicted value of yytt



Properties of Recurrent Sliding Properties of Recurrent Sliding 
WindowsWindows

Captures relationship among the Captures relationship among the yy’’ss, but , but 
only in one direction!only in one direction!
Results on textResults on text--toto--speech:speech:

74.2%74.2%24.4%24.4%rightright--leftleftrecurrent s. w.recurrent s. w.
67.9%67.9%17.0%17.0%leftleft--rightrightrecurrent s. w.recurrent s. w.
69.6%69.6%12.5%12.5%nonenonesliding windowsliding window
LettersLettersWordsWordsDirectionDirectionMethodMethod



Hidden Markov ModelsHidden Markov Models

Generalization of NaGeneralization of Naïïve Bayes to SSLve Bayes to SSL

y1 y2 y3 y4 y5

x1 x2 x3 x4 x5

P(yP(y11))
P(yP(ytt | y| ytt--11) assumed the same for all t) assumed the same for all t
P(P(xxtt | y| ytt) = P(x) = P(xt,1t,1 | y| ytt) ) ·· P(xP(xt,2t,2| y| ytt) ) LL P(xP(xt,nt,n,y,ytt) ) 
assumed the same for all tassumed the same for all t



Making Predictions with HMMsMaking Predictions with HMMs

Two possible goals:Two possible goals:
–– argmaxargmaxYY P(Y|X)P(Y|X)

find the most likely find the most likely sequencesequence of labels Y given the of labels Y given the 
input sequence Xinput sequence X

–– argmaxargmaxyytt
P(yP(ytt | X)  forall t| X)  forall t

find the most likely label yfind the most likely label ytt at each time t given the at each time t given the 
entire input sequence Xentire input sequence X



Finding Most Likely Label Sequence:Finding Most Likely Label Sequence:
The TrellisThe Trellis
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Every label sequence corresponds to a path through the 
trellis graph.

The probability of a label sequence is proportional to

P(y1) · P(x1|y1) · P(y2|y1) · P(x2|y2) L P(yT | yT-1) · P(xT | yT)



Converting to Shortest Path ProblemConverting to Shortest Path Problem
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maxy1,…,yT 
P(y1) · P(x1|y1) · P(y2|y1) · P(x2|y2) L P(yT | yT-1) · P(xT | yT) =

miny1,…,yT l 
–log [P(y1) · P(x1|y1)] + –log [P(y2|y1) · P(x2|y2)] + L + –log [P(yT | yT-1) ·

P(xT | yT)]

shortest path through graph.  edge cost = –log [P(yt|yt-1) · P(xt|yt)]



Finding Most Likely Label Sequence:Finding Most Likely Label Sequence:
The Viterbi AlgorithmThe Viterbi Algorithm
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Step t of the Viterbi algorithm computes the possible successors of state 
yt-1 _and computes the total path length for each edge



Finding Most Likely Label Sequence:Finding Most Likely Label Sequence:
The Viterbi AlgorithmThe Viterbi Algorithm
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Each node yt=k stores the cost µ of the shortest path that reaches it from 
s and the predecessor class yt-1 = k’ that achieves this cost

k’ = argminyt-1
–log [P(yt | yt-1) · P(xt | yt)] + µ(yt-1)

µ(k) = minyt-1
–log [P(yt | yt-1) · P(xt | yt)] + µ(yt-1)



Finding Most Likely Label Sequence:Finding Most Likely Label Sequence:
The Viterbi AlgorithmThe Viterbi Algorithm
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Compute Successors…



Finding Most Likely Label Sequence:Finding Most Likely Label Sequence:
The Viterbi AlgorithmThe Viterbi Algorithm
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Compute and store shortest incoming arc at each node



Finding Most Likely Label Sequence:Finding Most Likely Label Sequence:
The Viterbi AlgorithmThe Viterbi Algorithm
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Finding Most Likely Label Sequence:Finding Most Likely Label Sequence:
The Viterbi AlgorithmThe Viterbi Algorithm
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Compute and store shortest incoming arc at each node



Finding Most Likely Label Sequence:Finding Most Likely Label Sequence:
The Viterbi AlgorithmThe Viterbi Algorithm
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Finding Most Likely Label Sequence:Finding Most Likely Label Sequence:
The Viterbi AlgorithmThe Viterbi Algorithm
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Compute and store shortest incoming edges



Finding Most Likely Label Sequence:Finding Most Likely Label Sequence:
The Viterbi AlgorithmThe Viterbi Algorithm
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Finding Most Likely Label Sequence:Finding Most Likely Label Sequence:
The Viterbi AlgorithmThe Viterbi Algorithm
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Finding Most Likely Label Sequence:Finding Most Likely Label Sequence:
The Viterbi AlgorithmThe Viterbi Algorithm
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Now trace back along best incoming edges to recover the predicted Y 
sequence: “verb pronoun verb noun noun”



Finding the Most Likely LabelFinding the Most Likely Label
at time t: P(yat time t: P(ytt | X)| X)
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P(y3=2 | X) = probability of reaching y3=2 from the start * 
probability of getting from y3=2 to the finish



Finding the most likely class at Finding the most likely class at 
each time teach time t

goal: compute P(ygoal: compute P(ytt | | xx11, , ……, , xxTT))
∝ ∝ ∑∑yy1:t1:t--11

∑∑yyt+1:Tt+1:T
P(y1) · P(x1|y1) · P(y2|y1) · P(x2|y2) L P(yT | yT-1) · P(xT|yT)

∝ ∑∑yy1:t1:t--1 1 
P(y1) · P(x1|y1) · P(y2|y1) · P(x2|y2) L P(yt|yt-1) · P(xt | yt) ·

∑∑yyt+1:T t+1:T 
P(yP(yt+1t+1|y|ytt) P() P(xxt+1t+1|y|yt+1t+1) ) LL P(yT | yT-1) · P(xT | yT)

∝ ∑yt-1
[ L ∑y2

[∑y1
P(y1) · P(x1|y1) · P(y2|y1)] · P(x2|y2) · P(y3|y2)] L

P(yt|yt-1)] ·
P(xt|yt) ·
∑yt+1

[P(yt+1|yt) · P(xt+1|yt+1) L ∑yT-1
[P(yT-1|yT-2) · P(xT-1|yT-1) · ∑ [P(yT|yT-

1) · P(xT | yT)]] L ]



ForwardForward--Backward AlgorithmBackward Algorithm

ααtt(y(ytt) = ) = ∑∑yytt--11
P(yP(ytt | y| ytt--11) ) ·· P(P(xxtt | y| ytt) ) ·· ααtt--11(y(ytt--11))

–– This is the sum over the arcs coming into yThis is the sum over the arcs coming into ytt = = 
kk

–– It is computed It is computed ““forwardforward”” along the sequence along the sequence 
and stored in the trellisand stored in the trellis

ββtt(y(ytt) = ) = ∑∑yyt+1t+1
P(yP(yt+1t+1|y|ytt) ) ·· P(P(xxt+1t+1 | y| yt+1t+1))·· ββt+1t+1(y(yt+1t+1))

–– It is computed It is computed ““backwardbackward”” along the sequence along the sequence 
and stored in the trellisand stored in the trellis

P(yP(ytt | X) = | X) = ααtt(y(ytt) ) ββtt(y(ytt) / [) / [∑∑kk ααtt(k) (k) ββtt(k)](k)]



Training Hidden Markov Models Training Hidden Markov Models 

If the inputs and outputs are fullyIf the inputs and outputs are fully--
observed, this is extremely easy:observed, this is extremely easy:
P(yP(y11=k) = [# examples with y=k) = [# examples with y11=k] / m=k] / m
P(yP(ytt=k | y=k | ytt--11 = k= k’’) = ) = 
[# <k,k[# <k,k’’> transitions] / [# of times y> transitions] / [# of times ytt = k]= k]
P(xP(xjj = v | y = k) = = v | y = k) = 
[# times y=k and x[# times y=k and xjj=v ] / [# times y=v ] / [# times ytt = k]= k]
Should apply Laplace corrections to these Should apply Laplace corrections to these 
estimatesestimates



Conditional Random FieldsConditional Random Fields

The The yytt’’ss form a Markov Random Field form a Markov Random Field 
conditioned on X:  P(Y|X)conditioned on X:  P(Y|X)

Lafferty, McCallum, & Pereira (2001)

y2y1 y3

x1 x2 x3



Markov Random FieldsMarkov Random Fields

Graph G = (V,E)Graph G = (V,E)
–– Each vertex v Each vertex v ∈∈ V represents a random variable V represents a random variable yyvv..
–– Each edge represents a direct probabilistic Each edge represents a direct probabilistic 

dependency.dependency.

P(Y) = 1/Z exp [P(Y) = 1/Z exp [∑∑cc ΨΨcc(c(Y(c(Y))]))]
–– c indexes the cliques in the graphc indexes the cliques in the graph
–– ΨΨcc is a potential functionis a potential function
–– c(Yc(Y) selects the random variables participating in ) selects the random variables participating in 

clique c.clique c.



A Simple MRFA Simple MRF

Cliques:Cliques:
–– singletons:  {ysingletons:  {y11}, {y}, {y22}, {y}, {y33}}
–– pairs (edges); {ypairs (edges); {y11,y,y22}, {y}, {y22,y,y33}}
P(P(hhyy11,y,y22,y,y33ii) = 1/Z exp[) = 1/Z exp[ΨΨ11(y(y11) + ) + ΨΨ22(y(y22) +    ) +    

ΨΨ33(y(y33) + ) + ΨΨ1212(y(y11,y,y22) + ) + ΨΨ2323(y(y22,y,y33)])]

y2y1 y3



CRF Potential Functions are CRF Potential Functions are 
Conditioned on XConditioned on X

ΨΨtt(y(ytt,X):  how compatible is y,X):  how compatible is ytt with X?with X?

ΨΨt,tt,t--11(y(ytt,y,ytt--11,X): how compatible is a transition from y,X): how compatible is a transition from ytt--11 to to 
yytt with X?with X?

y2y1 y3

x1 x2 x3



CRF Potentials are Log Linear CRF Potentials are Log Linear 
ModelsModels

ΨΨtt(y(ytt,X,X) = ) = ∑∑bb ββbb ggbb(y(ytt,X,X))
ΨΨt,t+1t,t+1(y(ytt,y,yt+1t+1,X) = ,X) = ∑∑aa λλaa ffaa(y(ytt,y,yt+1t+1,X),X)

where where ggbb and and ffaa are userare user--defined defined booleanboolean
functions (functions (““featuresfeatures””))
–– Example: gExample: g2323 = [= [xxtt = = ““oo”” and and yytt = = //@@/]/]

we will lump them together aswe will lump them together as
ΨΨtt(y(ytt, y, yt+1t+1,X) = ,X) = ∑∑aa λλaa ffaa(y(ytt, y, yt+1t+1,X),X)



Making Predictions with CRFsMaking Predictions with CRFs

Viterbi and ForwardViterbi and Forward--Backward algorithms Backward algorithms 
can be applied exactly as for HMMscan be applied exactly as for HMMs



Training Training CRFsCRFs

Let Let θθ = {= {ββ11, , ββ22, , ……, , λλ11, , λλ22, , ……} be all of our } be all of our 
parametersparameters
Let FLet Fθθ be our CRF, so Fbe our CRF, so Fθθ(Y,X) = P(Y|X)(Y,X) = P(Y|X)
Define the Define the lossloss function L(Y,Ffunction L(Y,Fθθ(Y,X)(Y,X)) to be ) to be 
the Negative Log Likelihoodthe Negative Log Likelihood
L(Y,FL(Y,Fθθ(Y,X)) = (Y,X)) = –– log Flog Fθθ(Y,X) (Y,X) 
Goal: Find Goal: Find θθ to minimize loss (maximize to minimize loss (maximize 
likelihood)likelihood)
Algorithm: Gradient DescentAlgorithm: Gradient Descent



Gradient ComputationGradient Computation
gq =

∂

∂λq
logP(Y |X)

=
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∂λq
log
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Gradient of ZGradient of Z
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Gradient ComputationGradient Computation

Number of times feature q is true minus the expected number of times 
feature q is true.   This can be computed via the forward backward 
algorithm.  First, apply forward-backward to compute P(yt-1,yt | X).  

gq =
X
t

fq(yt, yt−1, X)−
X
yt

X
yt−1

P (yt−1, yt|X)fq(yt, yt−1,X)

Then compute the gradient with respect to each λq

P (yt−1, yt|X) =
1

Z

X
yt

X
yt−1

αt−1(yt−1) · expΨ(yt, yt−1, X) · βt(yt)

gq =
X
t

fq(yt, yt−1, X)−
X
Y 0
P (Y 0|X)

⎡⎣X
t

fq(y0t, y0t−1,X)

⎤⎦



Discriminative MethodsDiscriminative Methods

Learn a discriminant function to which the Learn a discriminant function to which the 
Viterbi algorithm can be appliedViterbi algorithm can be applied
–– ““just get the right answerjust get the right answer””
Methods:Methods:
–– Averaged perceptron (Collins)Averaged perceptron (Collins)
–– Hidden Markov SVMs (Altun, et al.)Hidden Markov SVMs (Altun, et al.)
–– Max Margin Markov Nets (Taskar, et al.)Max Margin Markov Nets (Taskar, et al.)



CollinsCollins’’ Perceptron MethodPerceptron Method

If we ignore the global normalizer in the If we ignore the global normalizer in the 
CRF, the score for a label sequence Y CRF, the score for a label sequence Y 
given an input sequence X isgiven an input sequence X is

CollinCollin’’s approach is to adjust the weights s approach is to adjust the weights 
λλaa so that the correct label sequence gets so that the correct label sequence gets 
the highest score according to the Viterbi the highest score according to the Viterbi 
algorithmalgorithm

score(Y ) =
X
t

X
a
λafa(yt−1, yt, X)



Sequence Perceptron AlgorithmSequence Perceptron Algorithm

Initialize weights Initialize weights λλaa = 0= 0
For For ℓℓ = 1, = 1, ……, L do, L do
–– For each training example (XFor each training example (Xii,Y,Yii))

apply Viterbi algorithm to find the path apply Viterbi algorithm to find the path ŶŶ with the with the 
highest scorehighest score
for all for all a,a, update update λλaa according toaccording to
λλaa := := λλaa + + ∑∑tt [f[faa(y(ytt,y,ytt--11,X) ,X) –– ffaa((ŷŷtt, , ŷŷtt--11, X)], X)]

Compares the Compares the ““viterbi pathviterbi path”” to the to the ““correct correct 
pathpath””.  Note that no update is made if the .  Note that no update is made if the 
viterbi path is correct.viterbi path is correct.



Averaged PerceptronAveraged Perceptron

Let Let λλaa
ℓℓ,i,i be the value of be the value of λλaa after processing after processing 

training example training example ii in iteration in iteration ℓℓ
Define Define λλaa

** = the average value of = the average value of λλaa = = 
1/(LN) 1/(LN) ∑∑ℓℓ,i,i λλaa

ℓℓ,i,i

Use these averaged weights in the final Use these averaged weights in the final 
classifierclassifier



Collins PartCollins Part--ofof--Speech Tagging with Speech Tagging with 
Averaged Sequence PerceptronAveraged Sequence Perceptron

Without averaging: 3.68% errorWithout averaging: 3.68% error
–– 20 iterations20 iterations
With averaging: 2.93% errorWith averaging: 2.93% error
–– 10 iterations10 iterations



Hidden Markov SVMHidden Markov SVM

Define a kernel between two input values Define a kernel between two input values 
xx and and xx’’:  k(:  k(xx,,xx’’).).
Define a kernel between (X,Y) and (XDefine a kernel between (X,Y) and (X’’,Y,Y’’) ) 
as follows:as follows:
K((X,Y), (XK((X,Y), (X’’,Y,Y’’)) =)) =

∑∑s,ts,t I[yI[yss--11 = y= y’’tt--11 & y& yss = y= y’’tt] + I[y] + I[yss = y= y’’tt] k(] k(xxss,,xx’’tt))
Number of (yNumber of (ytt--11,y,ytt) transitions that they share + ) transitions that they share + 
Number of matching labels (weighted by Number of matching labels (weighted by 
similarity between the similarity between the xx values)values)



Dual Form of Linear ClassifierDual Form of Linear Classifier

Score(Y|X) = Score(Y|X) = 
∑∑jj ∑∑aa ααjj(Y(Yaa) K((X) K((Xjj,Y,Yaa), (X,Y))), (X,Y))

aa indexes indexes ““support vectorsupport vector”” label sequences Ylabel sequences Yaa

Learning algorithm findsLearning algorithm finds
–– set of Yset of Yaa label sequenceslabel sequences
–– weight values weight values ααjj(Y(Yaa))



Dual Perceptron AlgorithmDual Perceptron Algorithm

Initialize Initialize ααjj = 0= 0
For For ℓℓ from 1 to L dofrom 1 to L do
–– For i from 1 to N doFor i from 1 to N do

ŶŶ = argmax= argmaxYY Score(Y | XScore(Y | Xii))
if if ŶŶ ≠≠ YYii thenthen

–– ααii(Y(Yii) = ) = ααii(Y(Yii) + 1) + 1
–– ααii((ŶŶ) = ) = ααii((ŶŶ) ) –– 11



Hidden Markov SVM AlgorithmHidden Markov SVM Algorithm
For all i initializeFor all i initialize
–– SSii = {Y= {Yii}  set of }  set of ““support vector sequencessupport vector sequences”” for ifor i
–– αα

ii
(Y)=0 for all Y in S(Y)=0 for all Y in Sii

For For ℓℓ from 1 to L dofrom 1 to L do
–– For i from 1 to N doFor i from 1 to N do

ŶŶ = argmax= argmaxYY≠≠YYii
Score(Y | XScore(Y | Xii))

If Score(YIf Score(Yii | X| Xii) < Score() < Score(ŶŶ | X| Xii))
–– Add Add ŶŶ to Sto Sii
–– Solve quadratic program to optimize the Solve quadratic program to optimize the ααii(Y) (Y) 

for all Y in Sfor all Y in Sii to maximize the margin between to maximize the margin between 
YYii and all of the other Yand all of the other Y’’s in Ss in Sii

–– If If ααii(Y) = 0, delete Y from S(Y) = 0, delete Y from Sii



Altun et al. comparisonAltun et al. comparison



Maximum Margin Markov NetworksMaximum Margin Markov Networks

Define SVMDefine SVM--like optimization problem to like optimization problem to 
maximize the maximize the per time stepper time step marginmargin
DefineDefine
∆∆F(XF(Xii,Y,Yii,,ŶŶ) = F(X) = F(Xii,Y,Yii) ) –– F(XF(Xii,,ŶŶ))
∆∆Y(YY(Yii, , ŶŶ) = ) = ∑∑ii I[I[ŷŷtt ≠≠ yyitit]]

MMM SVM formulation:MMM SVM formulation:
min ||w||min ||w||22 + C + C ∑∑ii ξξii
subject tosubject to

ww ·· ∆∆F(XF(Xii,Y,Yii,,ŶŶ) ) ≥≥ ∆∆Y(YY(Yii, , ŶŶ) + ) + ξξi i forall Y, forall iforall Y, forall i



Dual FormDual Form

maximize  maximize  ∑∑ii ∑∑YY ααii((ŶŶ) ) ∆∆(Y(Yii, , ŶŶ) ) ––
½½ ∑∑

ii
∑∑
ŶŶ
∑∑jj ∑∑ŶŶ’’ ααii((ŶŶ) ) ααjj((ŶŶ’’) [) [∆∆F(XF(Xii,Y,Yii,,ŶŶ) ) ··

∆∆F(XF(Xjj,Y,Yjj,,ŶŶ’’)])]
subject tosubject to
∑∑ŶŶ ααii((ŶŶ) = C  forall i) = C  forall i
ααii((ŶŶ) ) ≥≥ 0  forall i, forall 0  forall i, forall ŶŶ

Note that there are exponentiallyNote that there are exponentially--many many ŶŶ label label 
sequencessequences



Converting to a PolynomialConverting to a Polynomial--Sized Sized 
FormulationFormulation

Note the constraints:Note the constraints:
∑∑ŶŶ ααii((ŶŶ) = C  forall i) = C  forall i
ααii((ŶŶ) ) ≥≥ 0  forall i, forall 0  forall i, forall ŶŶ
These imply that for each i, the These imply that for each i, the ααii((ŶŶ) values are ) values are 
proportional to a probability distribution:  proportional to a probability distribution:  

Q(Q(ŶŶ | X| Xii) = ) = ααii((ŶŶ) / C) / C
Because the MRF is a simple chain, this Because the MRF is a simple chain, this 
distribution can be factored into local distribution can be factored into local 
distributions:  distributions:  

Q(Q(ŶŶ | X| Xii) = ) = ∏∏tt Q(Q(ŷŷtt--11, , ŷŷtt | X| Xii))
Let Let µµii((ŷŷtt--11, , ŷŷtt) be the unnormalized version of Q) be the unnormalized version of Q



Reformulated Dual FormReformulated Dual Form

subject to X
ŷt−1

µi(ŷt−1, ŷt) = µi(ŷt)

X
ŷt

µi(ŷt) = C

µi(ŷt−1, ŷt) ≥ 0

max
X
i

X
t

X
ŷt

µi(ŷt)I[ŷt 6= yi,t]−

1

2

X
i,j

X
t

X
ŷt,ŷt−1

X
s

X
ŷ0s,ŷ0s−1

µi(ŷt−1, ŷt)µj(ŷ0s−1, ŷ
0
s)

∆F(ŷt−1, ŷt,Xi) ·∆F(ŷ0s−1, ŷ0s,Xj)



Variables in the Dual FormVariables in the Dual Form

µµii(k,k(k,k’’) for each training example i and ) for each training example i and 
each possible class labels k, keach possible class labels k, k’’: O(NK: O(NK22))
µµii(k) for each trianing example i and (k) for each trianing example i and 
possible class label k: O(NK)possible class label k: O(NK)
Polynomial!Polynomial!



Taskar et al. comparisonTaskar et al. comparison
Handwriting RecognitionHandwriting Recognition

log-reg: logistic regression 
sliding window

CRF: 

mSVM: multiclass SVM 
sliding window

M^3N: max margin markov 
net



Current State of the ArtCurrent State of the Art

Discriminative Methods give best resultsDiscriminative Methods give best results
–– not clear whether they scalenot clear whether they scale
–– published results all involve small numbers of training published results all involve small numbers of training 

examples and very long training timesexamples and very long training times

Work is continuing on making CRFs fast and Work is continuing on making CRFs fast and 
practicalpractical
–– new methods for training CRFsnew methods for training CRFs
–– potentially extendable to discriminative methodspotentially extendable to discriminative methods


