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ABSTRACT

Anomaly detectors are often used to produce a ranked list of statis-

tical anomalies, which are examined by human analysts in order

to extract the actual anomalies of interest. This can be exceedingly

difficult and time consuming when most high-ranking anomalies

are false positives and not interesting from an application perspec-

tive. In this paper, we study how to reduce the analyst’s effort by

incorporating their feedback about whether the anomalies they

investigate are of interest or not. In particular, the feedback will be

used to adjust the anomaly ranking after every analyst interaction,

ideally moving anomalies of interest closer to the top. Our main

contribution is to formulate this problem within the framework of

online convex optimization, which yields an efficient and extremely

simple approach to incorporating feedback compared to the prior

state-of-the-art. We instantiate this approach for the powerful class

of tree-based anomaly detectors and conduct experiments on a

range of benchmark datasets. The results demonstrate the utility

of incorporating feedback and advantages of our approach over

the state-of-the-art. In addition, we present results on a significant

cybersecurity application where the goal is to detect red-team at-

tacks in real system audit data. We show that our approach for

incorporating feedback is able to significantly reduce the time re-

quired to identify malicious system entities across multiple attacks

on multiple operating systems.
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1 INTRODUCTION

General-purpose anomaly detectors typically operate by identifying

and ranking statistical outliers in the data. Different detectors make

different choices for the statistics to monitor and combine, which

can result in very different anomaly rankings for the same data

set. Thus, the utility of a particular detector for an application

depends on how well its ranking aligns with what is interesting

from an application perspective. For example, in a computer security

application, the password file may appear anomalous compared to

other system files based on access-pattern statistics. However, an

analyst would understand the reason for this statistical deviation

and would not be interested in that particular anomaly by itself.

In general, the gap between statistical outliers and the semantics

of an application can result in high false-positive rates and easily

render an anomaly detector unusable.

One way to reduce false-positive rate is to build domain knowl-

edge into a detector. For example, a designer might apply domain

expertise to select statistics that are more likely to produce interest-

ing anomalies and/or filter anomalies based on semantically defined

white lists. Unfortunately, this requires significant expertise about

both the application and anomaly detection. There is also a risk

that important anomalies will be missed due to bias introduced by

the designer.

In this paper, we consider an alternative approach to reduce false

positives based on incorporating feedback from an end-user analyst.

In traditional anomaly detection (without feedback), an analyst is

presented with a ranked list of anomalies and then investigates

anomalies in that order until time is up. If anomalies of interest

are low in this list, then significant effort will be required to find

them. Rather, in our setting of feedback-guided anomaly discovery,

after investigating the currently top-ranked instance, the analyst

provides feedback about whether the instance was of interest or

not. This feedback is used by the detector to adjust the anomaly

scores with the goal of moving anomalies of interest higher in the

ordering. This approach has the advantage of being customizable

by the end-user analyst with little overhead on the analyst’s time.



The primary question is whether learning can be made efficient and

accurate enough to demonstrate a benefit in practice. In this paper,

we demonstrate that significant benefits are possible on benchmark

data and on a large-scale computer security application.

The main contribution of this paper is to formulate feedback-

guided anomaly detection within the framework of online convex

optimization and derive simple, efficient, and effective algorithms.

This is done by associating a convex loss function to each feedback

response, which rewards the anomaly score for aligning with the

feedback. We consider two different methods, which differ in their

choice of loss function. By leveraging the well-studied area of on-

line convex optimization, our approaches inherit the simplicity and

efficiency of the online algorithms as well as the solid theoretical

grounding, where convergence is understood. Prior state-of-the-art

approaches, such as AAD [1], are significantly more complex to

implement, incur much higher computational complexity, and have

less clear theoretical underpinnings. In addition, prior approaches

incorporate a significant number of parameters, whereas, our ap-

proaches have a single learning rate parameter, for which we show

that a single value works well across all of our experiments.

While our feedback approach can be applied quite generally, in

this paper we focus on the popular class of tree-based anomaly

detectors, which includes the state-of-the-art Isolation Forest de-

tector [13], among others. At a high-level, detectors in this class

are distinguished based on how they “assign weights” to edges in

their trees. Our feedback approach is able to automatically span this

space, covering existing and new tree-based detectors, by tuning

the weights in response to feedback. We conduct experiments on

individual benchmark problems from prior work and on six large

anomaly detection benchmark sets. The results show that our on-

line approaches are able to significantly accelerate the rate that an

analyst can find anomalies compared to not using feedback. We

also show significant improvements over the prior state-of-the-art.

We also demonstrate our approach on real cybersecurity attack

data collected from a recent DARPA red team exercise, which con-

tains multiple attacks on multiple operating systems, over multiple

days. We focus on the problem of detecting anomalous system enti-

ties, with the goal of quickly identifying the malicious entities that

are part of an attack. The malicious entities are extremely rare in

the data, which yields a very difficult anomaly detection problem.

Our results show that our feedback-based approach allows for ma-

licious system entities to be discovered significantly earlier than

when no feedback is used by the system.

2 ANOMALY DETECTION PROBLEM SETUP

We consider anomaly detection problems defined over a set ofm
data instances D = {x1, . . . ,xm }. Often the data instances are de-

scribed as real-valued vectors, but our approach is agnostic to the

instance representation. We will assume, however, that the associ-

ated anomaly detector for the instances has a particular generalized

linear form (see Section 4). There is an unknown partition of D
into a set of nominal instances N and a set of alien instances A, so
that D = N ∪ A. Generally the nominal instances account for an

overwhelming fraction of the data, that is, |A| � |N |, which is one

of the key challenges in anomaly detection. We refer to instances

in A as aliens, rather than just anomalies, to clarify that those are

the semantically interesting instances that we wish to discover in

the data. In most applications, the aliens are generated by a process

distinct from the process generating the nominals, in particular, a

process that is important to detect for the application. For example,

in our computer security application, the data instances describe

the behavior of computer system entities, such as processes, files,

and netflows, and the aliens correspond to the malicious entities

that are part of an attack.

Since D is typically large, manual search for aliens through all

instances is not practical. Anomaly detectors help address this

problem by assigning anomaly scores to instances in D to yield

an overall anomaly raking, with the goal of having the aliens be

higher ranked than the nominals. Given such a ranking, an analyst

can inspect instances in decreasing order of anomaly rank to bet-

ter direct their search for aliens. Of course, anomaly detectors are

rarely perfect, and nominals are often ranked above aliens. Thus,

the practical utility of an anomaly detector, in this setting, is related

to the amount of analyst effort required to uncover alien instances.

In our experiments, we will measure how many aliens are discov-

ered per instance investigated and how many instances must be

investigated until the first alien is discovered.

The above setting uses a static anomaly ranking throughout

the investigation. This fails to take into account information about

the result of each analyst investigation. The setting of feedback-

guided anomaly discovery aims to use that information to improve

the anomaly detector during its operation. In particular, on each

round, the analyst investigates the currently top-ranked instance

in D and labels it as “nominal” or “alien”, depending on whether

it is of interest or not. The labeled instance is then given to the

anomaly detector as feedback, which is used to possibly adjust

the anomaly ranking. The process of investigating the top ranked

instance, giving feedback to the detector, and adjusting the ranking

continues until the analyst resources are exhausted.

This setting is related to active learning in the sense that the

algorithm is providing the analyst with instances to be labeled.

Whereas most traditional active learning work focuses on deciding

which instance to query next, we fix that choice in this work (query

the top ranked instance) and instead focus on how to best update the

anomaly detector based on the feedback. This strategy of querying

the top ranked instance makes sense, given our goal of quickly

identifying aliens. There is work, however, on related problems that

suggests non-myopic query strategies may be beneficial (e.g. [11]).

3 RELATEDWORK

The general problems of active learning [18] is closely related to our

work. Active learning mainly focuses on finding a query strategy

to select instances that provide the most useful information for

learning. In this work, rather, we use a simple greedy instance

selection mechanism and place our emphasis on how to best adapt

the anomaly detector in response to feedback. It is possible that

more complex active learning query strategies may also benefit our

setting in future work.

Rare-category detection [14] is another closely related problem.

The goal of rare-category detection is to uncover at least one in-

stance from each of some set of unknown categories as quickly as

possible. While related to our problem of feedback-guided anomaly



discovery, our focus is to uncover as many instances from the alien

class as possible using the minimal number of queries to the analyst.

There are several other efforts that have considered incorporat-

ing feedback into a sequential setting for anomaly detection [16, 23],

where data arrives in an online fashion and must be queried when

it arrives or be ignored. Rather, in our work, we focus on the batch

anomaly detection setting, where we have a large set of data that is

being analyzed in order to find the aliens as efficiently as possible.

The most closely related prior work is the Active Anomaly Dis-

covery (AAD) algorithm [1, 2], where the same setting for incor-

porating feedback into anomaly detection is studied. In [1] AAD

was introduced as a way to incorporate feedback into a the LODA

anomaly detector [15]. LODA forms an ensemble of component

anomaly detectors based on random linear projections, which are

combined via uniform weights. At each step, the AAD approach [1]

defines and solves an optimization problem based on all prior an-

alyst feedback, which results in new weights for the components.

This optimization approach was later applied to adjust the weights

of the Isolation Forest anomaly detector [2]. One disadvantage of

this approach is that the optimization problem involves a number

of components that each have hyper-parameters associated with

them. This makes it difficult to develop a formal characterization of

the overall objective being optimized and requires careful selection

of the hyperparameters. In addition, the optimization problem is

non-convex and requires a relatively complex “alternating” convex

optimization approach with its own parameters. Rather, one of our

main motivations is to do as well or better than AAD using a much

simpler and efficient approach with a minimal number of parame-

ters. In addition, our approach is built on top of the well-established

area of online convex optimization, which allows it to inherit the

theoretical characterizations developed by that community.

Some additional efforts on incorporating feedback into anomaly

detection include: SSAD (Semi-Supervised Anomaly Detection) [8]

and AI2 [24]. SSAD incorporates knowledge of labeled instances

within a semi-supervised learning setting and AI2 is an ensemble

of unsupervised anomaly detectors with a supervised learner. An-

other supervised method called ATGP [9] uses some labeled data

to estimate a convex combination of a set of anomaly detectors.

In [1], it was shown that AAD is able to significantly outperform

these methods, establishing AAD as the state-of-the-art, which we

compare to in this paper.

Since we employ our feedback approach on cybersecurity data,

we also mention closely related work in security. Prior work has

studied anomaly detection for host-based intrusion detection [3, 6,

7, 17, 20]. The major focus of existing work is on learning normal

behavior from sequences of system calls or execution control flow.

These approaches show promise but are prone to high false positive

rate, which hinders their use. Our approach is motivated by recog-

nizing the difficulty of achieving low false positive rates using fixed

anomaly detection schemes across a wide range of host systems.

By adapting the detection system based on analyst feedback, we

aim to provide a more robust system that can quickly be tuned to

be effective on any given host system.

4 INCORPORATING FEEDBACK VIA ONLINE

CONVEX OPTIMIZATION

In this section, we first overview the online convex optimization

(OCO) framework and our corresponding formulations of feedback-

guided anomaly discovery. Next, we describe the OCO algorithms

used in this work, their properties, and some implementation choices.

4.1 Online Convex Optimization

Many classic and new online learning algorithms can be described

and analyzed within the OCO framework. A good introduction to

OCO can be found in [19]. Here we describe only the elements

essential for our work.

OCO is formulated as an iterative game against a potentially ad-

versarial environment where our moves are vectors from a convex

set S. At discrete time steps t the game proceeds as follows:

(1) We select a vectorwt ∈ S.
(2) The environment selects a convex function ft : S → R.
(3) We suffer a loss ft (wt ).

Roughly speaking, the goal is to select a sequence of vectors with

small accumulated loss over time. Because there are no restrictions

on the sequence of convex functions and because we must selectwt

before seeing ft , the total loss over T steps can be arbitrarily large.

Thus, the objective of OCO is typically stated in terms of the regret

with respect to the best vectorw∗ in hindsight. More formally, given

a T -step game episode where we play (w1,w2, . . . ,wT ) against
(f1, f2, . . . , fT ) the total T step regret is equal to

RegretT =

T∑
t=1

ft (wt ) − min
w∗ ∈S

T∑
t=1

ft (w∗), (1)

which is our accumulated loss minus the minimum loss possible

on the sequence of functions using any fixed vector in S. A funda-

mental goal of OCO algorithms is to achieve worst-case regret that

grows sub-linearly in T , since the time-averaged regret then goes

to zero. This “no regret” property is powerful, since it indicates

that an algorithm is competitive with the best possible solution

in hindsight (for large enough T ) even without the advantage of

hindsight. As an example, the family of Follow-the-Regularized-

Leader algorithms achieves a regret that grows as O
(√
T
)
under

fairly general conditions.

4.2 Loss Functions for Query-Guided Anomaly

Discovery

Query-guided anomaly discovery can also be viewed as a game

where on each round we output an anomaly ranking over the data

instances and we get feedback on the top-ranked instance. We

wish to minimize the number of times we receive “nominal” as the

feedback response. To put this problem in the OCO framework, we

first need to place some reasonable restrictions on the form of the

anomaly detectors that we will consider. We study the family of

generalized linear anomaly detectors (GLADs), which are defined

by a feature function ϕ : D �→ Rn , which maps data instances to

n-dimensional vectors and an n-dimensional weight vector w . In

this work, the anomaly score assigned to an instance x is defined to

be SCORE(x ;w) = −w · ϕ(x), with larger scores corresponding to



more anomalous instances.1 Our algorithm will adapt an anomaly

detector by adjusting the weight vectorw in response to feedback.

We will see in Section 5 that tree-based anomaly detectors are

easily modeled as GLADs. Many other types of detectors can also

be parameterized in various ways as GLADs to support adaptation.

For example, prior work on query-guided anomaly discovery [1]

parameterized the LODA anomaly detector [15] as a GLAD by

assigning a weight to each of its local models. As another example,

given any collection of anomaly detectors, we can form an ensemble

by using their scores as the components of ϕ and weighting their

relative influences via w . Depending on the type of detector, it

will sometimes be natural to place constraints on w to capture

prior expectations. For example, in our tree-based models, it will be

natural to place non-negativity constraints on the weights. As long

as the constraint sets are convex (such as non-negativity) and there

is an associated projection operator (see below), our algorithm can

easily incorporate such constraints.

Given a GLAD parameterization of an anomaly detector, we

can now connect query-guided anomaly discovery to OCO. On

each feedback round we select a vectorwt for the detector, which

specifies an anomaly ranking over instances. Rather than receiving

a convex function ft from the analyst, we receive feedback yt on
the top-ranked instance, where yt = +1 if the instance is alien

and yt = −1 if it is nominal. The question is how to translate that

feedback yt into a convex function for the OCO framework that

will result in effective use of the feedback. Intuitively, if yt = +1
then our current cost vector should suffer a smaller loss than if

yt = −1, since the ranking based on wt correctly put an alien at

the top. Further, if yt = −1 then it may also be sensible to have the

loss suffered increase with the “confidence” the detector has in the

top ranked instance being anomalous. Below we give two simple

loss functions based on these principles.

Linear Loss. Let xt be the top-ranked instance in D under the

ranking given bywt . The linear loss is given by

ft (wt ) = −yt SCORE(xt ;wt ) = ytwt · ϕ(xt ), (2)

which is a linear (and hence convex) function ofwt . This function

is similar to margin-based losses used for classification problems.

When we receive alien (nominal) feedback, this loss decreases with

increasing (decreasing) anomaly score as desired.

Log-Likelihood Loss. In linear classification it is common to

define loss functions in terms of a probabilistic semantics. Our next

cost function follows this approach by using the anomaly score

SCORE(x ;w) to define a discrete probability distribution Pa over

D. We will interpret Pa (x ;w) as the alien distribution from which

alien instances are drawn when aliens occur. We use the following

log-linear form for Pa :

Pa (x ;w) = exp (SCORE(x ;w)) /Z = exp (−w · ϕ(x)) /Z , (3)

where Z is the normalizing constant Z =
∑
x ′ ∈D exp (−w · ϕ(x ′)).

Thus, Pa assigns higher probabilities to instances with higher anom-

aly scores. The corresponding loss function in the OCO framework

is the signed log-likelihood of the top-ranked instance xt :

ft (wt ) = −yt log (Pa (xt ;wt )) . (4)

1We could also define the score without the negative sign. However, this definition is
more natural for the class of tree-based anomaly detectors described in Section 5.

The function ft is a convex function ofwt over any convex vector

set. For alien feedback (yt = +1), the loss becomes positive and

becomes smaller when Pa (xt ) is larger, as desired. The situation
is reversed for nominal feedback. An algorithm that achieves low

regret with respect to this choice of loss function will tend to se-

lect weight vectors that assign lower probabilities to nominals and

higher probabilities to anomalies. Compared to the linear loss, this

loss function incorporates information from all of D via the nor-

malization term Z . While our experiments show that this appears

to sometimes improve the anomaly detection performance, it also

incurs computational overhead. If computing the full normaliza-

tion term is too expensive for an application, one can use standard

techniques such as sampling to approximate Z [12].

Logistic Loss. We have also considered using logistic loss com-

monly employed for binary logistic regression classifiers. This loss

is qualitatively similar to the linear loss, and in our experiments it

never outperformed linear loss. Thus, we do not define it here or

include it in our experiments.

We note that the above loss functions are proxies for the true

objective of discovering alien instances as quickly as possible. Any

OCO theoretical guarantees concerning regret are with respect to

the proxies and not necessarily the true objective. If there is a weight

vectorw∗ that tends to rank aliens above nominals, then achieving

a low regret with respect to the proxies will tend to assign higher

anomaly scores to aliens and lower scores to nominals as desired.

It is reasonable to expect that this will translate to an improved

rate of alien discovery. This is not guaranteed, however, and it is

possible that within a practical number of rounds, low losses are

being achieved but aliens are never ranked at the top of the ordering.

Note, however, that our strategy for selecting the instance xt for
the analyst is designed to result in maximum loss when nominal

feedback is received. That is, xt is selected to have the highest

anomaly score and hence is the instance thatwt is currently most

confident about being an alien. In practice, we have found that

applying OCO to both objectives using this strategy for selecting

xt is quite effective.

4.3 The Mirror Descent Learning Algorithm

Ageneral algorithm for OCO is Follow-the-Regularized-Leader (FoReL).

Given a regularization function R : S �→ R+ over vectors, at step t ,
the algorithm plays the vector

wt = arg min
w ∈S

t−1∑
j=1

fj (w) + 1

η
R(w), (5)

which is the vector that would have minimized the accumulated loss

over the previous steps while also considering the “regularization

loss”. The regularizer R is often chosen to be the L2 norm, and η
determines the influence of regularization. Given an appropriate

choice for η (see below) and under fairly general conditions, this

algorithmwith L2 regularization yields a sublinear regret ofO
(√
T
)
.

However, the algorithm can be computationally expensive, since

each step solves an optimization problem that grows over time.



Algorithm 1 Online Mirror Descent for Query-Guided Anomaly

Discovery

Require: Data InstancesD; Generalized-Linear Anomaly Detector

with features ϕ and weight parameters w ∈ S; regularization
parameter η > 0; weight priorw0

θ1 = w0

for t = 1, 2, 3, . . . do

wt = argminw ∈S ‖w − θt ‖2
xt = argmaxx ∈D −wt · ϕ(x) ;; max anomaly score

Get feedback yt ∈ {−1, 1} from analyst on xt
D = D − {xt }
Use yt to define loss function ft based on either Eq. 2 or Eq. 4

θt+1 = θt − η∂ ft (wt ) ;; subtract η-weighted sub-gradient
end for

Fortunately, there are many choices of R for which a completely

online version of FoReL can be derived, which achieves the same the-

oretical guarantees.2 In particular, we use a variant of Online Mirror

Descent (OMD) [19], which corresponds to FoReL using the regu-

larizer R(w) = ‖w −w0‖22 , wherew0 is a reference or prior vector.

Intuitively, if we have prior knowledge thatw0 is a reasonable start-

ing point for a solution, then using this regularizer will encourage

solutions to stay close tow0 unless the data suggests otherwise.

Algorithm 1 gives pseudo-code for our OMD algorithm special-

ized for query-guided anomaly discovery. Each iteration starts by

selecting a weight vectorwt for the anomaly detector (more on this

below), which is used to select the top-ranked anomalous instance

xt remaining in D. The feedback yt is then employed to define the

loss function ft , which is applied to update the weight vector. In

order to compute the sequence of weight vectors, the algorithm

uses θt to accumulate −∂ fj (w j ) across iterations, which is a neg-

ative sub-gradient of the observed loss function fj at the selected
vector w j . Our functions fj are continuous, so this is just the ac-

cumulation of gradients. The next weight vector wt for the next

round is selected as the closest vector in S to θt with respect to the

L2 norm. In our instantiation for tree-based anomaly detectors (Sec-

tion 5), the set S includes only non-negative weights. In this case,

the projection operation simply returns θt , except that negative
vector components are set to zero. A special case of this algorithm

is when S = Rn , which yields the standard unconstrained online

gradient descent algorithm with learning rate η.
The regularization parameter η plays the role of a learning rate.

In theory, if we know the number of rounds T to be played, then

a choice of η = Θ(1/
√
T ) yields the regret bound O

(√
T
)
. If T is

unknown, then a similar result can be obtained using the “doubling

trick” [19]. Note that the constant factors implicit in the definition

ofη depend on theoretical quantities of the OCO problem, which are

generally not known. In practice, there is a large literature on learn-

ing rate selection, including adaptive learning rates, which we could

draw on here. However, we found that simply setting η = 1 worked

well throughout our range of experiments. We experimented with

various adaptive choices from the literature, for example, ηt = 1/√t ,
2The online algorithms are derived by considering a “linearized” version of the original
OCO problem and developing online updates for FoReL on that problem. The regret
guarantees of FoReL hold for the original problem, since it can be shown that the
regret of the linearized problem upper bounds the regret on the original problem.

but did not see significant differences. Our experiments do include

an investigation into the sensitivity to learning rate.

5 APPLICATION TO TREE-BASED ANOMALY

DETECTION

There are a number of state-of-the-art anomaly detectors based on

constructing randomized decision trees, where each tree assigns

a score to an instance and the scores are combined, usually via

averaging [10, 13, 21, 22, 25]. The different algorithms vary in the

exact way trees are constructed and the scores they define. However,

all of the detectors can be exactly or closely simulated using a single

tree-based GLAD model, where different weight settings result in

different algorithms. Thus, learning from feedback using this GLAD

model can be viewed as attempting to select among the space of tree

based algorithms (both known and unknown) based on feedback.

We now describe the Isolation Forest (IF) algorithm [13], which

is a state-of-the-art algorithm that helps motivate our model. Then

we describe the generic tree-based GLAD model.

Isolation Forest. Given a data set D of vector-valued instances,

IF analyzes D to construct a forest of randomized decision trees.

Trees are constructed recursively. Starting at the root node with

the full data set D, a random test is selected by first selecting a

feature and then selecting a random threshold for that feature that

will separate at least one data instance from the rest. The test is

then used to split the data into left and right children and the

recursion continues on each child. The tree is built until each leaf

node contains a single instance. We can view each node of a tree

as defining axis-aligned hyper-rectangular regions determined by

the tests from the root to that node. Leaf nodes define regions that

contain single data points.

The isolation depth of an instance in a tree is the depth of the leaf

that it belongs to. Intuitively, if a data instance is very different from

other instances, there is a higher chance that a randomly-selected

test will isolate that instance. This suggests that instances that are

more anomalous may be expected to have lower isolation depths on

average. The IF algorithm assigns an anomaly score to an instance

x based on its average isolation depth across the randomized forest.

In particular, the score is (a normalized version of) the negative of

this average depth.

Tree-Based GLAD Model. After constructing a forest of trees,

it is straightforward to define a GLAD model that replicates IF. For

each edge e in one of the trees, let ϕe (x) be a binary feature that is

1 if instance x goes through the edge and 0 otherwise. Note that

this is a very sparse set of features and most will be zero for any

particular instance. Similarly, associate a weightwe to each edge.

Now let ϕ andw be vectors that concatenate all of the features and

weights across the forest in a consistent order, and letwe = 1 for

all e . Then the GLAD scoring function SCORE(x ;w) = −w · ϕ(x)
corresponds exactly to the (unnormalized) IF anomaly score.

If we think ofwe as the cost of traversing edge e , then IF is using

the average “cost-of-isolation” across the forest as the anomaly

score. A low cost-of-isolation indicates a more anomalous instance.

Given this view, it makes sense to consider assigning alternative

weights to edges. For example, if we happen to know that the

hyper-rectangular region of a node n was not interesting from an

application perspective, then we could assign high weights on edges



leading to that node. The isolation cost of instances going through

that node would then increase and hence lower the anomaly score

compared to IF. In practice, we generally will not have such infor-

mation. However, through the use of analyst feedback we can hope

to adjust the weights in ways that match this intuition.

By adjusting the weights it is possible to generate scores that

exactly or closely match the scores that would be assigned by many

other tree-based algorithms. For example, the average version of

RPAD for random forests [21] assigns the normalized frequency as

the weight to each edge and hence can be directly captured by our

GLAD model. As another example, in the RS-Forest algorithm [25],

which is based on randomized trees, only the score (estimated

density) from the leaf node are considered from each tree. Hence

the corresponding edge weight of the leaf can be set to estimate the

log of the density value and the remaining weights set to zero. A

similar weight adjustment can be used to arrive at other tree-based

algorithms including [22] and [10]. Some algorithms, including

some parameter settings of IF, do not grow the trees to full isolation

as we do in our experiments, but rather impose a depth limit on

trees. In this case, we can replace the cost-of-isolation with the cost

of the path from the root to a leaf for a given instance.

Mirror Descent for Tree-Based Models. OMD can be imple-

mented very efficiently for our tree-based models. The trees can

store the weights on the edges, so the cost-of-isolation of data point

x can be computed using a simple tree traversal by summing the

weights as x traverses the edges. The main computation performed

by OMD at each step is the gradient of the loss, which is needed to

update θt . Importantly, the only non-zero components of the gradi-

ent vector for our two loss functions will be those corresponding

to non-zero components of ϕ(xt ), which are those components on

edges traversed by xt . Thus, by storing components of ϕt in the

appropriate tree edges, we are assured that we only need to update

those that are traversed by xt .
We build our forests exactly as IF with no depth limit, so that

all instances are completely isolated in all trees. Since IF is known

to be an effective anomaly detector, we select the prior weight

vector of OMD to be w0 = 1, which will exactly simulate IF on

the first round. We also constrain the weights to be non-negative

in this work, which matches the interpretation of the weights as

edge costs. We found that allowing for negative weights did not

significantly hurt performance, but the non-negativity constraint

did show minor improvements in some cases.

6 EMPIRICAL RESULTS

We performed experiments to answer five questions.

• Question Q1: how do the OMD algorithms for incorporat-

ing feedback compare to the baseline with no feedback on

benchmark data?

• Question Q2: how do the OMD algorithms compare to the pre-

vious state-of-the-art AAD algorithm on benchmark data?

• Question Q3: what is the impact of the learning rate parame-

ter on the OMD algorithm?

• Question Q4: what is the relative value of feedback on nomi-

nals versus feedback on anomalies?

• Question Q5: do the OMD algorithms show utility for using

feedback on real-world cybersecurity data?

For all of the above questions, our experimental focus is on

evaluating the effectiveness of feedback for tree-based anomaly

detectors. Due to this focus and space limitations, we do not include

experiments with other types of anomaly detectors in this paper.We

note, however, that the baseline version of our system, which does

not use feedback, corresponds to the Isolation Forest algorithm [13],

which has been shown to be among the top performers on a large-

scale evaluation [5]. In addition, results in prior work on AAD [2]

have shown that the AAD approach, which we compare to here,

significantly outperforms the state-of-the-art LODA [15] anomaly

detector. For our comparison to AAD, we use the currently available

implementation for tree-based detectors [2] with the parameter

settings recommended in that work. AAD has been shown to be a

state-of-the-art feedback mechanism in prior comparisons using

both tree-based methods [2] and the LODA anomaly detector [1].

We used the same randomized forest construction strategy for

both our approach and AAD, which is identical to that used by

Isolation Forest. All of our experiments used 100 trees and a sub-

sample size of 256 to grow each tree (an Isolation Forest default). All

trees were grown until all data instances were isolated. Because the

tree construction is randomized, we repeat all of the experiments

10 times and report the average results with confidence intervals.

Our primary evaluation metric is to count the average number of

alien instances found after each number of feedback rounds.

In order to run the algorithms that incorporate feedback we use

simulated analysts to label the top ranked instance at each round

as either “nominal” or “alien”. In particular, each of the benchmark

data sets and the computer security data sets have ground truth

labels that are used to provide feedback and for evaluation of the al-

gorithms. The labels are hidden from the anomaly detectors, except

those that are revealed as feedback by the simulated analyst.

6.1 Experiments on Benchmark Data

Single Benchmark Results. To address Q1 and Q2, we first show

results on six anomaly detection data sets used previously to evalu-

ate AAD Das et al. [2]. Figure 1, shows results of our two OMD3

methods with Linear and Log-Likelihood loss functions, the state-

of-the-art AAD method, and the baseline IF algorithm that does not

incorporate feedback. Each graph shows 100 feedback iterations

where the top-ranked entity is presented to the simulated analyst

and the resulting label is used to update the anomaly detector (or

ignored by the pure IF). Each graph illustrates the number of aliens

found versus the number of feedback iterations. An ideal result

would be a line with slope 1, which indicates that the anomaly

detector never shows the analyst a false positive.

For Q1 we observe that with very few exceptions, the algorithms

that incorporate feedback are able to improve upon the baseline,

sometimes by a substantial factor. In some cases, the rate of anom-

aly discovery increases by more than 2x. For Q2 both of our OMD

approaches improve over AAD on AAN_Thyroid, Mammography,

and Yeast. They are about the same as AAD for Covtype and Car-

diotocography, and slightly worse on Abalone. This gives evidence

that the OMD approaches are highly competitive with the prior

state-of-the-art, despite being dramatically simpler to implement,

3Codes available: https://github.com/siddiqmd/FeedbackIsolationForest
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Figure 1: Feedback result comparison with AAD [2] on

some standard anomaly detection datasets [2]. 95% confi-

dence interval is also shown for some feedback iterations,

others are similar, hence not shown to make the plot clear.

much more computationally efficient, and having just a single pa-

rameter that is held fixed at 1.

Mother Set Benchmark Results. To provide more evidence

for Q1 and Q2, we ran experiments on a much larger number of

benchmarks from a recent large-scale anomaly detection evaluation

Emmott et al. [5]. That study used UCI data sets as “mother sets” for

creating large sets of anomaly detection benchmarks with varying

characteristics. We selected 6 mother sets and used all benchmarks

from each set with an alien rate of 0.01 (120 to 300 benchmarks per

mother set). These benchmarks tend to be more challenging than

the data sets used above. We ran the same experiments as above

for each benchmark and for each mother set report average results

across its benchmarks in Figure 2. Runs for each benchmark are

repeated 10 times.

For Q1 we see that the feedback methods are able to outperform

the baseline on these benchmarks, except for Abolone, where AAD

and Linear does slightly worse (decrease in less than 1 discovered

anomaly on average). For Q2 overall we see that both OMDmethods

tend to be competitive with AAD. The Log-Likelihood loss function
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Figure 2: Average feedback iteration curves on 6 bench-

mark datasets from [4]. Each curve is averaged over 120-300

benchmark datasets.

is as good or better than AAD across all mother sets and better on at

least 4 of the 6. The Linear loss function is better on at least 2 of the 6

and the same or incomparable (sometimes better sometimes worse)

for the remaining mother sets. These results again suggest that the

OMD approaches can significantly improve over the baseline and

are competitive with the prior state-of-the-art despite the simplicity.

Sensitivity to Learning Rate. For Q3 we ran experiments with

the OMD approaches using a range of fixed learning rates, noting

that all previous experiments used a fixed learning rate of 1. Figure 3

shows results for the Log-Likelihood loss for three benchmarks.

These results are representative of the learning rate behavior on

other benchmarks and for the Linear loss. We varied the learning

rate from 0.05 to 10 and also included a commonly used variable

learning rate of ηt = 1/sqrt(t), where t is the feedback iteration

number (labeled as 0 in the plot). We see that all of these learning

rates are still able to outperform the baseline IF method. However,

the performance drops for learning rates that are on the small or

large range. Overall it appears that a learning rate of 1 is a robust

and recommended setting.
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Figure 3: Sensitivity of the learning rate parameter in three different benchmark datasets. Learning rate 0 indicates variable

learning rate. The black dotted line is the baseline performance without feedback.
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Figure 4: Effect of incorporating feedback from alien and/or nominal instances only in three benchmark datasets.

Influence of Nominal and Alien Feedback. For Q4 we ran

experiments where we restricted the types of feedback used for

learning. Figure 4 gives results for the Linear and Log-Likelihood

loss functions for three cases: (+ nominalFB) where only feedback

on nominal instances is given to OMD, (+ alienFB) where only feed-

back on aliens is given to OMD, (+ alienFB + nominalFB) where all

feedback is given to OMD to update the weights. This last config-

uration is the normal mode of operation. Results are provided for

three representative benchmarks.

The aim of this experiment is to help provide some understand-

ing about the relative importance of alien versus nominal feedback

and whether this changes across problems. This can give insight

into the structure of the anomaly detection problems that is being

exploited through the use of feedback. There are several main obser-

vations. First, the performance when using just nominal feedback

(+ nominalFB) is generally better than using no feedback (baseline)

and sometimes significantly worse than using all feedback. Second,

using just alien feedback (+ alienFB) can sometimes start out worse

than (+ nominalFB) for small numbers of iterations, but eventu-

ally catches up and overtake (+ nomialFB). In fact for Spambase

using only alien feedback was actually better than using all of the

feedback. This was also observed for Abolone (not shown), though

not as dramatically. In these cases the alien feedback provides such

as useful signal for learning that including nominalFB apparently

negatively interferes with that signal.

Overall it is clear that both types of feedback provide significant

value and in most cases the combination of the two is better than

either alone. The relative value of alien versus nominal feedback,

however, depends on the problem and on how much feedback has

been acquired. The fact that alien feedback is quite powerful by itself

suggests that our methods can effectively exploit cluster structure

among aliens. That is, when some aliens are discovered the feedback

on those aliens allows for “similar” aliens to be discovered.

Finally, we can also observe that the Linear and Log-Likelihood

loss functions lead to very similar performance when given only

alien feedback (+ alienFB). In contrast, there is often a more sig-

nificant performance difference between them for only nominal

feedback (+ nominalFB). This indicates that the methods may ex-

ploit alien feedback in a similar way, but exploit nominal feedback

quite differently. This may be due to the global normalization of

the Log-Likelihood model, since if the probability of one instance is

decreased due to nominal feedback, then it must increase for some



other instance(s). However, we do not see a clear winner between

Log-Likelihood and Linear for nominal-only feedback, meaning

that the normalization does not necessarily have a positive impact.

6.2 Experiments on Cybersecurity Data

Attack Datasets. To address Q5 we use datasets based on audit

logs that were generated during attack campaigns carried out by a

red team as part of the DARPA Transparent Computing program.

We collected data from three different hosts (Host1, Host2, Host3):

two running the FreeBSD server operating system and one running

the Ubuntu desktop operating system. Data for two of the hosts (one

FreeBSD and one Ubuntu) were collected over a three-day period

and from the other over a five-day period. During the data collection

period, all hosts were running benign activities resembling normal

workloads. On each host, the red team executed an unknown attack

campaign, which started at a time that was unknown to us. Our

goal is to use anomaly detection to detect “alien” system entities

that are involved in the attacks. The data includes events involving

three types of entities: processes, files, and netflows.

After the attacks were completed and our results reported to

the red team, the red team released a description of each attack

scenario, which outlined the key entities and events. We used the

descriptions to produce a ground truth encoding of the attacks,

where each entity and event was labeled as being part of the attack

or not.We use this ground truth to evaluate our approach and also to

simulate feedback provided by a system analyst. The total number

of system events in the logs for each host was 2.3M (Host1), 9M

(Host2), and 6M (Host3) and the number of events associated with

attacks was 316 (Host1), 473 (Host2), and 1139 (Host3). The number

of total system entities in the data was 137K (Host1), 372K (Host2),

and 78K (Host3) with the number of alien entities associated with

the attacks being 42 (Host1), 51 (Host2), and 51 (Host3). Note that

the fraction of alien entities here is exceedingly small.

AnomalyDetectorConfiguration. Each instance for our anom-

aly detector corresponds to a system entity and we described these

system entities via a set of 20 “views”, where each view computed a

set of descriptor features for the particular entity type. There were

approximately an equal number of views per type. For example,

there is a view that computes features about the statistics of pro-

cess file access patterns. The views were constructed using domain

knowledge about what subsets of information would potentially be

useful to consider jointly when searching for anomalies. It was not

clear to the domain experts, however, which of the views would

actually be useful, if any.

We created a single tree based detector that incorporated all

views. To do this, we built a randomized IF for each of the views

individually, containing 100 trees each. Then we put those trees

together into a single forests of 2000 trees. Given a system entity

its score can be computed using all of the trees, except that if a tree

does not apply to the type of entity being considered it is ignored.

Given such a forest we run our OMD feedback algorithms using

a simulated analyst along with the IF baseline. Interestingly this

overall approach can be viewed as a principled way of combining

multiple views via feedback, since the feedback will effectively help

up-weight and down-weight information associated with different

views according to the inferred utility. For these experiment, we

Table 1: Time to detect first malicious entity

Dataset
# of iterations to 1st malicious entity

Baseline Linear Log-Likelihood

Host1 42.7 ± 24.3 2.7 ± 0.7 12.9 ± 6.3

Host2 61.8 ± 26.9 8.1 ± 1.1 32.2 ± 22.7

Host3 41.4 ± 1.1 21 ± 3.5 20.6 ± 3.5

were unable to run AAD due to the currently available code not

supporting the composition of trees across views as described above.

Results. Figure 5 shows the number of malicious entities de-

tected as a function of the number of feedback iterations for each

of the three hosts. We see that both feedback iterations are able to

improve the rate of discovered aliens compared to the IF baseline.

This is particularly significant on Host2. Note that not all attack

entities are detected. This is expected, since many of the entities

involved in attack behave quite normally. The other entities ex-

hibit unusual behavior that can be detected, for example, entities

involved in initial exploits or exfiltration. The key utility in such a

system is to provide analysts with starting points for uncovering

the full attack via more detailed post-attack analysis.

Finally, to provide another utility of our approach, Table 1 records

the average number of iterations until the first attack entity is

discovered with our feedback approaches and the IF baseline. This

is a particularly relevant metric, since it roughly quantifies the

amount of investigative work required to identify the first entry

point into the attack to seed further investigation. We see that both

feedback methods Linear and Log-Likelihood significantly reduce

the number of iterations required compared to the IF baseline. The

linear loss function is particularly effective here and for Host1 and

Host2 is significantly better than the Log-Likelihood loss.

7 SUMMARY

In this paper, we developed a human-in-the-loop anomaly detection

system, where an analyst can provide direct feedback to the unsu-

pervised anomaly detector. The goal is for the anomaly detector to

then align its anomaly scores with the application-specific notion

of interestingness. We formulated this problem within the frame-

work of online convex optimization and defined two loss functions,

which lead to two simple and efficient algorithms with a single

parameter that was held constant throughout our experiments. We

instantiated the algorithm for the wide class of tree-based anomaly

detectors. Our results on a large number of benchmark data sets

demonstrates that our approach is able to significantly improve

upon a strong baseline that does not use feedback and improve

over the prior state-of-the-art algorithm AAD, which incorporates

feedback. Overall both of our loss functions were effective, with

the Log-Likelihood loss function showing slighly more robust per-

formance. We also showed the effectiveness of our approach when

applied to large cybersecurity datasets generated by a red team for

a recent DARPA evaluation exercise. Our method also improved

significantly the rate that attack entities can be found and reduce

the effort needed to find the first attack entity. In future work we

would like to extend our current approach to incorporate feedback

for any arbitrary anomaly detection method. Another critical com-

ponent moving forward is to study interfaces that best support a

system analyst in investigating proposed anomalies, which will
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Figure 5: Feedback iteration results when applied to combine all 20 views on different hosts.

involve providing the analyst with clear explanations about why

the system believes an entity is potentially anomalous. To be able

to incorporate feedback on such explanations would be another

interesting future direction.

Acknowledgements

This work is supported by DARPA under contract number: FA8650-

15-C-7557. Any opinions, findings and conclusions expressed in

this material are those of the authors and do not necessarily reflect

the views of the DARPA.

REFERENCES
[1] Shubhomoy Das, Weng-Keen Wong, Thomas G. Dietterich, Alan Fern, and An-

drew Emmott. 2016. Incorporating Expert Feedback into Active Anomaly Dis-
covery. In Proceedings of the IEEE ICDM. 853–858.

[2] ShubhomoyDas,Weng-KeenWong, Alan Fern, Thomas GDietterich, andMdAm-
ran Siddiqui. 2017. Incorporating Feedback into Tree-based Anomaly Detection.
arXiv preprint arXiv:1708.09441 (2017).

[3] Boxiang Dong, Zhengzhang Chen, Hui Wendy Wang, Lu-An Tang, Kai Zhang,
Ying Lin, Zhichun Li, and Haifeng Chen. 2017. Efficient Discovery of Abnormal
Event Sequences in Enterprise Security Systems. In The ACM International Confer-
ence on Information and Knowledge Management (CIKM). Pan Pacific, Singapore.

[4] Andrew Emmott, Shubhomoy Das, Thomas G. Dietterich, Alan Fern, and Weng-
Keen Wong. 2015. Systematic Construction of Anomaly Detection Benchmarks
from Real Data. CoRR abs/1503.01158 (2015). http://arxiv.org/abs/1503.01158

[5] Andrew F Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and Weng-
Keen Wong. 2013. Systematic construction of anomaly detection benchmarks
from real data. In Proceedings of the ACM SIGKDD workshop on outlier detection
and description. ACM, 16–21.

[6] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji, and Thomas A Longstaff.
1996. A sense of self for unix processes. In Security and Privacy, 1996. Proceedings.,
1996 IEEE Symposium on. IEEE, 120–128.

[7] Debin Gao, Michael K Reiter, and Dawn Song. 2004. Gray-box extraction of
execution graphs for anomaly detection. In Proc. of the 11th ACM conference on
Computer and communications security. 318–329.

[8] Nico Görnitz, Marius Micha Kloft, Konrad Rieck, and Ulf Brefeld. 2013. Toward
supervised anomaly detection. Journal of Artificial Intelligence Research (2013).
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