
Collective Graphical Models

Daniel Sheldon
Oregon State University

sheldon@eecs.oregonstate.edu

Thomas G. Dietterich
Oregon State University

tgd@eecs.oregonstate.edu

Abstract

There are many settings in which we wish to fit a model of the behavior of in-
dividuals but where our data consist only of aggregate information (counts or
low-dimensional contingency tables). This paper introduces Collective Graphi-
cal Models—a framework for modeling and probabilistic inference that operates
directly on the sufficient statistics of the individual model. We derive a highly-
efficient Gibbs sampling algorithm for sampling from the posterior distribution
of the sufficient statistics conditioned on noisy aggregate observations, prove its
correctness, and demonstrate its effectiveness experimentally.

1 Introduction

In fields such as ecology, marketing, and the social sciences, data about identifiable individuals is
rarely available, either because of privacy issues or because of the difficulty of tracking individuals
over time. Far more readily available are aggregated data in the form of counts or low-dimensional
contingency tables. Despite the fact that only aggregated data are available, researchers often seek
to build models and test hypotheses about individual behavior. One way to build a model connecting
individual-level behavior to aggregate data is to explicitly model each individual in the population,
together with the aggregation mechanism that yields the observed data.

However, with large populations it is infeasible to reason about each individual. Luckily, for many
purposes it is also unnecessary. To fit a probabilistic model of individual behavior, we only need
the sufficient statistics of that model. This paper introduces a formalism in which one starts with a
graphical model describing the behavior of individuals, and then derives a new graphical model —
the Collective Graphical Model (CGM) — on the sufficient statistics of a population drawn from
that model. Remarkably, the CGM has a structure similar to that of the original model.

This paper is devoted to the problem of inference in CGMs, where the goal is to calculate conditional
probabilities over the sufficient statistics given partial observations made at the population level. We
consider both an exact observation model where subtables of the sufficient statistics are observed
directly, and a noisy observation model where these counts are corrupted. A primary application is
learning: for example, computing the expected value of the sufficient statistics comprises the “E”
step of an EM algorithm for learning the individual model from aggregate data.

Main concepts. The ideas behind CGMs are best illustrated by an example. Figure 1(a) shows the
graphical model plate notation for the bird migration model from [1, 2], in which birds transition
stochastically among a discrete set of locations (say, grid cells on a map) according to a Markov
chain (the individual model). The variable Xm

t denotes the location of the mth bird at time t, and
birds are independent and identically distributed. This model gives an explicit way to reason about
the interplay between individual-level behavior (inside the plate) and aggregate data. Suppose, for
example, that very accurate surveys reveal the number of birds nt(i) in each location i at each time
t, and these numbers are collected into a single vector nt for each time step. Then, for example, one
can compute the likelihood of the survey data given parameters of the individual model by summing
out the individual variables. However, this is highly impractical: if our map has L grid cells, then
the variable elimination algorithm run on this model would instantiate tabular potentials of size LM .

1

Xm
1 Xm

2

m = 1 : M

Xm
T· · ·

n1 n2 nT n1 n2 nT

n1,2 nT−1,Tn2,3

n3

. . .

. . .

(a) (b)

i

j

i

j

3

1

1

5

i

j

2

2

1

5

t = 1 t = 2 t = 3

i

j

i

j

i

j

t = 1 t = 2 t = 3

1
5

2
5

3 + δ

1− δ

2 + δ

1− δ

i

j

i

j

3 + δ

1− δ

1− δ

5 + δ

t = 1 t = 2

i

j

2

2

1

5

t = 3

(c) (d) (e)

Figure 1: Collective graphical model of bird migation: (a) replicates of individual model connected to
population-level observations, (b) CGM after marginalizing away individuals, (c) trellis graph on locations
{i, j} for T = 3,M = 10; numbers on edges indicate flow amounts, (d) a degree-one cycle; flows remain
non-negative for δ ∈ {−3, . . . , 1}, (e) a degree-two cycle; flows remain non-negative for δ ∈ {−2, . . . , 1}.

Figure 1(b) shows the CGM for this model, which we obtain by analytically marginalizing away the
individual variables to get a new model on their sufficient statistics, which are the tables nt,t+1 with
entries nt,t+1(i, j) equaling the number of birds that fly from i to j from time t to t + 1. A much
better inference approach would be to conduct variable elimination or message passing directly in
the CGM. However, this would still instantiate potentials that are much too big for realistic problems
due to the huge state space: e.g., there are

(
M+L2−1

L2−1

)
= O(ML2−1) possible values for the table

nt,t+1.

Instead, we will perform approximate inference using MCMC. Here, we are faced with yet another
challenge: the CGM has hard constraints encoded into its distribution, and our MCMC moves must
preserve these constraints yet still connect the state space. To understand this, observe that the
hidden variables in this example comprise a flow of M units through the trellis graph of the Markov
chain, with the interpretation that nt,t+1(i, j) birds “flow” along edge (i, j) at time t (see Figure
1(c) and [1]). The constraints are that (1) flow is conserved at each trellis node, and (2) the number
of birds that enter location i at time t equals the observed number nt(i). (In the case of noisy or
partial observations, the latter constraint may not be present.)

How can we design a set of moves that connect any two M -unit flows while preserving these con-
straints? The answer is to make moves that send flow around cycles. Cycles of the form illustrated
in Figure 1(d) preserve flow conservation but change the amount of flow through some trellis nodes.
Cycles of the form in Figure 1(e) preserve both constraints. One can show by graph-theoretic argu-
ments that moves of these two general classes are enough to connect any two flows.

This gives us the skeleton of an ergodic MCMC sampler: starting with a feasible flow, select cycles
from these two classes uniformly at random and propose moves that send δ units of flow around
the cycle. There is one unassuming but crucially important final question: how to select δ? The
following is a form of Gibbs sampler: from all values that preserve non-negativity, select δ with
probability proportional to that of the new flow. Such moves are always accepted. Remarkably,
even though δ may take on as many as M different values, the resulting distribution over δ has an
extremely tractable form — either binomial or hypergeometric — and thus it is possible to select δ
in constant time, so we can make very large moves in time independent of the population size.

Contributions. This paper formally develops these concepts in a way that generalizes the construc-
tion of Figure 1 to allow arbitrary graphical models inside the plate, and a more general observation
model that includes both noisy observations and observations involving multiple variables. We de-
velop an efficient Gibbs sampler to conduct inference in CGMs that builds on existing work for con-
ducting exact tests in contingency tables and makes several novel technical contributions. Foremost
is the analysis of the distribution over the move size δ, which we show to be a discrete univariate
distribution that generalizes both the binomial and hypergeometric distributions. In particular, we
prove that it is always log-concave [3], so it can be sampled in constant expected running time. We

2

show empirically that resulting inference algorithm runs in time that is independent of the population
size, and is dramatically faster than alternate approaches.

Related Work. The bird migration model of [1, 2] is a special case of CGMs where the individual
model is a Markov chain and observations are made for single variables only. That work considered
only maximum a posteriori (MAP) inference; the method of this paper could be used for learning in
that application. Sampling methods for exact tests in contingency tables (e.g. [4]) generate tables
with the same sufficient statistics as an observed table. Our work differs in that our observations
are not sufficient, and we are sampling the sufficient statistics instead of the complete contingency
table. Diaconis and Sturmfels [5] broadly introduced the concept of Markov bases, which are sets
of moves that connect the state space when sampling from conditional distributions by MCMC. We
construct a Markov basis in Section 3.1 based on work of Dobra [6]. Lauritzen [7] discusses the
problem of exact tests in nested decomposable models, a setup that is similar to ours. Inference
in CGMs can be viewed as a form of lifted inference [8–12]. The counting arguments used to de-
rive the CGM distribution (see below) are similar to the operations of counting elimination [9] and
counting conversion [10] used in exact lifted inference algorithms for first-order probabilistic mod-
els. However, those algorithms do not replicate the CGM construction when applied to a first-order
representation of the underlying population model. For example, when applied to the bird migration
model, the C-FOVE algorithm of Milch et al. [10] cannot introduce contingency tables over pairs
of variables (Xt, Xt+1) as required to represent the sufficient statistics; it can only introduce his-
tograms over single variables Xt. Apsel and Brafman [13] have recently taken a step in this direction
by introducing a lifting operation to construct the Cartesian product of two first-order formulas. In
the applications we are considering, exact inference (even when lifted) is intractable.

2 Problem Setup

Let (X1, X2, . . . , X|V |) be a set of discrete random variables indexed by the finite set V , where Xv

takes values in the set Xv . Let x = (x1, . . . , x|V |) denote a joint setting for these variables from the
set X = X1 × . . .×X|V |. For our individual model, we consider graphical models of the form:

p(x) =
1
Z

∏
C∈C

φC(xC). (1)

Here, C is the set of cliques of the independence graph, the functions φC : XC → R+ are potentials,
and Z is a normalization constant. For A ⊂ V , we use the notation xA to indicate the sub-vector
of variables with indices belonging to A, and use similar notation for the corresponding domain
XA. We also assume that p(x) > 0 for all x ∈ X , which is required for our sampler to be ergodic.
Models that fail this restriction can be modified by adding a small positive amount to each potential.

A collection A is a set of subsets of V . For collections A and B, define A � B to mean that
each A ∈ A is contained in some B ∈ B. A collection A is decomposable if there is a junction tree
T = (A, E(T)) on vertex setA [7]. Any collectionA can be extended to a decomposable collection
B such that A � B; this corresponds to adding fill-in edges to a graphical model.

Consider a sample {x(1), . . . ,x(M)} from the graphical model. A contingency table n = (n(i))i∈X
has entries n(i) =

∑M
m=1 I{x(m) = i} that count the number of times each element i ∈ X ap-

pears in the sample. We use index variables such as i, j ∈ X (instead of x ∈ X) to refer to
cells of the contingency table, where i = (i1, . . . , iV) is a vector of indices and iA is the sub-
vector corresponding to A ⊆ V . Let tbl(A) denote the set of all valid contingency tables on the
domain XA. A valid table is indexed by elements iA ∈ XA and has non-negative integer entries.
For a full table n ∈ tbl(V) and A ⊆ V , let the marginal table n ↓ A ∈ tbl(A) be defined as
(n ↓ A)(iA) =

∑M
m=1 I{x(m)

A = iA} =
∑

iB∈XV \A
n(iA, iB). When A = ∅, define n ↓ A to be

the scalar M , the grand total of the table. Write nA � nB to mean that nA is a marginal table of
nB (i.e., A ⊆ B and nA = nB ↓ A)

Our observation model is as follows. We assume that a sample {x(1), . . . ,x(M)} is drawn from the
individual model, resulting in a complete, but unobserved, contingency table nV . We then observe
the marginal tables nD = nV ↓ D for each set D in a collection of observed margins D, which
we require to be decomposable. Write this overall collection of tables as nD = {nD}D∈D. We
consider noisy observations in Section 3.3.

3

Building the CGM. In a discrete graphical model, the sufficient statistics are the contingency tables
nC = {nC}C∈C over cliques. Our approach relies on the ability to derive a tractable probabilistic
model for these statistics by marginalizing out the sample. If C is decomposable, this is possible, so
let us assume that C has a junction tree TC (if not, fill-in edges must be added to the original model).
Let µC be the table of marginal probabilities for clique C (i.e. µC(iC) = Pr(XC = iC)). Let S
be the collection of separators of TC (with repetition if the same set appears as a separator multiple
times) and let nS and µS be the tables of counts and marginal probabilities for the separator S ∈ S.

The distribution of nC was first derived by Sundberg [14]:

p(nC) = M !

(∏
C∈C

∏
iC∈XC

µC(iC)nC(iC)

nC(iC)!

)(∏
S∈S

∏
iS∈XS

µS(iS)nS(iS)

nS(iS)!

)−1

, (2)

which can be understood as a product of multinomial distributions corresponding to a sampling
scheme for nC (details omitted). It is this distribution that we call the collective graphical model;
the parameters are the marginal probabilities of the individual model. To understand the conditional
distribution given the observations, let us further assume that D � C (if not, add additional fill-
in edges for variables that co-occur within D), so that each observed table is determined by some
clique table. Write nD � nC to express the condition that the tables nC produce observations nD:
formally, this means that D � C and that D ⊆ C implies that nD � nC . Let I{·} be an indicator
variable. Then

p(nC | nD) ∝ p(nC ,nD) = p(nC)I{nD � nC}. (3)
In general, the number of contingency tables over small sets of variables leads to huge state spaces
that prohibit exact inference schemes using (2) and (3). Thus, our approach is based on Gibbs
sampling. However, there are two constraints that significanlty complicate sampling. First, the
clique tables must match the observations (i.e., nD � nC). Second, implicit in (2) is the constraint
that the tables nC must be consistent in the sense that they are the sufficient statistics of some sample,
otherwise p(nC) = 0.
Definition 1. Refer to the set of contingency tables nA = {nA}A∈A as a configuration. A configu-
ration is (globally) consistent if there exists nV ∈ tbl(V) such that nA = nV ↓ A for all A ∈ A.

Consistency requires, for example, that any two tables must agree on their common marginal, which
yields the flow conservation constraints in the bird migration model. Table entries must be carefully
updated in concert to maintain these constraints. A full discussion follows.

3 Inference

Our goal is to develop a sampler for p(nC | nD) given the observed tables nD. We assume that the
CGM specified in Equations (1) and (2) satisfies D � C, and that the configuration nD is consistent.

Initialization. The first step is to construct a valid initial value for nC , which must be a globally
consistent configuration satisfying nD � nC . Doing so without instantiating huge intermediate
tables requires a careful sequence of operations on the two junction trees TC and TD. We state one
key theorem, but defer the full algorithm, which is lengthy and technical, to the supplement.
Theorem 1. Let A be a decomposable collection with junction tree TA. Say that the configuration
nA is locally consistent if it agrees on edges of TA, i.e., if nA ↓ S = nB ↓ S for all (A,B) ∈ E(TA)
with S = A ∩B. If nA is locally consistent, then it is also globally consistent.

In the bird migration example, Theorem 1 guarantees that preserving flow conservation is enough to
maintain consistency. It is structurally equivalent to the “junction tree theorem” (e.g., [15]) which
asserts that marginal probability tables {µA}A∈A that are locally consistent are realizable as the
marginals of some joint distribution p(x). Like that result, Theorem 1 also has a constructive proof,
which is the foundation for our initialization algorithm. However, the integrality requirements of
contingency tables necessitate a different style of construction.

3.1 Markov Basis

The first key challenge in designing the MCMC sampler is constructing a set of moves that preserve
the constraints mentioned above, yet still connect any two points in the support of the distribution.
Such a set of moves is called a Markov basis [5].

4

Definition 2. A set of moves M is a Markov basis for the set F if, for any two configurations
n,n′ ∈ F , there is a sequence of moves z1, . . . , zL ∈ M such that: (i) n′ = n +

∑L
`=1 z`, and (ii)

n +
∑L′

`=1 z` ∈ F for all L′ = 1, . . . , L− 1.

In our problem, the set we wish to connect is the support of p(nC | nD). Our positivity assumption
on p(x) implies that any consistent configuration nC has positive probability, and thus the support
of p(nC | nD) is exactly the set of consistent configurations that match the observations:

FnD = {nC : nC is consistent and nD � nC}

It is useful at this point to think of the configuration nC as a vector obtained by sorting the table
entries in any consistent fashion (e.g., lexicographically first by C ∈ C and then by iC ∈ XC). A
move can be expressed as n′C = nC + z where z is an integer-valued vector of the same dimension
as nC that may have negative entries.

The Dobra Markov basis for complete tables. Dobra [6] showed how to construct a Markov
basis for moves in a complete contingency table given a decomposable set of margins. Specifically,
let A be decomposable and let nA be consistent with

⋃
A = V , so that each variable is part of an

observed margin. Define F∗
nA = {nV ∈ tbl(V) : nA � nV }. Dobra gave a Markov basis for F∗

nA
consisting of only degree-two moves:
Definition 3. Let (A,S,B) be a partition of V . A degree-two move z has two positive entries and
two negative entries:

z(i, j, k) = 1, z(i, j, k′) = −1, z(i′, j, k) = −1, z(i′, j, k′) = 1, (4)

where i 6= i′ ∈ XA, j ∈ XS k 6= k′,∈ XB . Let Md=2(A,S,B) be the set of all degree-two moves
generated from this partition.

k k′

i + −
i′ − +

These are extensions of the well-known “swap moves” for two-dimensional con-
tingency tables (e.g. [5]) to the subtable n(·, j, ·), and they can be visualized as
shown at right. In this arrangement, it is clear that any such move preserves the
marginal table nA (row sums) and the marginal table nB (column sums); in other
words, z ↓ A = 0 and z ↓ B = 0. Moreover, because j is fixed, it is straightfor-
ward to see that z ↓ A ∪ S = 0 and z ↓ B ∪ S = 0. The cycle in Figure 1(e) is a degree-two move
on the table n1,2, with A = {X1}, S = ∅, C = {X2}.
Theorem 2 (Dobra [6]). LetA be decomposable with

⋃
A = V . LetM∗

A be the union of the sets of
degree-two movesMd=2(A,S,B) where S is a separator of TA and (A,S,B) is the corresponding
decomposition of V . Then M∗

A is a Markov basis for F∗
nA .

Adaptation of Dobra basis to FnD . We now adapt the Dobra basis to our setting. Consider a
complete table n ∈ tbl(V) and the configuration nC = {n ↓ C}C∈C . Because marginalization is a
linear operation, there is a linear operator A such that nC = AnV . Moreover, FnA is the image of
F∗

nA under A. Thus, the image of the Dobra basis under A is a Markov basis for FnA .
Lemma 1. Let M∗

A be a Markov basis for F∗
nA . Then MA = {Az : z ∈ M∗

A} is a Markov basis
for FnA . We call MA the projected Dobra basis.

Proof. Let nC ,n′C ∈ FnA . By consistency, there exist nV ,n′V ∈ F∗
nA such that nC = AnV and

n′C = An′V . There is a sequence of moves z1, . . . , zL ∈ M∗
A leading from n′V to nV , meaning

that n′V = nV +
∑L

`=1 z`. By appliyng the linear operator A to both sides of this equation, we
have that n′C = nC +

∑L
`=1 Az`. Furthermore, each intermediate configuration nC +

∑L′

`=1 Az` =
A(nV +

∑L′

`=1 z`) ∈ FnA . Thus MA = {Az : z ∈M∗
A} is a Markov basis for FnA .

Locality of moves. First consider the case where all variables are part of some observed table, as
in Dobra’s setting. The practical message so far is that to sample from p(nC | nD), it suffices to
generate moves from the projected Dobra basis MD. This is done by first selecting a degree-two
move z ∈ M∗

D, and then marginalizing z onto each clique of C. Naively, it appears that a single
move may require us to update each clique. However, we will show that z ↓ C will be zero for many
cliques, a fact we can exploit to implement moves more efficiently. Let (A,S,B) be the partition

5

used to generate z. We deduce from the discussion following Definition 3 that z ↓ C = 0 unless C
has a nonempty intersection with both A and B, so we may restrict our attention to these cliques,
which form a connected subtree (Proposition S.1 in supplementary material). An implementation
can then exploit this by pre-computing the connected subtrees for each separator and only generating
the necessary components of the move. Algorithm 1 gives the details of generating moves.

Algorithm 1: The projected Dobra basis MA
Input: Junction tree TA with separators SA

Before sampling1

For each S ∈ SA, find the associated2
decomposition (A,S,B)
Find the cliques C ∈ C that have non-empty3
intersection with both A and B. These form a
subtree of TC . Denote these cliques by CS and let
VS =

S
CS .

Let AS = A ∩ VS and BS = B ∩ VS4

During sampling: to generate a move for separator5
S ∈ SA

Select z ∈Md=2(AS , S,BS)6
For each clique C ∈ CS , calculate z ↓ C7

Unobserved variables. Let us now consider
settings where some variables are not part of
any observed table, which may happen when
the individual model has hidden variables, or,
later, with noisy observations. Additional
moves are needed to connect two configura-
tions that disagree on marginal tables involv-
ing unobserved variables. Several approaches
are possible. All require the introduction
of degree-one moves z ∈ Md=1(A,B),
which partition the variables into two sets
(A,B) and have two nonzero entries z(i, j) =
1, z(i′, j) = −1 for i 6= i′ ∈ XA, j ∈ XB . In
the parlance of two-dimensional tables, these
moves adjust two entries in a single column so
they preserve the column sums (nB) but mod-
ify the row sums (nA). The cycle in Figure 1(d) is a degree-one move which adjusts the marginal
table over A = {X2}, but preserves the marginal table over B = {X1, X3}. We proceed once again
by constructing a basis for complete tables and then marginalizing the moves onto cliques.
Theorem 3. Let U be any decomposable collection on the set of unobserved variables U = V \

⋃
D,

and let D′ = D ∪ U . Let M∗ consist of the moves M∗
D′ together with the moves Md=1(A, V \ A)

for each A ∈ U . Then M∗ is a Markov basis for F∗
nD , and M = {Az : z ∈ M∗} is a Markov

basis for FnD .

Theorem 3 is proved in the supplementary material. The degree-one moves also become local upon
marginalization: it is easy to check that z ↓ C is zero unless C ∩A is nonempty. These cliques also
form a connected subtree. We recommend choosing U by restricting TC to the variables in U . This
has the effect of adding degree-one moves for each clique of C. By matching the structure of TC ,
many of the additional degree-two moves become zero upon marginalization.

3.2 Constructing an efficient MCMC sampler

The second key challenge in constructing the MCMC sampler is utilizing the moves from the
Markov basis in a way that efficiently explores the state space. A standard approach is to select
a random move z, a direction δ = ±1 (each with probability 1/2), and then propose the move
nC + δz in a Metropolis Hastings sampler. Although these moves are enough to connect any two
configurations, we are particularly interested in problems where M is large, for which moving by
increments of ±1 will be prohibitively slow.

For general Markov bases, Diaconis and Sturmfels [5] suggest instead to construct a Gibbs sampler
that uses the moves as directions for longer steps, by choosing the value of δ from the following
distribution:

p(δ) ∝ p(nC + δz | nD), δ ∈ {δ : nC + δz ≥ 0}. (5)
Lemma 2 (Adapted from Diaconis and Sturmfels [5]). LetM be a Markov basis forFnD . Consider
the Markov chain with moves δz generated by first choosing z uniformly at random from M and
then choosing δ according to (5). This is a connected, reversible, aperiodic Markov chain on FnD
with stationary distribution p(nC | nD).

However, it is not obvious how to sample from p(δ). They suggest running a Markov chain in δ,
again having the property of moving in increments of one (see also [16]). In our case, the support of
p(δ) may be as big as the population size M , so this solution remains unsatisfactory.

Fortunately, p(δ) has several properties that allow us to create a very efficient sampling algorithm.
For a separator S ∈ S, define zS as zC ↓ S for any clique C containing S. Now let C(z) be the

6

Algorithm 2: Sampling from p(δ) in constant time
Input: move z and current configuration nC , with |C(z)| > 1

Calculate δmin and δmax using (8)1

Extend the function f(δ) := log p(δ) to the real line using the2
equality n! = Γ(n+ 1) in Equation (7) for each constituent
function fA(δ) := log pA(δ), A ∈ S(z) ∪ C(z).

Use the logarithm of Equation (6) to evaluate f(δ) (for sampling)3
and its derivatives (for Newton’s method):

f (q)(δ) =
X

C∈C(z)

f
(q)
C (δ)−

X
S∈S(z)

f
(q)
S (δ). q = 0, 1, 2.

Evaluate the derivatives of fA(δ) using the logarithm of Equation
(7) and the digamma and trigamma functions ψ(n) = d

dn
Γ(n)

and ψ1(n) = d2

dn2 Γ(n).

Find the mode δ∗ by first using Newton’s method to find δ′4
maximizing f(δ) over the real line, and then letting δ∗ be the
value in {bδ′c, dδ′e, δmin, δmax} that attains the maximum.

Run the rejection sampling algorithm of Devroye [3].5

10
1

10
2

10
0

10
2

10
4

Population size

S
ec

on
ds

VE
MCMC

0 50 100
0

0.1

0.2

0.3

0.4

Seconds

R
el

at
iv

e
er

ro
r

exact−nodes
exact−chain
noisy−nodes
noisy−chain

Figure 2: Top: running time
vs. M for a small CGM. Bottom:
convergence of MCMC for ran-
dom Bayes nets.

set of cliques C for which zC is nonzero, and let S(z) be defined analogously. For A ∈ S ∪ C, let
I+(zA) ⊆ XA be the indices of +1 entries of zA and let I−(zA) be the indices of −1 entries. By
ignoring constant terms in (2), we can write (5) as

p(δ) ∝
∏

C∈C(z)

pC(δ)
∏

S∈S(z)

pS(δ)−1, (6)

pA(δ) :=
∏

i∈I+(zA)

µA(i)δ

(nA(i) + δ)!

∏
j∈I−(zA)

µA(j)−δ

(nA(j)− δ)!
, A ∈ S ∪ C. (7)

To maintain the non-negativity of nC , δ is restricted to the support δmin, . . . , δmax with:
δmin := − min

C∈C(z),i∈I+(zC)
nC(i), δmax := min

C∈C(z),j∈I−(zC)
nC(j). (8)

Notably, each move in our basis satisfies |I+(zA) ∪ I+(zA)| ≤ 4, so p(δ) can be evaluated by
examining at most four entries in each table for cliques in C(z). It is worth noting that Equation
(7) reduces to the binomial distribution for degree-one moves and the (noncentral) hypergeomet-
ric distribution for degree-two moves, so we may sample from these distributions directly when
|C(z)| = 1. More importantly, we will now show that p(δ) is always a member of the log-concave
class of distributions, which are unimodal and can be sampled very efficiently.
Definition 4. A discrete distribution {pk} is log-concave if p2

k ≥ pk−1pk+1 for all k [3].
Theorem 4. For any degree-one or degree-two move z, the distribution p(δ) is log-concave.

It is easy to show that both pC(δ) and pS(δ) are log-concave. The proof of Theorem 4, which is
found in the supplementary material, then pairs each separator S with a clique C and uses properties
of the moves to show that pC(δ)/pS(δ) is also log-concave. Then, by Equation (6), we see that p(δ)
is a product of log-concave distributions, which is also log-concave.

We have implemented the rejection sampling algorithm of Devroye [3], which applies to any discrete
log-concave distribution and is simple to implement. The expected number of times it evaluates p(δ)
(up to normalization) is fewer than 5. We must also provide the mode of the distribution, which we
find by Newton’s method, usually taking only a few steps. The running time for each move is thus
independent of the population size. Additional details are given in Algorithm 2.

3.3 Noisy Observations

Population-level counts from real survey data are rarely exact, and it is thus important to incorpo-
rate noisy observations into our model. In this section, we describe how to modify the sampler for

7

the case when all observations are noisy; it is a straightforward generalization to allow both noisy
and exact observations. Suppose that we make noisy observations yR = {yR : R ∈ R} corre-
sponding to the true marginal tables nR for a collection R � C (that need not be decomposable).
For simplicity, we restrict our attention to models where each entry n in the true table is corrupted
independently according to a univariate noise model p(y | n).

We assume that the noise model is log-concave, meaning in this case that log p(y | n) is a concave
function of the parameter n. Most commonly-used univariate densities are log-concave with respect
to various parameters [17]. A canonical example from the bird migration model is p(y | n) =
Poisson(αn), so the survey count is Poisson with mean proportional to the true number of birds
present. This example and others are discussed in [2]. We also assume that the support of p(y | n)
does not depend on n, so that observations do not restrict the support of the sampling distribution.
For example, we must modify our Poisson noise model to be p(y | n) = Poisson(αn + λ0) with
small background rate λ0 to avoid the hard constraint that n must be positive if y is positive.

In analogy with (3), we can then write p(nC | yR) ∝ p(nC)p(yR|nC) (the hard constraint is now
replaced with the likelihood term p(yR|nC)). Given our assumption on p(y | n), the support of
p(nC | yR) is the same as the support of p(nC), and a Markov basis can be constructed using the
tools from Section 3.1, with all variables being unobserved. In the sampler, the expression for p(δ)
must now be updated to incorporate the likelihood term p(yR|nC+δz). Following reasoning similar
to before, we let R(z) be the sets in R for which z ↓ R is nonzero and find that Equation (6) gains
the additional factor

∏
R∈R(z) pR(δ), where

pR(δ) =
∏

i∈I+(zR)

p(yR(i) | nR(i) + δ)
∏

j∈I−(zR)

p(yR(j) | nR(j)− δ). (9)

Each factor in (9) is log-concave in δ by our assumption on p(y | n), and hence the overall distribu-
tion p(δ) remains log-concave. To update the sampler for p(δ), modify line 3 of Algorithm 2 in the
obvious fashion to include these new factors when computing log p(δ) and its derivatives.

4 Experiments

We implemented our sampler in MATLAB using Murphy’s Bayes net toolbox [18] for the underlying
operations on graphical models and junction trees. Figure 2 (top) compares the running time of our
method vs. exact inference in the CGM by variable elimination (VE) for a very small model. The
task was to estimate E[n2,3 | n1,n3] in the bird migration model for L = 2, T = 3, and varying M .
The running time of VE is O(ML2−1), which is cubic in M (linear on a log-log plot), while the time
for our method to estimate the same quantity within 2% relative error actually decreases slightly with
population size. Figure 2 (bottom) shows convergence of the sampler for more complex models. We
generated 30 random Bayes nets on 10 binary variables, and generated two sets of observed tables
for a population of M = 100, 000: the set NODES has a table for each single variable, while the
set CHAIN has tables for pairs of variables that are adjacent in a random ordering. We repeated the
same process with the noise model p(y | n) = Poisson(0.2n + 0.1) to generate noisy observations.
We then ran our sampler to estimate E[nC | nD] as would be done in the EM algorithm. The plots
show relative error in this estimate as a function of time, averaged over the 30 nets. For more details,
including how we derived the correct answer for comparison, see Section D.1 in the supplementary
material. The sampler converged quickly in all cases with the more complex CHAIN observation
model taking longer than NODES, and noisy observations taking slightly longer than exact ones. We
found (not shown) that the biggest source of variability in convergence time was due to individual
Bayes nets, while repeat trials using the same net demonstrated very similar behavior.

Concluding Remarks. An important area of future research is to further explore the use of CGMs
within learning algorithms, as well as the limitations of that approach: when is it possible to learn in-
dividual models from aggregate data? We believe that the ability to model noisy observations will be
an indispensable tool in real applications. For complex models, convergence may be difficult to di-
agnose. Some mixing results are known for samplers in related problems with hard constraints [16];
any such results for our model would be a great advance. The use of distributional approximations
for the CGM model and other methods of approximate inference also hold promise.

Acknowledgments. We thank Lise Getoor for pointing out the connection between CGMs and lifted
inference. This research was supported in part by the grant DBI-0905885 from the NSF.

8

References
[1] D. Sheldon, M. A. S. Elmohamed, and D. Kozen. Collective inference on Markov models for

modeling bird migration. In Advances in Neural Information Processing Systems (NIPS 2007),
pages 1321–1328, Cambridge, MA, 2008. MIT Press.

[2] Daniel Sheldon. Manipulation of PageRank and Collective Hidden Markov Models. PhD
thesis, Cornell University, 2009.

[3] L. Devroye. A simple generator for discrete log-concave distributions. Computing, 39(1):
87–91, 1987.

[4] A. Agresti. A survey of exact inference for contingency tables. Statistical Science, 7(1):131–
153, 1992.

[5] P. Diaconis and B. Sturmfels. Algebraic algorithms for sampling from conditional distribu-
tions. The Annals of statistics, 26(1):363–397, 1998. ISSN 0090-5364.

[6] A. Dobra. Markov bases for decomposable graphical models. Bernoulli, 9(6):1093–1108,
2003. ISSN 1350-7265.

[7] S.L. Lauritzen. Graphical models. Oxford University Press, USA, 1996.

[8] D. Poole. First-order probabilistic inference. In Proc. IJCAI, volume 18, pages 985–991, 2003.

[9] R. de Salvo Braz, E. Amir, and D. Roth. Lifted first-order probabilistic inference. Introduction
to Statistical Relational Learning, page 433, 2007.

[10] B. Milch, L.S. Zettlemoyer, K. Kersting, M. Haimes, and L.P. Kaelbling. Lifted probabilistic
inference with counting formulas. Proc. 23rd AAAI, pages 1062–1068, 2008.

[11] P. Sen, A. Deshpande, and L. Getoor. Bisimulation-based approximate lifted inference. In
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages
496–505. AUAI Press, 2009.

[12] J. Kisynski and D. Poole. Lifted aggregation in directed first-order probabilistic models. In
Proc. IJCAI, volume 9, pages 1922–1929, 2009.

[13] Udi Apsel and Ronen Brafman. Extended lifted inference with joint formulas. In Proceedings
of the Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in
Artificial Intelligence (UAI-11), pages 11–18, Corvallis, Oregon, 2011. AUAI Press.

[14] R. Sundberg. Some results about decomposable (or Markov-type) models for multidimensional
contingency tables: distribution of marginals and partitioning of tests. Scandinavian Journal
of Statistics, 2(2):71–79, 1975.

[15] M.J. Wainwright and M.I. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.

[16] P. Diaconis, S. Holmes, and R.M. Neal. Analysis of a nonreversible Markov chain sampler.
The Annals of Applied Probability, 10(3):726–752, 2000.

[17] W.R. Gilks and P. Wild. Adaptive Rejection sampling for Gibbs Sampling. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 41(2):337–348, 1992. ISSN 0035-9254.

[18] K. Murphy. The Bayes net toolbox for MATLAB. Computing science and statistics, 33(2):
1024–1034, 2001.

[19] V. Chvátal. Linear Programming. W.H. Freeman, New York, NY, 1983.

Supplementary Material
A Initialization

The overall initialization is a sequence of three algorithms. The first algorithm joins two tables
nA and nB to find a table nA∪B such that nA,nB � nA∪B . The second algorithm extends a
locally consistent configuration nA to find a single table nV ∈ tbl(V) such that nA � nV , thus

9

providing a constructive proof of Theorem 1. The third algorithm finds a configuration nC such that
nD � nC whenever: (i) D is decomposable, (ii) nD is consistent, and (iii) D � C; thus solving the
initialization problem.

A.1 Joining two tables

Let nA and nB be two tables having a common marginal table nA∩B � nA,nB . The join operation,
denoted nA ∨ nB , constructs a table nA∪B := nA ∨ nB ∈ tbl(A ∪ B) that extends both nA and
nB , meaning that nA,nB � nA∪B . The key observation is that for each j ∈ XA∩B , the subtable
nA∪B(·, j, ·) can be viewed as a two-dimensional table with row sums that are determined by nA,
column sums that are determined by nB , and grand total nA∩B(j). Let A′ = A \ B, B′ = B \ A.
Then nA∪B must satisfy

nA(i, j) =
∑

k∈XB′

nA∪B(i, j, k), ∀i ∈ XA′ , nB(j, k) =
∑

i∈XA′

nA∪B(i, j, k), ∀k ∈ XB′ .

By our assumption that nA∩B � nA,nB , the vectors r = (nA(i, j))i∈XA′ and c = (nB(j, k))k∈XB′

share the common grand total nA∩B(j). The problem of finding a two-dimensional table
nA∪B(·, j, ·) with rows sums r and column sums c is equivalent to finding a feasible solution to the
transportation problem [19]. Any variant of the following method is correct: start with an all-zero
table and repeatedly (1) select a row and column whose current sums are smaller than the specified
sums, (2) add an integer amount to the entry in that row and column without exceeding the specified
row and column sums. This process is repeated for each j ∈ XA∩B to provide an algorithm for the
join operation.

A.2 Constructing nV by edge contraction in TA

The join operation can be used to construct a complete contingency table nV by a sequence of
simple operations on the junction tree. Let nA be a locally consistent configuration on the junction
tree TA. Define the contraction of edge (A,B) ∈ E(TA) to be the following operation, which
simultaneously updates the collection A, junction tree TA, and tables nA, which we collect in the
tuple (A, TA,nA). First, updateA by replacing the sets A and B by their union A∪B; next, update
TA by connecting A ∪ B to all former neighbors of A and B; finally, update nA by replacing nA

and nB by nA∪B = nA ∨ nB . Local consistency ensures that nA and nB agree on A ∩ B and
hence the join operation is possible. The overall algorithm for constructing nV is then quite simple:
repeatedly contract edges until A consists of the single set V , at which point the remaining table
nV ∈ tbl(V) satisfies nA � nV for all A ∈ A.

Proof of correctness (Theorem 1). To prove the correctness of this procedure and thus establish The-
orem 1, we must argue that the following properties hold for the tuple (A′, TA′ ,nA′) that is the result
of the contraction: (1) TA′ is a junction tree, (2) nA′ is locally consistent and (3) nA � nA′ .

To show that TA′ is a junction tree we use the characterization of junction trees that TA′ is a junction
tree if for all v ∈ V , the subgraph T ′

v induced by {A ∈ A′ : v ∈ A} is connected. Define Tv

analogously based on TA. It is straightforward to see that T ′
v is obtained from Tv by one of the

following operations: (1) if A and B are both present in Tv , then contract (A,B) into the single
clique A ∪ B to obtain T ′

v , (2) if exactly one of A or B is present in Tv , then replace that clique by
A ∪ B to obtain T ′

v , (3) otherwise, make no change to Tv . In each case, the connectedness of T ′
v

follows directly from that of Tv .

To see that nA′ is locally consistent, let (A ∪ B,C) ∈ E(TA′) be an edge involving the newly
created set A ∪ B, which means that either A or B was a neighbor of C in TA; assume without
loss of generality that (B,C) ∈ E(TA). Thus B is on the path from A to C in TA, and the running
intersection property implies that A ∩ C ⊆ B, which in turn implies that (A ∪ B) ∩ C = B ∩ C.
Thus the separator for this edge is B ∩C, and the consistency requirement is that nA∪B ↓ B ∩C =
nC ↓ B ∩ C.

Starting with nA∪B , we have that

nA∪B ↓ B ∩ C = (nA∪B ↓ B) ↓ B ∩ C = nB ↓ B ∩ C.

10

In the the first equality, we compute nA∪B ↓ B ∩C by first marginalizing onto B and then onto the
subset B ∩C, which does not change the final result. In the second equality we use the fact that the
nB � nA∪B by construction in the join operation, and hence nA∪B ↓ B = nB .

Starting with nC we have
nC ↓ B ∩ C = nB ↓ B ∩ C

by local consistency of the tables on TA. Since these expressions are equal, we have established local
consistency for the edge from (A ∪B,C) where C was chosen arbitrarily; hence, local consistency
holds for all edges involving the newly created set A ∪ B. For all other edges, the tables remain
unchanged and hence the consistency condition continues to hold from TA.

It remains only to check that nA � nA′ . The only difference between these configurations is that nA

and nB in the former were replaced by nA∪B = nA ∨ nB in the latter, for which nA,nB � nA∪B

by construction.

Because one edge is removed in each contraction while preserving the ground set V , the overall
contraction procedure will terminate in |E(T)| steps with A = {V }. The relation � is clearly
transitive, and hence we have established that nA � nV for the final table nV , which is our desired
result.

As a side comment, we note that it is slightly less work to prove Theorem 1 using a divide-and-
conquer scheme, which can be seen to be equivalent to a sequence of edge contractions, each of
which joins a leaf of TA with its unique neighbor. However, the flexibility of scheduling contractions
in any order is essential for the following algorithm.

A.3 Constructing nC from nD

Recall that our goal for initializing the Markov chain is to populate a configuration nC such that
nD � nC when D � C. We may assume that

⋃
D = V (if not, construct initial tables nv arbitrarily

for each v ∈ U := (V \
⋃
D), and the collection D augmented by the singletons v ∈ U remains

decomposable). Thus, an initialization approach that is correct but computationally infeasible is
to first build the full table nV by contracting all edges of TD and then form the marginal tables
nC = nV ↓ C. Instead, this procedure can be modified to intersperse edge contractions with
marginalization steps.

The operations are sequenced in a collect phase and a distribute phase on the junction tree TC for col-
lection C, with an arbitrarily chosen root node R. The algorithm maintains the tuple (A, TA,nA, π),
where the final entry π : A → C is a function such that A ⊆ π(A) that is a witness to the relation
A � C. When C = π(A), we refer to C as the owner of A. Initially, (A, TA,nA) = (D, TD,nD),
and π : D → C is chosen to assign each D ∈ D an owner in C.

The operation COLLECT(C) has the effect of conducting the following operations on the subtree
of TC rooted at C: first, contract all edges of TD with both endpoints owned by the subtree (i.e.
owned by C or one of its descendants); then marginalize each remaining table in the subtree onto C.
Following the construction of a complete table nC , the operation DISTRIBUTE(C) then completes
the tables for all descendants of C. Detailed descriptions of COLLECT and DISTRIBUTE are given in
Table 1.

The overall algorithm is to call COLLECT(R), which contracts all edges and terminates with
A = {R} and nA = {nR}. The complete table nR for the root node is then extracted, and
DISTRIBUTE(R) is called to complete the remaining tables.
Theorem S.5. The algorithm INITIALIZE in Table 1 terminates with a consistent configuration nC
such that nD � nC .

Proof. The proof of correctness must first argue that the tables involved in each join operation are
consistent. To do this, we show that during the collect phase, each operation preserves the invariant
that TA is a junction tree and nA is consistent. We already showed in the proof of Theorem 1
that edge contractions preserve these properties. The only other modifications are made by the
marginalization operations in Step 1(b) of COLLECT, which remove the variables in (C \ C ′) from
every set in TA and each table in nA (by marginalization). These operations clearly preserve the
running intersection property of junction trees, as well as local consistency.

11

INITIALIZE

1. Pick an arbitrary root clique R ∈ C
2. Execute COLLECT(R)
3. Execute DISTRIBUTE(R)

COLLECT(C)
1. For each child C ′ of C, do the following:

(a) Call COLLECT(C ′)
(b) Marginalize out the variables in C ′ \ C from each set A ∈ A:

i. Update A to replace A by A ∩ (C \ C ′)
ii. Update nA to replace nA by nA∩(C\C′) := nA ↓ A ∩ (C \ C ′)

(c) Update π to transfer ownership of all sets from child to parent: if A was owned by C ′,
then set π(A ∩ (C \ C ′)) = C

2. Repeatedly contract edges (A,B) ∈ E(TA) with π(A) = π(B) = C (both endpoints are
owned by C) and set π(A ∪B) = C until no additional contractions are possible.

3. Let AC = π−1(C) be the members of A owned by C after contraction. Save the corre-
sponding tables nAC

for use in the distribute phase.
DISTRIBUTE(C)

1. Assume that the table nC has been constructed
2. For each child C ′ of C, do the following:

(a) Let S = C ∩ C ′, and let nS = nC ↓ S

(b) Suppose that nAC′ = {nA1 , . . . ,nA`
}

(c) Let nC′ = nS ∨ nA1 ∨ . . . ∨ nA`
(joins may be done in any order)

Table 1: Initialization

In the distribute phase, we will show that the configuration {nS ,nA1 , . . . ,nA`
} is locally consistent

on the “star” junction tree T ∗ where S is connected to each other set, and hence the joins may be
viewed as edge contractions. To see that T ∗ is indeed a junction tree, let A1, A1 ∈ AC′ and let
(A, TA,nA, π) be the state variables from the point in time immediately following the execution
COLLECT(C ′). Then it must be the case that A1, A2 ∈ A and the path from A1 to A2 in TA contains
some set A3 for which π(A3) 6= C ′; otherwise the entire path would have been contracted. Thus,
from the running intersection property of TA, we have that

A1 ∩A2 ⊆ A3.

Furthermore, π(A3) is not a descendant of C ′, because all sets owned by descendants have been
transferred to C ′. Thus the unique path from C ′ to π(A3) in TC must go through the parent C,
implying by the running intersection property of TC that

C ′ ∩ π(A3) ⊆ S.

Finally, we have by the definition of ownership that A1 ⊆ C ′ and A3 ⊆ π(A3), so we may write the
following chain of equalities and inclusions:

A1 ∩A2 = A1 ∩ (A1 ∩A2)
⊆ A1 ∩A3

⊆ π(A1) ∩ π(A3)

= C ′ ∩ π(A3)
⊆ S.

This establishes the running intersection property on T ∗.

To see that the configuration {nS ,nA1 , . . . ,nA`
} is locally consistent on T ∗, we note that Ai∩S =

Ai ∩ (C \ C ′) because Ai ⊆ C ′. By construction in COLLECT(C ′), we have that

nAi∩S = nAi∩(C\C′) � nAi .

12

Then, by construction in DISTRIBUTE(C) (for the parent), we have that

nAi∩S = nAi∩(C\C′) � nS .

This establishes consistency for each join operation executed by COLLECT and DISTRIBUTE.

To verify the final consistency of nC , it is easy to see in the distribute phase that nS � nC ,nC′

and hence the configuration nC is locally consistent by construction, and thus globally consistent by
Theorem 1. Finally, to check that nD � nC , suppose that π(D) = C. Then, after COLLECT(C),
there is some D′ obtained from one or more join operations involving D such that D ⊆ D′ ∈
AC , and hence nD � nD′ . The execution of DISTRIBUTE(C) conducts further joins on D′ but
guarantees that nD′ � nC , so that nD � nC . This proves the result.

B Markov basis (Theorem 3)

Proof of Theorem 3. Let n,n′ ∈ F∗
nD . We will prove the special case when U = {U}. Let

{x(m) : m = 1, . . . ,M} be an arbitrarily ordered sample corresponding to contingency table n
and define x′(m) analogously for the table n′. Define z(m) ∈ Md=1(U,W) to have the nonzero
entries z(x(m)

U ,x(m)
W) = −1 and z(x′(m)

U ,x(m)
W) = 1; this move updates x(m) to match x′(m) on the

variables in U . The moves may be executed in any order and maintain a valid sample and hence a
non-negative table. The table also remains in F∗

nD because the entire nW marginal is preserved, and
the nU marginal is unrestricted. Define n′′ = n +

∑M
m=1 z(m). By construction, we now have that

n′′ ↓ U = n′ ↓ U , and we have maintained the property that n′′ ↓ D = n ↓ D = n′ ↓ D for all
D ∈ D.

Since D and U are decomposable on disjoint ground sets, D′ = D ∪ U is decomposable. By
construction,

⋃
D′ = V , so the conditions are met for the Dobra basis MD′ . Hence there is a

sequence of moves in MD′ connecting n′′ to n′, which proves the result.

The generalization to arbitrary decomposable collections U is straightforward by repeating the ar-
gument we just made to adjust the variables in sequence for each set U ∈ U in an order dictated by
a junction tree TU .

Proposition S.1. For any degree two move z generated by the partition (A,S,B), the set of cliques
C ∈ C such that z ↓ C is nonzero form a connected subtree of TC .

Proof. By the junction tree property, the cliques containing A induce a connected subtree of TC , as
do the cliques containing B. The intersection of two subtrees is also a tree.

Proposition S.2. For any degree one move z, the set of cliques C such that z ↓ C is nonzero form
a connected subtree of TC .

Proof. The fact that the cliques that intersect A form a subtree is a direct consequence of the junction
tree property.

C Log-concavity (Theorem 4)

Before proving Theorem 4, we state and prove the following lemma.

Lemma S.3. Let z be a degree-two move from Md=2(A,S,B). Then for all F ⊆ V , it is either
the case that z ↓ F is also a degree-two move, from the set Md=2(A ∩ F, S ∩ F,B ∩ F), or that
z ↓ F = 0. Similarly, for a degree-one move z ∈ Md=1(A,B), it is either the case that z ↓ F is a
degree-one move from the set Md=1(A ∩ F,B ∩ F), or that z ↓ F = 0.

Proof of Lemma S.3. We can write the degree two move defined in (4) as z = z+ − z− where z+

and z− each have two positive entries

I(z+) = {(i, j, k), (i′, j, k′)}, I(z−) = {(i′, j, k), (i, j, k′)},

13

We then have that z ↓ F = (z+ ↓ F)− (z− ↓ F) where

I(z+ ↓ F) = {(iF , jF , kF), (i′F , jF , k′F)},

I(z− ↓ F) = {(i′F , jF , kF), (iF , jF , k′F)}.
In this case we use the notation that iF ∈ XA\F is the subvector of i corresponding to variables in
A ∩ F , and use similar notation for jF , kF , etc. If either iF = i′F or kF = k′F , then I(z+ ↓ F) =
I(z− ↓ F) which implies that z ↓ F = 0. Otherwise, the four entries are unique and z ↓ F has the
form of a degree two move from Md=2(A ∩ F, S ∩ F,B ∩ F).

The proof for degree-one moves is similar.

Proof of Theorem 4. We must show that p(δ)2 ≥ p(δ − 1)p(δ + 1) for all δ ∈ {δmin, . . . , δmax}.
Defining r(δ) = p(δ)/p(δ−1), it is equivalent to show that r(δ) ≥ r(δ +1). From the factorization
in (6), we can write

r(δ) =
∏

C∈C(z)

rC(δ)
∏

S∈S(z)

rS(δ)

where rA(δ) = pA(δ)/pA(δ − 1) for A ∈ C ∪ S.

From (7) we see that

rC(δ) =
∏

i∈I+(zC)

µC(i)
(nC(i) + δ)

∏
j∈I−(zC)

(nC(j)− δ + 1)
µC(j)

∝
∏

i∈I+(zC)

(nC(i) + δ)−1
∏

j∈I−(zC)

(nC(j)− δ + 1) (S.10)

where in the final expression we ignore terms that are constant with respect to δ. All terms in (S.10)
are non-negative for δ in the specified range, and each is decreasing in δ, and thus rC(δ) > rC(δ+1)
for each C. Thus, pC(δ) is log-concave for all C.

However, the same reasoning implies that pS is log-concave for all S, and because these terms
appear in the denominator of (6), a further argument is required to show that p(δ) is log-concave.
Consider an arbitrary separator S = C ∩ C ′ with (C,C ′) ∈ E(TC). If zS is nonzero, then both zC

and zC′ are nonzero, because zS is a marginal move of each. Thus we may assign each separator
S ∈ S(z) to a unique clique C ∈ C(z) by orienting the edges of TC toward an arbitrary root clique
and assigning S to its parent. We can then write

p(δ) =
L∏

`=1

pC`
(δ)

pS`
(δ)

L′∏
`=L+1

pC`
(δ)

where S` ⊆ C` for ` = 1, . . . , L and the cliques C` for ` > L are those that are not assigned a
separator. Since a product of log-concave distributions is log-concave, and we have already shown
that each pC`

(δ) is log-concave, it now suffices to show that pC`
(δ)/pS`

(δ) is log-concave for each
` = 1, . . . , L.

To that end, fix ` and let C = C` and S = S`. We will show that pC(δ)/pS(δ) is log-concave by
using Lemma S.3 to match terms of rC(δ) and rS(δ). Consider first the case when z is a degree-two
move. Then both zC and zS , which are nonzero, are also degree-two moves with two positive and
two negative entries. For zS , write the positive indices as I+(zS) = {i11, i22} and the negative
indices as I−(zS) = {i12, i21} to match the 2× 2 visualization + −

− + .

Because zS(i11) =
∑

j∈XC\S
zC(i11, j) = 1 and we know that no cancellation occurs in the sum

because both zC and zS have four nonzero entries, there is a unique j11 such that zC(i11, j11) = 1.
This argument clearly extends to find the unique jab such that zS(iab) = zC(iab, jab) for a, b ∈
{1, 2}. Now, for shorthand, write nab

S = nS(iab) and nab
C = nC(iab, jab). It is clearly the case that

nab
C ≤ nab

S because the latter is a marginal total that include the former. At this point we can rewrite
(S.10) as

rC(δ) ∝ (n12
C − δ + 1)(n21

C − δ + 1)
(n11

C + δ)(n22
C + δ)

(S.11)

14

Using (S.11) and the analogous derivation for rS(δ), we obtain

rC(δ)
rS(δ)

∝ (n12
C − δ + 1)

(n12
S − δ + 1)

· (n21
C − δ + 1)

(n21
S − δ + 1)

· (n11
S + δ)

(n11
C + δ)

· (n22
S + δ)

(n22
C + δ)

The first two terms are of the form a−δ
b−δ for 0 ≤ a ≤ b, and thus are decreasing in δ. The latter

two terms have the form b+δ
a+δ for 0 ≤ a ≤ b, and are also decreasing in δ. Thus, rC(δ)/rS(δ) is

decreasing, which implies that pC(δ)/pS(δ) is log-concave. This proves the result for degree-two
moves. The proof is similar for degree-one moves.

D Experiments

D.1 Details of convergence experiments

The additional details of the convergence experiments are as follows. Each Bayes net had 10 binary
variables, a random graph structure (directed, acyclic, indegree at most 3) and random parameters.
To derive the CGM, a junction tree was found for each net by the standard process of moralization
and triangulation.

We then ran K = 30 trials for each net. In the kth trial, we generated observations nk
D by sampling

from the CGM distribution, and then used our sampler to produce estimates n̂k,t
C of E[nC | nk

D] as a
function of the number of MCMC steps t. We wish to explore the convergence of the estimate n̂k,t

C
with respect to t, but do not know another algorithm to compute the correct answer for comparison.

To get around this, we use the fact that E[E[nC | nD]] = E[nC] (a basic property of conditional
expectation) which implies that, if our estimates of the conditional expectation are correct, then
averaging over enough trials will give us back the unconditional expectation E[nC] = MµC , which
we know from the model parameters. Specifically, n̄t

C := K−1
∑K

k=1 n̂k,t
C converges to E[nC] as

K and t go to infinity. The plots show relative error ||n̄t
C −MµC ||/||MµC || as a function of t for

K = 30.

15

