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ABSTRACT

Rainfall is a very important weather variable, especially for agricul-
ture. Unfortunately, rain gauges fail frequently. This paper describes
a conditional mixture model for predicting the presence and amount
of rain at a weather station based on measurements at nearby sta-
tions. The model is evaluated on simulated faults (blocked rain
gauges) inserted into observations from the Oklahoma Mesonet.
Using the negative log-likelihood as an anomaly score, we evaluate
the area under the ROC and precision-recall curves for detecting
these faults. The results show very good performance.
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1 INTRODUCTION

Rainfall is a vital weather variable for humanity. Many countries in
the world depend primarily on rainfed agriculture for their staple
foods. In sub-Saharan Africa, more than 95% of the farmed land
is rainfed; for Latin America it is almost 90%; and for South Asia
it is approximately 60% [15, 20]. Achieving high data quality for
rainfall data is challenging for three reasons. First, in many regions,
rainfall is zero on most days, but on days when rain does occur, the
amount has a heavy-tailed distribution. This makes it difficult to
create a probabilistic model of predicted rainfall that can be applied
to flag measurement errors. Second, rainfall is often a spatially local
phenomenon. The correlation between rainfall at nearby weather
stations can be very low, especially for rain showers. Third, rain
gauges fail frequently because they collect precipitation and funnel
it through a small orifice before measuring it (often with a tipping
bucket mechanism). The orifice can be blocked by dust and leaves,
and the moving parts of the tipping bucket can break or jam.
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Our work is motivated by the weather station network TAHMO,
the Trans-Africa Hydro-Meteorological Observatory. TAHMO has
the objective of covering all of sub-Saharan Africa with low cost
weather stations with an inter-station spacing of 30 km and a total
of roughly 20,000 stations. This network will revolutionize the col-
lection of weather and water data in Africa and will be the largest
(by way of scale and number) uniform-station sensor weather net-
work in the world [18, 22]. However, the most prevalent method for
quality control of precipitation data relies on simple range check
rules combined with human expert analysis. It is not practical to
employ human experts to perform quality control on such large
weather networks.

In this work, we introduce a conditional mixture model to detect
failures in rain gauges due to blockage. We design a two-stage model
that assigns a predicted probability to the precipitation measured
at one weather station based on nearby stations. The negative log
of that probability provides an anomaly score that signals unusual
precipitation readings, which are then flagged for human inspection.
In the first stage of the model, we predict whether it rained or not
via logistic regression. This handles the large number of days with
zero precipitation. In the second stage, we predict the amount of
rain via a log-normal distribution. This models the heavy tail of
the non-zero precipitation. Both steps use the amount of rain at k
neighboring stations as covariates.

In the following sections, we first describe the TAHMO weather
network in more detail and survey related work. We then introduce
the problem definition and the method in detail. In the subsequent
sections, we present experiments to evaluate the effectiveness of
the method on data from the Oklahoma weather Mesonet.

2 THE TAHMO WEATHER NETWORK

TAHMO currently has approximately 600 automated weather sta-
tions deployed in 22 countries in sub-Saharan Africa. The stations
are the ATMOS 41 model manufactured by METER, Incand in-
clude sensors for precipitation, temperature, atmospheric pres-
sure, relative humidity, solar radiation, and wind speed and direc-
tion (https://www.metergroup.com/environment/products/atmos-
41-weather-station/). Measurements are recorded every five min-
utes. Each station has a data logger that uploads data multiple times
per day via cellular data services.

The rain gauge is based on an electrical drip counter. Precipi-
tation enters a collecting funnel on the top of the station. At the
spout of the funnel, the precipitation is formed into standard-sized
droplets, which are then counted electrically. At the time of writing,
the majority of the 180 open trouble tickets are for precipitation
problems. The rain gauge has two primary failure modes: blockage
and short circuit. Blockage is caused by dust, leaves, bird droppings,
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and other materials blocking or constricting the funnel spout. Short
circuits arise when something, typically an insect, lodges between
the two electrodes and causes false drip counts. Short circuits are
particularly easy to detect, because the measured rainfall rapidly
exceeds normal levels. Blockages are more challenging, because
they are difficult to distinguish from the many days that have no
measurable rainfall.

Most TAHMO stations are located at schools, and one of the
school teachers is recruited to be the station host and regularly
clean the station. In return, the teacher (and the school) get access
to the data for their school and for the TAHMO network. TAHMO
provides lesson plans and educational materials to incorporate
weather data into elementary and secondary school curricula in
science and mathematics.

Data from TAHMO is analyzed by a set of quality control rules
developed for the Oklahoma Mesonet by Fiebrich, et al. [6]. The
precipitation rule is able to detect high readings caused by short
circuits, but it is not able to detect blockages, because a reading of
zero is very common. Data values are flagged as “ok”, “inconsistent”,
“suspect”, and “error” depending on the type of rule that is violated
and the degree of the violation. A report summarizing the number of
problem flags per station is consulted daily by the network manager.
This person is responsible for creating trouble tickets and assigning
them to field engineers. Depending on the nature of the fault, the
field engineer may contact the host and ask them to clean the
station, or they may travel to the station to replace the batteries,
failed sensors, or the entire station as necessary.

Once errors are removed from the TAHMO data, it is provided to
the governments of each of the countries where TAHMO operates. It
is also incorporated into the CHIRPS global rainfall model that com-
bines satellite and ground station data to provide quasi-global clima-

tology from 1981 to the present (https://www.chc.ucsb.edu/data/chirps).

CHIRPS is in turn a key component of the Famine Early Warning
System Network (https://fews.net). TAHMO is seeking additional
partners interested in applying the data to create or improve busi-
nesses in crop insurance, logistics, and transportation.

3 RELATED WORK

There have been many studies in weather data quality control
(QQC) [7, 9, 11, 16, 19]. Most approaches follow standard practice for
industrial quality control. Measured values from each sensor are
checked to see if they are within legal ranges or within ranges based
on historical climate. Some QC rules check values to detect large
step changes. Other QC rules verify that the variance in measured
values over a time period exceeds a specified non-zero threshold in
order to detect flat line readings caused by frozen or broken sensors
[3,5].

These approaches to quality control do not work well for precip-
itation [21]. For example, we expect long periods of zero precipita-
tion as well as large step changes in precipitation, so step tests and
variance tests fail. Recently, many approaches that use multiple
stations for QC procedures have been proven effective [10, 12]. The
spatial regression test (SRT) uses nearby stations data to predict
observations at the target station [7, 11]. Gutman and Quayle [8]
employ inverse distance weighting to predict the observation at the
target station was the weighted average of observations at nearby
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stations. Eischeid, et al. [4] employ multiple regression to predict
the value at the target station, and Hubbard, et al., [10] compute
interpolation weights in proportion to the standard error estimate
of the difference between the observation at the target station and
the measurements taken at nearby stations within a certain radius.

You, et al. [21] partition the observations at the target station
into 10 bins based on equal quantiles of the precipitation observed
at the nearest neighboring station. Then a gamma distribution is fit
to each bin based on 30 years of daily precipitation data. During QC,
the relevant gamma distribution is selected depending on which
bin the neighboring station’s observed precipitation falls into. A
flag is raised if the observed precipitation at the target station is in
the tails of the selected gamma distribution.

Our work is most similar to the multiple regression approach
of Scheid, et al. [4]. However, we employ a model that combines
a binary prediction for the presence of precipitation with a log-
normal regression to estimate the quantity of precipitation.

4 PROBLEM SETUP

Let s1, 82, ... s, denote a network of weather stations. Let R(s, t)
denote the total rainfall measured at station s during the 24-hour
period starting at time ¢. Given daily total precipitation data R(s, t)
for all n weather stations, our goal is to assign a score to each station
s on each day ¢ such that small values indicate the station’s rain
gauge was working correctly and large values indicate that the rain
gauge is likely to be blocked or broken.

When assigning a score to station s, we will use the observations
from nearby stations. Specifically, we will compute a set of k neigh-
boring stations, denoted #(s), that are most useful for predicting the
observations at station s. Let r,l(s)(t) denote the vector of rainfall
observations for the 24-hour period beginning at time ¢. When the
station s is clear, we will drop the (s) and write this as ry(t). For
example, figure 1 shows readings for a target station (named FITT)
and five nearby stations (SULP, TISH, ADAX, VANO, and CENT).

5 METHODS

We now define a series of progressively more sophisticated models
for scoring the precipitation at station s as a function of its neighbors
n. Each historical data point is a pair (ry(5)(t), R(s, ). To simplify
the notation, we will adopt the standard machine learning notation
(xi,yi), where i indexes the data points, x; = ry(s)(t) gives the
observations at the neighboring stations, and y; = R(s, t) specifies
the desired target value to be predicted.

5.1 Logistic regression model

Our first model simply predicts the probability p1(s, t) that it is
raining at station s at time ¢ by fitting a logistic regression:

o 1
p(y|x5 0{) - 1+ e—(ag+a1TX)’
where y = 0 indicates no rain and y = 1 indicates rain. The param-
eters of the model are denoted by the vector & = («o, a1), where ag
is a scalar and ay is a k-dimensional vector with one value for each
neighboring station. The notation & x denotes the dot product

1
between the vector a3 and the vector of precipitation observations
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Figure 1: Daily precipitation of target station (FITT), and its most similar stations with distance in KM separation from the

Oklahoma Mesonet network

x = ry. The model is fit to observations of the form (ry(s)(1), ),
where y = 1if R(s, t) > 0 and 0 otherwise.

Unfortunately, this model performs poorly because the large
number of zero-precipitation days overwhelms the smaller number
of rainy days, which causes the model to predict zero rain on most
days and to assign it a high probability. The performance is so poor
that we do not include this model in our experiments. However, we
will use it as a component in the mixture models described below.

5.2 Linear regression model

Our second model is simple linear regression, similar to You, et al.

[21]. We fit a model of the form

g=po+hx

where § is the predicted value of y = R(s, t) given the observed
precipitation x = r;(5)(t) of the neighboring stations. We fit this
model with the objective of minimizing the squared error between
7 and the observed value y = R(s, t).

The score, LRR(s, t) for R(s, t) is defined as the squared error

LRR(s, t) = (§ — R(s, 1))%.

The linear regression model suffers from the same drawback as
logistic regression: It is unable to handle the large number of zero-
rain days. However, because it is the most fundamental method for
predictive modeling, We will include it as our baseline method.

5.3 Random forest regression model

Random forest regression fits a set of randomized regression trees
to the historical precipitation data. The primary advantage of ran-
dom forests is that they can fit complex non-linear relationships
unlike the two previous models which both assumed a linear rela-
tionship between the neighboring stations and the target station.
In particular, random forests can easily deal with the large number
of zero-rain days. We fit a forest of 100 trees. To score the observed
rain R(s, t) at target station s, we pass the observed precipitation at
the neighbors x through the random forest to obtain a predicted pre-
cipitation . We denote the resulting score as RFR(s, t) and compute
it as the squared difference between the predicted and observed
precipitation:

RFR(s, t) = (§ — R(s, 1))2.

5.4 Random forest conditional density (RFCD)

The LRR and RFR scores assume that squared error is a good mea-
sure. An alternative is to fit a full probability density model p(r|ry)
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and then define the score as —log p(R(s, t)|ry(s)(t)). This will assign
high scores to observed precipitation R(s, t) that has low probability
according to the fitted model.

For this purpose, we employ the Random Forest Conditional
Density (RFCD) method of Pospisil and Lee [14]. This method con-
structs a random forest using a slight modification of the random
forest method. Then to compute the conditional density p(y’|x’), it
sends the observations x’ through each tree of the random forest.
When the observations reach the leaf € of tree 7, the RECD method
collects up all of the training data points F; (x") = {(x, y)} that were
assigned to that leaf during the tree-building process. It takes the
multiset union Z(x”) = U]TVI:1 Fy (x”), where M = 100 is the number
of trees in the forest, and the multiset union keeps all duplicates.
We will denote the elements of Z by z1, . . ., z|z|, where each z; has
the form z; = (x;, y;).

RFCD then computes the conditional density via a kernel density
estimate. Let K}, (u) be a kernel function with width parameter h.
The conditional density is defined as

1Z()I

Pl 1 e
PR = 7 D Kn(yi—v).

i=1

Plugging in x” = ry(5)(t), we obtain the score

—log p(R(s, t)[ry(s)(1))-

5.5 Conditional Mixture Model

All of the models discussed so far attempt to fit a single model
structure to all of the data. An alternative is to model the rainy and
non-rainy days with separate components. The result is a mixture
model—a weighted combination of two models.

Similar models have been applied previously to both count data
and continuous data [13]. A model similar to ours was developed
by Duan [1] to assess health care policies, but it is not a predic-
tive model and cannot be applied to score the probability of an
observation.

5.5.1 Single station unconditional mixture model. Let us start by
defining a model for the precipitation at the target station consider-
ing no neighbor stations. We will model the probability P(R(s, t) =
r) as

1-p1, r=0

p1-N(log(r);pmo?) r>o0. M

P(R(s,t) =r) = {
In this model, p; is the probability that rain will occur at station s
and time t. Hence, 1 — p; is the probability of no rain. The quantity
of rain is modeled as a log-normal distribution N with mean y and
variance o,

This is a mixture model with two components. In general, a
two-component mixture model has the form P(x) = (1 —p1)Pp(x) +
p1P1(x), where 1 — p; and p; are called the mixing proportions, and
Py and P; are called the mixture components. In our case, the first
component Py is an “impulse” at 0. We can write this as §(r); it is
also known as the Dirac delta function. An impulse is a probability
density at a single point that integrates to 1. The second component
is the lognormal distribution. With this notation, we can also write
(1) as

P(R(s,t) = r) = (1= p1)do(r) + p1 - N(log(r); p, o2)

ZeMicheal and Dietterich.

It is easy to fit this model. Let r1, ..., rnN be a set of rainfall obser-
vations for station s. Let N7 be the number of observations that are
nonzero. Then

. N

p1= N

Let rl,...,rN be the non-zero observations. Then we can estimate
the mean and variance of the lognormal distribution as

1 & ;
i=— ) logrt
= S

and
1 Ny
~2 i AN2
0“=— logr' — [1)“.
N ;( gr' =i

5.5.2 A conditional mixture model. Now let us consider the case
where we wish to predict the probability of rain at station s using
observations from neighboring stations 1(s): P(R(s, t) = rlry(1)).
Generalizing from our single-station mixture model, we can capture
this as a conditional mixture model:

P(R(s, t) = rlry(t)) =

(1 =p1(rp(t); @) r=0
p1(ry(t); @) - N (log(r); fo + B log(ry () + €), a?) r>o.

The first component is a Dirac delta function at zero, and the
second component is a lognormal regression model, with covariates
log(ry(t) + €) and parameters f = (fo, f1) and 2. The purpose of
the € is to avoid taking the logarithm of zero when there is no rain.
We set € = 0.1 and € = (0.1,...,0.1). The mixing proportion is
computed by the logistic regression model p;(ry; @) as defined in
Section 5.1.

To estimate f3, we could restrict our attention to only the cases
where R(s, t) > 0 and predict log(R(s, t)) as a function of the log-
transformed covariates log(R(s’, t)) for s’ € n(s). However, this
assumes that our logistic regression model makes perfect 0-1 pre-
dictions, whereas because of the properties of the logistic function,
it always predicts a probability in (0, 1). Consequently, we chose to
fit the lognormal regression to all of the observations.

To fit the mixture model, we first fit the logistic regression model
to obtain . Then we plug the values of p;(s, t) = p(y = 1|x; @) into
the following likelihood function and then find the values of f to
maximize the likelihood over the historical data:

1) = Y fr(s, )] log(R(s. 1) + )
t
~(Bo+ > ﬁsrlog(R(s’,t)+e))]2.

s en(s)
This is different from the estimation done in [2], where the second
model component is fit only to the days with non-zero precipitation
and there is no need for € and €.
Once we have fit the model, we compute the residuals on the log
scale.

P(R(s,1) = log(Rs, )+ €)= (fo+ ), By log(R(s". 1) +€)) (3)
s’en(s)

Finally, we fit the variance parameters? of the lognormal distribu-
tion by computing the variance of these residuals.
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Figure 2: The distribution of of residuals showing nominal
(black) and anomalous (red) sensor readings. The vertical
axis is the computed density P(p(R(s, t))|ry(t)).

Figure 2 shows the distribution of the residuals. The residuals
corresponding to sensor failures mostly fall into the right tail, where
they are easily detected by the proposed model.

To assign a score to the observed precipitation R(s, t), we com-
pute its p-value according to the mixture distribution. We do this
by computing the cumulative distribution function (CDF) F(p) of
the conditional mixture model:

F(p) = (1= p1) + p1®(p; 0,0°), ©

where p = p(R(s, t)|ry(t)) is the residual computed according to
equation (3). The mean in ® is zero, because we are modeling the
CDF of the residuals rather than of the precipitation. Note that all of
the parameters depend on the neighboring stations r(s). We write
the score of y = R(s, t) as

MNORM.CDF(y) = —log[min{F(p(y)). 1 - F(p(y))}]. ~ (5)
where p(y) is the residual computed by equation 3.

5.5.3 An Extended Mixture Model. The above model works fairly
well, but the impulse at zero prevents the model from computing
useful p-values when there is heavy rainfall at the neighboring
stations and a blocked rain gauge at the target station. To address
this, we extend the mixture model to incorporate both mixture
components when r = 0. Let

Frlry(0) = N(log(r); fo + B log(ry(t) + € o®))

be the lognormal probability density from Equation (2). With this
shorthand, we can write the modified model as Equation (6):

P(R(s, t) = r|ry(t)) =

min{1 - p1(ry(t); @), p1(ry(t); @) - f(rlry@)} r=0
p1(ry (@) @) - f(rlry (1) r>0.

The change is in the first term, where we take the minimum of
(1 — p1) and the density predicted by the log linear regression. This
is no longer a proper density when r = 0. However, it gives better
results when the lognormal model predicts a large value but the
observed rainfall is zero.

We compare two methods for using this model to assign a score
to R(s, t). The first method computes the negative log of the fitted

(©)
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probability density:
MNORM.NLL(r) = —log P(R(s, t) = r|ry(t)).

This assumes that the residuals have a Gaussian distribution with
mean zero and variance o2, The second method fits a non-parametric
kernel density estimator (KDE) to the residuals using a Gaussian
kernel and automatic kernel width selection via grid search [17].
Let KDE(p) denote the kernel density estimator and re-define f to
be

f(rlry(t)) = KDE(p(r)).
Then the score is computed from Equation (6) using this version of
f:
MNORM.KDE(r) = —log P(R(s, t) = r|ry(1)).

6 EXPERIMENTAL EVALUATION

We designed an experiment to address the following research ques-
tions.

RQ1: What is the best method for selecting the set 5(s) of
neighboring stations?

RQ2: Which model gives the best accuracy?

RQ3: What is the best way to model the residual?

6.1 Experiment Design

We obtained two years of weather observation data from Oklahoma
(OK) Mesonet [6], which operates 120 stations distributed across the
state of Oklahoma. We extracted precipitation data and aggregated
it to a daily time step. All compared models were fit to data from
2008 and then tested on data from 2009. The data contained no
actual occurrences of blocked rain gauges, but it did contain several
instances of gauge failure coded as large negative values by the
data logger. We discarded these cases, as they are easily detected
by simple rules.

To assess the accuracy of the models for each target station s, we
insert simulated blocked sensor faults into the 2009 Oklahoma data
as follows. The precipitation time series for s was segmented into
rainfall episodes of more than one day in duration. Five percent of
these episodes were then selected uniformly at random, and the
observed precipitation values were replaced with zero readings.
Figure 3 shows an example of the faults injected for the ACME
station.

6.1.1 Metrics. We use the following metrics to evaluate the per-
formance of the models.

Precision @ 80% recall (PREC@80): Precision is the fraction
of all detected failures that are real sensor failures, and Recall is
the fraction of all real sensor failures detected. Ideally, we want to
achieve 100% precision (everything we detect is correct) and 100%
recall (we detect everything that is broken). The Precision@80% re-
call metric measures the precision achieved by a model that detects
80% of the true (simulated) faults. We measure this by setting a
decision threshold 6 such that all observations with scores greater
than 0 are declared to be faults. We choose 0 to achieve 80% recall
and then measure the precision.

Average precision (AP): Average precision is defined as the aver-
age precision at a set of decision thresholds. This captures how a
models detect failures without considering any specific decision



COMPASS 20, June 15-17, 2020, , Ecuador

ACME
° Rain=0 .
S Rain>0
- Injected fault
. 8 o Top 10 detected fault
€
E o] .
[Ce]
c
g
m v ] : ) o o
o | S e o
N ° . . ] 2
N S S AN PU P S-S A
T T T T
0 100 200 300
Days

(a) Red dots are set to 0 mm to simulate rain gauge blockage. Blue circle are top
detected faults

o |
o
o |
Te]
~ 9 :
c . o o
£ o] . s
e ® °
© °
X o | ° o
N 5
o | o ° 3
P o o . R
TS v B VT W
T T T T
0 100 200 300
Days
(b) Rainfall data with the injected faults set to 0
L
~ A
|
™~
.| -
2
b4
@
~ A
|
ﬂ3 T T T T
0 100 200 300
Days

(c) Negative likelihood of the points after anomaly scoring. Blue points incir-
cled are succesffully detected of top 10 faults

Figure 3: Example of rain gauge blockage fault injection and
detection for the ACME station (2008 data).

ZeMicheal and Dietterich.

LANE
HUGO
CENT
TALI
TISH
CLAY
BROK
NEWP
KENT
FITT
IDAB
WIST
CLou
MTHE
CLRM

0.0 01 0.2 03 0.4 05
Normalized Importance

Figure 4: Feature importance ranked using random forest
fitted across all stations for target station DURA

o ve %
Q

T Muskogee

Q

p

&)

o_IQ'gQ
LRy

reig
o O

~ z
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it.

threshold. It is equivalent to measuring the area under the precision-
recall curve, which plots the precision as a function of recall (by
varying 6).

Area under ROC curve (AUC): The ROC curve plots the tradeoff
between the false alarm rate and the true alarm rate. The area
under this curve (AUC) can be interpreted as the probability that
the model will assign a higher score to a randomly-selected faulty
measurement than to a randomly-selected good reading. A good
model will have an AUC close to 1.0, whereas, a model that assigns
scores at random will have an AUC of 0.5.

6.2 Selecting nearby stations

To address RQ1 studied two methods for selecting the neighboring
stations n(s). The first is to use the k geographically-nearest stations
(as measured by Haversine distance). The second is to fit a random
forest to predict whether P(R(s, t) > 0) at station s based on the
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Table 1: Mean accuracy +1 standard error on 2009 Oklahoma
Mesonet with inserted faults detected by the MNORM.NLL
model.

n(s)

Aggregation | Method AUC AP

Day RF 0.85 +£0.10 0.55+0.28
Distance 0.81+ 0.11 0.47+0.27

Episode RF 0.88 £ 0.11 0.65+0.31
Distance 0.86+ 0.11 0.58+ 0.30

observed precipitation at all of the weather stations in the region
(excluding s) and then use the random forest variable importance
score to select the k most informative stations within 100 km.

This is similar to Eischeid, et al., [4], who compute the pairwise
correlation between monthly precipitation time series of the target
station and nearby stations and select the four neighboring stations
with the highest correlation coefficients. Similarly, Hubbard, et al.,
[10] select neighboring stations based on the standard error of a
simple linear regression that predicts the value at the target station
from the value of the candidate neighbor station. The 5 neighbors
with smallest standard error are selected and employed in their
weighted regression model.

Figure 4 shows a typical example of for the random forest impor-
tance scores, and Figure 5 shows the stations selected for the VANO
target station. Note that in this case, the most predictive stations
are all located on the north side of VANO.

We evaluated these two neighbor selection algorithms by select-
ing neighbors, fitting the model of Equation (6), and measuring the
resulting AUC and AP for detecting the inserted rain gauge block-
ages using the MNORM.NLL score. We measure this effectiveness
on two time scales. First, we measure separately for each day that
the gauge is blocked. Second, we compute the metrics for entire pre-
cipitation episodes. We consider that an episode has been detected
if at least one day within the episode was scored as an anomaly.
The rationale for scoring episodes is that in field application, if at
least one day is detected, then the network manager will notice the
problem and create a trouble ticket.

Table 1 shows the results. To answer RQ1, we see that the ran-
dom forest method for choosing 7(s) is superior to the distance
method according to both metrics and at both the daily and episode
level (p < 0.05 with a paired differences test; not shown). The per-
formance on episodes is better than the performance on individual
days, which is unsurprising given that episodes are longer than sin-
gle days, so they provide more opportunities to detect the problem
(also significant at p < 0.05 with a paired differences test).

6.3 Model comparison

To address RQ2 and RQ3, we ran a set of experiments to detect
blockages of rain gauges during rain events. We compare all of
the models to the baseline models for failure detection. We eval-
uated 120 stations on individual day detection performance. We
compute the metrics for each station separately, and finally we
report the metrics averaged across the 120 stations along with a
95% confidence interval. Table 2 and Figure 6 show the results.
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Figure 6: Average AUC, AP and PREC@80 recall across all
weather station of OK in 2009

Table 2: Summary of model comparisons + standard error
on 2009 Oklahoma Mesonet with inserted faults.

Metric AP AUC PREC@80 Recall
LRR 0.26+0.02 0.85+0.02 0.22+0.02
RFR 0.39+0.03 0.90+0.01 0.28+0.02
QF 0.15+0.01 0.82+0.01 0.20+0.01
MNORM.CDF 0.63+0.03 0.90+0.02 0.31+0.04

MNORM.NLL 0.71+0.04 0.95+0.01 0.57+0.05
KDE.NLL 0.70+£0.04  0.94+0.01 0.57+0.05

For RQ2, the results show that all variants of the proposed models
(MNORM.CDF, MNORM.NLL, KDE.NLL) have significantly better
performance than the baseline models as measured by AP and
PREC@80 and slightly better performance on AUC.

The AUC values above 0.90 show that the models work well in
ranking the failures above the correctly measured values. However,
further looking into the precision-recall tradeoff, we see significant
differences in performance across the models. The baseline LRR
and conditional quantile forest density (QF) perform significantly
worse than all other models. This aligns with our intuition that
the inflated zero value degrades the performance of both models.
We expected the QF to achieve comparable results to the random
forest regression (RFR), as both are less sensitive to the inflated
zeros. However, on both AP and PREC@80 recall QF is worse than
RFR. We suspect the reason could be related to the extra modeling
of density under QF. The trees fit for QF are shallower because they
need to have “large” leaves (i.e., that contain many data points) in
order to give stable density estimates. This smoothness may lead
to biases, especially near zero.

In contrast, the proposed conditional mixture models are consis-
tently better in AP and PREC@80 than all other baseline models.
The best model (MNORM.NLL) is able to achieve 57% precision
while detecting 80% of the faulty days. This means, the network
manager will need to deal with 43% false alarms. This is signifi-
cantly better than the best baseline model (RFR), which generates
around 72% false alarms to achieve the same level of recall.

Let us now turn to RQ3, which asks which of the three methods
(CDF, NLL, or KDE) is the best method for computing a failure score
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for 2009 precipitation of MNORM.CDF & MNORM.NLL

from the fitted mixture model. The results clearly show that the CDF
method performs the worst. This is somewhat surprising, because
from a theoretical standpoint, the CDF method is the only way to
combine the impulse §y with the continuous lognormal density. The
problem with the CDF method is that the cumulative distribution
function jumps immediately up to 1 — p; at zero precipitation, so it
often assigns a high probability to zero values, even when the rain
gauge is blocked.

The other two methods, MNORM.NLL and KDE.NLL, are statis-
tically indistinguishable, with MNORM.NLL having a slight advan-
tage.

To study how performance varies across stations, we show two
scatter plots. Figure 7 plots the AP of MNORM.CDF on the hori-
zontal axis and MNORM.NLL on the vertical axis. We observe that
the majority of points lie above the diagonal line, which matches
the overall result that MNORM.NLL is generally better. But we do
observe that MNORM.CDF is better for several stations.

Figure 8 plots the AP of MNORM.NLL on the horizontal axis
and the AP of RFR (random forest regression) on the vertical axis.
RFR was the best of the baseline (non-mixture) models. Most of the
points lie below the diagonal line, which shows that MNORM.NLL
is the better method for most stations. However, again we observe
that some stations lie substantially above the diagonal.

To understand this better, we looked at the point indicated as
GRA2, which is the one furthest above the diagonal line. Figure 9
shows that this is a weather station near the border between Okla-
homa and Texas. The green stations indicate the chosen neighbors,
and they are all fairly far away from GRA2 and all lie on one side
of it. Perhaps in such situations, the linearity assumptions of the
lognormal regression model lead to problems, and the random for-
est method is able to do a better job. In this case, RFR achieves an
AP near 0.8 whereas the AP of MNORM.NLL is below 0.5.

The overall lesson is that none of the methods we studied was
the best on every station. Instead, the best scoring method may
need to be chosen separately for each station.

7 CONCLUDING REMARKS

In this work, we have shown that a two-stage conditional mixture
model can detect (simulated) blocked rain gauge events despite the
challenges of precipitation quality control. We implemented three

ZeMicheal and Dietterich.
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Figure 8: Average precision (AP) of 120 weather stations OK
for 2009 precipitation of MNORM.NLL & RFR
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Figure 9: GRA2 location at the border of Oklahoma state

baseline methods (linear regression, random forest regression, and
quantile forest regression) and three variations of a conditional
mixture model (MNORM.CDF, MNORM.NLL, and KDE.NLL). All
methods were assessed for their ability to detect injected faults in
the 120 weather stations of the Oklahoma Mesonet. The statistical
models were fit to (clean) data from 2008 and then evaluated on
data from 2009 with simulated faults.

The conditional mixture models give much better Average Pre-
cision and Precision@80% Recall than the baseline methods, with
the MNORM.NLL giving the best overall performance. However,
detailed examination showed that the best model can vary from
one station to another, and sometimes the random forest method
gives the highest fault detection performance.

One potential direction for improvement is to fit the lognormal
regression using a robust loss function such as the Huber loss. This
might further improve the ability of the mixture models to handle
the large number of zero values.

The methods in this paper are currently being deployed on the
TAHMO weather network, and will be operational by August, 2020.
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