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Abstract plicit) about a prediction, the assistant needs to update it

Real-time problems prediction problems pose a challengdPf§dictor. This update must be very efficientin order foirsuc
machine learning algorithms because learning must be & assistant to be usable. U;er activity patterns change ove
the set of classes may be changing, and the relevance of sBfi@: @s a result of changes in the mix of projects and dead-
features to each class may be changing. To learn robust ci§s, which again raises the problem of non-stationarity.
sifiers in such nonstationary environments, it is essengal !N this paper, we explore learning algorithms that are
to assign too much weight to any single feature. We addrééde to efficiently handle large-scale data sets and rapidly
this problem by combining regularization mechanisms wiiflapt to changes in the set of categories, their definitions,
online large margin learning algorithms. We prove boun@gd their relative frequencies. _

on their error and show that removing features with small Online learning algorithms are algorithms that consume
weights has little influence on prediction accuracy, sugged constant amount of storage and incrementally update the
ing that these methods exhibit feature selection abilite \glassifier in a constant amount of time for each new train-
show that such regularized learning algorithms automigticd"d €xample. In the stationary case, the ultimate accuracy
decrease the influence of older training instances and fo€fisuch algorithms is limited by the total number of train-
on the more recent ones. This makes them especially 188 examples. However, in the non-stationary case, only
tractive in dynamic environments. We evaluate our algile more recent_tr_aining examples within each class are rel-
rithms through experimental results on real data sets &¥@nt o recognizing that class. The greater the degree of
through experiments with an online activity recognitios-synon-stationarity (i.e., the faster the problem is chanpitig

tem. The results show that these regularized large-margfifi@ller the effective number of training examples. As a con-
methods adapt more rapidly to changing distributions af@duence, the risk of overfitting increases, and it is ingprt

achieve lower overall error rates than state-of-the-athmet© Prevent overfitting through some form of regularization
ods. or feature selection. This is particularly true for textsla

sification problems where there are thousands of candidate

Keywords: Classification, online learning, feature Seleégatllﬂetz.(words). desi d luate efficient |
tion, activity recognition, non-stationary environments _inthis paper, we design and evaluate eflicient farge mar-
gin learning algorithms by combining regularization mecha

nisms with online updates. Regularization has been shown

) ) ) to be effective for batch learning algorithms when learn-
When applying machine learning to real-world problemgy trom data with many irrelevant features [33, 15]. The

such as web page categorization and activity recognitien, g yjarization penalty shrinks the classifier weights talsa
ficiency and non-stationarity are important issues. Papula g ang has the effect of controlling the variance of the
web sites, such as blogs and newspapers, continually 9eefrned model. Appropriate regularization can generahy r
ate large numbers of novel documents. Learning over syglye over-fitting by trading off a small increase in bias for
web-scale data is very expensive, even with thousands of By rge reduction in variance. Compared with feature selec-
chines running in parallel [24]. In addition, topics of inte (jo, “regularization is a continuous process that shrihles t
est change rapidly — a topic with millions of visits last yeanqyence of some features. Because it can be implemented in
might be completely ignored this year. an online algorithm, unlike standard feature selectiorhmet
Similar challenges arise when intelligent personal assigys, it js more suitable for nonstationary data. Unlike othe

tants seek to track desktop activities (e.g., [18, 17, 2§, 3Qygight-shrinking online learning algorithms [16, 21], @t
Each time the user provides feedback (either implicit or ex-
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gorithms penalizes the model complexity without compr@- Online Algorithms and Dynamic Environments

mising the margin of the training instances. This paper ign online learning algorithm processes instances in se-
vestigates both L1 and L2 regularization for online updat%ence_ In iteration, the algorithm receives instangg €
We analyze the characteristics of the regularization mech@ snd makes a prediction with its current learned func-
nism in online learning settings. tion f,. Then it receivesy,, the correct label ok,, and
The regularization penalty drives the weights of mabmputes the update conditich If C is true, it updates
features towards zero. The theoretical analysis shows tyltago producef,.; so that a requirement s@ is satis-
ignoring features with small weights has little influence o§g. The goal is to minimize the online prediction error
the prediction accuracy. This feature selection effecedam of 5 single pass over all instances [2]. Online learning al-
explain why regularized online learning is usually more agprithms can be characterized based on their choices of
curate, as confirmed by our experiments. For real-world ofsg » [28, 22, 13, 23, 21, 7, 6]. We focus on the binary
line learning problems, the distribution generating th&ada|ass problem wherg, < {+1,—1} and; is a linear clas-
is usually changing as the time passes. A very discriifier: f, — w, - x,. The results can easily be generalized
native feature can rapidly become less useful or even ugemuylticlass problems. We consider only additive update
less. By avoiding over-weighting a feature, our regulaiiz%|gorithms_
methods can shift to the right model more quickly when the  The termy, (w, - x;) is generally referred to as tmear-
data changes. We also show that the I72 regularized I_earr@i_}g Enforcing a large margin can often improve prediction
method has another property appropriate for dynamic enyéscuracy. In this paper, we consider algorithms that perfor
ronments — it automatically shrinks the influence of oldgfpassive-Aggressiv@A) update [6] when the classifier fails
training instances and pays more attention to more recgitorrectly classify an instance with a functional margin o
ones. 1. The PA update modifies the learned function subject to
We present an application of our algorithms to an intglyo constraints: (a) the correct label should have a funatio
ligent activity management system, the TaskTracer systg{Brgin of 1, and (b) the change to the weights should be min-
[10, 30]. TaskTracer helps users organize and retrieve gy in order to reduce fluctuations. The PA update sets the

formation based on user activities. It collects variousetimpey weight vectos,.,; to be the solution to the following
stamped user interactions (such as file open, save, text®frstrained optimization problem,

lection, copy/paste, window focus, web navigation, emalil
read/send and so on) in Microsoft Office (Word, Excel, Pow- Wiy1 = arg min 1 |w — thlg
erPoint, Outlook), text and pdf files, Internet Explorerdan weR™ 2
the Windows operating system. Each interaction generates
events which are stored in a database. TaskTracer associate ye(w-x¢) > 1.
with each activity the set of resources accessed when per- . . . S
: g . ' Most online learning algorithms have no limitation on

forming that activity. It employs this data to configure tth . : )

; . - Lo e size of the feature weights. Consequently, some weights
desktop to assist users in organizing and re-finding inferma

tion. TaskTracer requires the user to explicitly declame AN grow _to be quite large. This is mappropr_late in dy-
L . ) namic environments, where features that were important at
current activity in order to correctly associate resourcitis

ey : ) g one time may become unimportant at later times. For exam-
activities. This approach fails when the user is interrdpte : . . -
|e, let's consider the problem of sentiment prediction sghe

(e.g., by a phone call, instant message). The user typlc% goal is to predicts whether a product review is positive.
changes documents, web pages, and so on without remem-

bering to first inform TaskTracer. To address this problem nsu_je_r an imaginary product, tlnle_sarn. Suppose _that
. : L L when it first appears on the market, it gets many positive re-
we designed and implemented an activity recognition com-

ponent by applying a variation of the learning algorithms d\{ews, .because .Of '.tS novel funpponahty: Hence, the V\{Ol’d
scribed in this paper [29], ILearnis a good indicator of positive sentiment and receives

.a large weight. But then suppose that a serious problem is

This paper is organized as follows. We begin with an "Yiscovered with théLearn. Then the wordLearn imme-

troduction to online learning and a discussion of our metivgiately changes from predicting positive sentiment to pre-

tion. We then derive our regularized large margin algomhr&icting negative sentiment. However, siritearn received

and present their theoretical analysis. We show experiahen " . . .
a large positive weight during the early phases, it may take
results on real data sets to evaluate the performance of gur

algorithms. We present an application in the activity recostandard learning algorithms a long time to respond to the

I ange. In particular, standard methods such as Naive Bayes
nition component of TaskTracer. We conclude the paper wi . : - .
) : would not realize thail_earn is now predictive of negative
a discussion of future work.

sentiment until it had seen as many negative examples as it
had previously seen positive examples. In the mean time,
the algorithm will make many prediction errors. One way to
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avoid this problem is to avoid assigning too much weight tem 3.1 is
any one feature.

When constructing classifiers over high-dimensiong'z)
data sets, we face problem of over-fitting. A common stral-(w,7) = = ||w — thlg +2 HWHZ +7(1 —y(w - x¢)),
egy for addressing this issue is to first perform a feature se- 2 2
lection step. Standard feature selection methods [35]tadefrerer > 0 is the Lagrange multiplier. Differentiating this
the batch approach and thus are inappropriate for onlicggrangian with respect to the elementssoéind setting the
learning. Some feature selection methods have been plrtial derivatives to zero gives
signed for the online setting [14, 9], but they have two short 1 -
comings. First, they assume an adversarial environment §8.@) w = w Yy
take a worse-case approach. Thus the performance is usually l+a l+a
suboptimal in the normal case. Second, they usually m&splacingw in Eq 3.2 with Eq 3.3, the Lagrangian becomes
solve a difficult optimization problem that lacks a closed-
form solution. In this paper, we address the over-fitting ) = 1 H
problem by applying regularization. We show that our al- 2
gorithms have feature selection ability and can improve ove H T
non-regularized algorithms. 2 |1+«

We say that an instanceastiveif it triggers an update.

Online learning algorithms typically set the initial weigh By setting the derivative of this with respectitdo zero,
vector to the zero vector and do updates of the ferm; = we obtain
w; + Ty X Wherer; is the learning rate determined by the
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learning algorithm. Thusw; is a linear combination of the 1-— ||xt|\§ _ yelwe - xi) =0
active instances, and the newer active instances playthe sa l+a l+a

role as the older active instances. We show that for certain Lo louwex) ta 1
kinds of regularized online learning, the updates have the [[x¢]|5

= L > - . . . .
form wi1 = Zwi + 7iyux, whereZ, > 1. Thus, the We will refer to this algorithm as theobjective-

coefficients of those active instances appearing earliarish . . . o

) " } regularized algorithm, because it places the regularization

and have less influence as additional instances are receive o . R .
e objective function of the optimization problem. This

. . n
Note that this is exactly the opposite of standard StOcm"Jlsa'{lgorithm combines (a) largin margin fitting of the data (the
constraints) with (b) minimizing the change in the weights

gradient descent algorithms, which decreasgisually as

1/1), aqd hence place more weight on older instances a(ﬂ(rjst term of the objective) with (c) minimizing the mag-
less weight on more recent ones [27].

nitude of the weights (second term of the objective). The
first term of the objective could also be viewed as being

) . ] o ] the “memory term”, since it seeks to remember the previous

apenalty in the objective function, and the second one plagg the “forgetting term”, since it serves to shrink the wesgh

explicit norm requirement in the constraints. Hence, the algorithm can be viewed as balancing the compe-
] ) ) . o tition between remembering and forgetting, as controlied b

3.1 Online Learning with a Regularized Objective.Let , Notice that in all cases, our algorithm must fit the most

o be a constant controlling the shrinkage rate. We can shriglent training example with a functional margin of 1.

the norm of the weight vector towards zero by adding a A few other online learning algorithms attempt to shrink

3 Regularized Online Learning of Linear Classifiers

penalty in the objective function: weights towards zero [16, 21]. These algorithms trade off
1 fitting the data against simplicity of the learned model. iThe
. 2 « 2 . .
(3.1) Wil =arg lin o |w — w5 + 5 [lw]5 updates do not directly ensure a large margin. Consequently

, their shrinking mechanisms have to sacrifice the fitting & th
subject toy,(w - x;) = 1, training data. Experimental results show that our algarith
gives much higher accuracy.

Since we are handling nonstationary problems, the best
hypothesis at each iteration might be changing. Let us define
LEMMA 3.1. Problem 3.1 has the closed-form solutiof® optimal algorithmto be one that performs the minimal
Wis1 = i (Wi + Teyex), wherer, = If;r‘fzz number of updates and does not update its hypothesis unless

tll2 our algorithm updates the hypothesis—that is, it may per-
Proof. The Lagrangian of the optimization problem in Proferm fewer updates by skipping some of the updates that our

We denote the hinge loss [15] at iteratibas?;. This gives
a simple closed-form update:




algorithm makes. We will show that our regularized algo- Using the fact thafju — vllg > 0 which is equivalent to
rithm is competitive with the optimal algorithm, as long agu||% — 2u - v > — [|v||3, we get
the change between two consecutive optimal hypotheses is

i 1 1
not extremely dramatic. _ (1— 5) HWQHZ —2(1— YWy
Letuy,..,ur € R" be the sequence of weight vectors (1+a) 1+«
chosen by the optimal algorithm. We will specify that = 1— 1%& ) aD?
0, the zero vector. Let! denote the loss o, at iterationz. (3:6) = — pR—— [tz = T ra
Assume that the norm is bounded for each instaggce.e., Ita
IIx:|l, < R. LetI, be theactive setat iterationt for our Using Eq 3.4, 3.5 and 3.6, we obtain
algorithm. An instance; is in I iff ¢ < t and it triggers an
update by our algorithm. The following theorem provides an L A S 1—a? aD?
error bound of our algorithm. Z t=M\ gz~ 2(1 + @)l — 2ta)’
t=1
THEOREM3.1. Assume that there exists an optimal se- Applying 3, A, < D? gives
quence of vectorsy, ...,ur € R" such that|jw||, = D,
¢y = 0 forall ¢, lu; — uit1]l, < p andy satisfiesg = 1—a? aD?
- 3.7 -2(1+ - < D2
1;%3‘2 —2(1 4+ a)up - _g‘%i > 0. Givenmax; ||w|, < 6 _( ) om R? (1+a)us 24a/) ~
the number of prediction mistakes made by the objective-
. . . 2 ; 1—a? aD? h
regularized algorithm is bounded by < 2=, Sinceg = 7= — 2(1 + a)uf — 555 > 0, we get the
g result in the theorem. ]

Proof. Let A; = |[wy — w2 — ||Wis1 — usia]5. We can
prove the bound by lower and upper bounding A,. Since
wy is a zero vector and the norm is non-negativg, A, =

Note that the error bound increasesiaé&he bound on
the size of the optimal weight changes) increases. This con-
firms the intuition that a learning problem with dramatigall

2 2 2
[wo — o[y — [[wr —uz|; < |lwo —uoll; = D?. ~ changing concepts is difficult, even for a regularized anlin
Obviously,A; # 0 only if ¢ € I, wherel, is the active |egrning algorithm.

set of our algorithm at iteratioh We will only consider this

1 . . . .
case here. Let; = w; + 715X, W1 = 157 Wi- A0 €8N 32 Online Learning with a Norm Constraint. The
be rewritten as objective-regularized algorithm keeps shrinking the &g
even when the weights have become quite small. This could

2 ’ 2
([[we — ey — [Jwy —wel]3) hurt prediction accuracy. We can instead only shrink the

(W — w5 = [[wW) — w3 weights when they get too large by enforcing a norm con-
2 straint:
+(Iw; = wirlly = [[Wir — wea[l3) = 60 + v + €
3.8 = in 2 2
We will lower boundd;, v; ande;. (3:8) Wil = arg i B} [w — w5
Ford;, we have subjecttoy,(w - x;) > 1 and ||w||, < 3.
2 . . .
6 = = 27yexe - (We — W) — [[Teyexef3 This leads to the following simple closed-form update:

>2Ttét — 7'2 ||XtH2
= t 2 LEMMA 3.2. Problem 3.8 has the closed-form solu-

, O >
Plugging the definition of, and considering, > 1 get 10N Wer1 = 7 (Wi + myxy), where Z, =

Wi 3 Xt = Wi Xt 2 t t—
26+ 200 B +2%0+0® _1-a? max{l’\/” e }’Tt =i
(34) 6t Z 2 - 2 2 R2 .
It et A detailed proof is presented in the Appendix. We
For e, we have will refer to this algorithm as thé-2-norm constrained
algorithm, because it places an L2 norm constraint on the
e = — 2w, - (Up — W) weight vector. This algorithm performs the normal passive-
(B5) > —2| Wil luy — ugally > —2(1 + o). aggressive up(_jate until the norm wf exceedss. It t_hep
shrinks the weights enough to ensure thatghmnstraint is
Fore,, we have satisfied. Our experiments show that this approachis $fight
more accurate than the objective-regularized algorithm.
e =(1— ;) HWQHZ —2(1— L)Wg Uy It is easy to show that both the objective-regularized
(14 a)? I+a and the L2 norm constrained algorithms are rotationally



invariant. LetM = {M € R™"|MM’' = M’'M = tends to force a subset of weights to be exactly zero [33], so
I,|M| = 1} be the class of rotational matrices, whdre that the learned weight vector is sparse.
is the identity matrix. Given a learning algorithf, we The following theorem provides an error bound for the
say it isrotational invariant[25] if for any training setS, online learning algorithms with L2 or L1 norm constraints:
rotational matrixA/ € M, and test example, we have ) .
L[S,z] = L[MS, Mz], whereL[S, z] is the predicted label THEOREM3.2. Assume that there exists an optimal se-
of z resulting from using_ to train onsS. quence of vectorsi,...,ur € R" such that|wll, =

D < g,¢; = 0forall ¢, |Juy —ueqa|, < pandyp sat-
LEMMA 3.3. The learning algorithm solving Problem 3.stfi65% —2u83 > 0, then the number of errors made by

and the algorithm solving Problem 3.8 are rotationally inthe algorithm with the L2 norm constraint is bounded by

variant. R2D? i : : i
T Similarly, if there exists an optimal vector se-

Proof. We focus on the Problem 3.1. The proof can pgience such thdtu |, = D < gand|ju; — w41, <

similarly applied to Problem 3.8. We show thatliftrained then the number of errors made by the algorithm with the L1
A " 212

with S outputsw, then L trained with MS outputs the norm constraint is bounded by < 2.5

weight vectorM w by induction on the size of.
Let L[S] denote the weight vector returned bytrained Proof. We concentrate on the L2 norm case. The pr200f can
with S. be applied to the L1 case similarly. LA, = ||w; — u.||; —

When S| = 0, both weight vectors are zero vectordWi+1 — urs1ll5. We can prove the bound by lower and
Thus, the claim is true and the score functions will be t@Per bounding=, A;. We know}=, A; < D2.
same since they always return 0. We now lower bound\;. We letA; = (||w; — |5 —
Assume whenS| = k, L[MS] = ML[S]. Now, [wi1—wl3) + (|Wes —wll — [[Wep1 — upa]3) =
consider|S| = k+ 1. LetS = S"U{zp1} andMS =~ + xq.
(MS") U{Mzyy1}. We knowL[MS'] = ML[S’], since For x:, we havey; = —2wi 1 - (up — uzpy1) > —2u0.
the size ofS’ is k. Since we are using the linear product as Itis obvious thafju||, = >, |u;| > [>°, us|. Thus
the score function, foE trained withA/ S” we have the score
for Majy1: LIMS') - (Majy1) = (ML[SY]) - (Mzpq) = B10) [[(We1 = wi)xelly 2 |ye(Wen —wi) - xe[ = 1.
L[S (MM)zgy1 = L[S’] - x4+1. Thus the prediction of
Maxy41 given byL with M S’ is the same with the prediction

m <

Applying Holder’s inequality, we have

of xx+1 given by L with S”. 311 Wit — W < 1Wrat — w x

If there is no need to update the weights, we ObV(I- ) Iwea el < | 1t+1 1t”2 Il
ously haveL[MS] = MLIS]. If we need to update the(3.12) [Wer1 — Willy > 7 > ik
weights, the update will ba.[MS] = L (L[MS'] + el
mly: (Mx441)), wherer! = Hf\f::fl\ﬁ = ”xi’:‘i‘uz = T Let Ps(w) denote the projection ok onto the convex
ThusL[MS] = Mﬁ(L[S/] + 71y (Xp41)) = ML[S]. setS. We know for anyu € S, we have|w —ul|; —

In summary, L[MS] = ML[S] given any data set.||Ps(w) — u||§ > |lw— Ps(w)Hg [3].
Since we are using the linear product as the score function, We note thatv;,, is a projection ofw; onto the convex
we always haved [S, z] = L[M S, Mz]. B setS = {w € R"|loss(w, (y:,x;)) = 0and||w]|, < 5}

. . . . for the L2 norm constrained algorithm. Simag € S,
Ng [25] shows that rotationally invariant algorithms

can require a large number of training instances to Iearrzizals)
simple model when there are many irrelevant features. ‘In
such situations, learning algorithms with L1 regulariaati
usually learn more quickly. Thus, it is worth exploring the

1

2
Ve = [[we — Wiy = R

Thus, we have

following L1 norm constrained learning algorithm: (3.14) Z (% ~ QMB) D2
(3:9) Wiy = arg i % Iw = wil; o R2p2
subject toy,(w - x;) > 1and ||w]|, < 5. (3.15) m < o
This can be transformed into a quadratic programming Hence, we obtain the result in the theorem. 1

problem and solved with an off-the-shelf quadratic program
ming package. Since the L1 norm constraintis still convex,i  Since |lu; — w1, < ||uy — w41y, the error

is guaranteed to find the global optimum. There is a discoribunds suggest that the L1 algorithm can tolerate more fluc-
nuity in the gradient of L1 with respect to; atw; = 0. This tuations of the best hypotheses than the L2 algorithm.



3.3 Regularization and Dynamic Environments.Our by analogy, when the optimal hypotheses change dramati-
regularized algorithms have some characteristics edpeciaally (i.e., wheny is large), we need to shrink the norm of
desirable in dynamic environments. our learned model more aggressively (kgepmall) for the
The algorithms regularized with L2 norm automaticallgorm-penalized algorithms.

shrink the influence of the old observations and put more We cannot setx extremely large or sef extremely
weight on the recent ones. Lé} denote the active setsmall, since we must ensure that the correct label can receiv
at iterationt. Based on Lemma 3.1, the learned decisi@positive score by a given margin. Thus the norm of the
function of the objective-regularized algorithm at timean weight vector cannot be too small. But when possible, we

be rewritten as should keep the norm of the learned weight vector small
in order to improve the prediction precision in dynamic
(3.16) fi(x) = sign Z %Xz x|, environments. To see this, note that the error boyﬁﬁ%
iel, (1+a) in Theorem 3.2 is directly proportional {8 the norm of the

) ) weight vector. Ensuring a smallérwill lead to a smaller
where|I; — I;| is the number of active examples (and hem&uaranteed error bound.

the number of weight updates) from time- 1 up to timet.

Similarly, for the L2-norm constrained algorithm, we; 4 The Feature Selection Effect of Regularized Online
can rewrite the learned decision function at timgased on Leaming. Regularized online learning methods force many
Lemma 3.2 as feature weights to be small. We now show that we can

s remove these features with small weights without hurting

. ’LyZ .
(317)  fulx) =sign( ) T .z *) the accuracy too much. Assume that features are sorted in
iel, +1I€L—Ti) 7 ascending order according to the absolute values of their

These forms are interestingly similar to the Forgetron é(y_e]:ghts. Suppose k"}f remove the fﬂstfeatgres SO that
gorithm [8], an online kernel-based learning algorithmeTh-i=1 wi <o and_;—, w? > 0. Aslong as is small, the
Forgetron performs the standard percetron update but cBfmber of errors will still be close to the original reguiz
trols the number of support vectors by removing the olddg¢thod. For the objective-regularized algorithm, we have
support vector when the size of the support vector set is {86 following error bound:
large. Since removing a support vector may significantly
change the hypothesis, it tries to “shrink” the weight of oljHEOREM3.3. Assume that there exists an optimal se-
support vectors. It multiplies the weights By € (0,1] in quence of weight vectots, ..., ur € R" such that|u,||, =
each iteration. Our L2-regularized algorithms automdiical, ¢; = 0 for all ¢, [[u; —us41][, < p and p satisfies
shrink the weights of those support vectors and, hence, “far = 1;%3“2 —2(1 + a)pup — ‘;TD; —2y/oD > 0. Given
get” the old support vectors. This is critically important f max; ||w¢||, < 3, then the number of prediction mistakes
handling non-stationary online learning problems. made by the objective-regularized algorithm which removes

Note also that these forms only involve inner producgsnall weights is bounded by < DTZ_
between training examples and the new input exampie
This suggests that the method can be extended to non—Iirlgi%ro
decision boundaries by applying the kernel trick to repla
the inner product with a functiok'(-, -) that satisfies the
Mercer conditions.

Theorem 3.2 also explains why it is important to shrink n

. v € R" as
the norm of the weight vector towards zero and not to
assign too much weight to any single feature in a dynamic

f.Let A, = ||wi — w3 — ||[wit1 — ugq]3. We can
B?ove the bound by lower and upper boundig A;. As
the above, we knowy", A; < D2

1

! "o / H
Letw), = w; + Tyyexs, Wi = e Wi We define vector

environment. In order to be competitive with the optimal nooo i "2
wip i wii <o

sequence of vectors, the norm of the learned vector hag3d 8) Vi =19 othe'rjvT/ise J

satisfy 4> — 243 > 0, or 3 < 31—. When the change '

5.
between two consecutive optimagrﬁypotheses becomes more
dramatic (i.e.,u becomes larger), the valid value ¢f
becomes even smaller. In such cases, we need to keeﬁ 9 , 9
the norm of the weight vector small so that the learned [we —uefl; = [[wi —uell3)
hypothesis can adapt to the new environment quickly.  + (||w} — w3 — W} — w11 ]3)
In Theorem 3.1, since we usually seguite small, we
can approximate with % — 2u0 by ignoringa. This ex-
pression then matches the requirementin Theorem 3.2. Thu§|w; — w41 ||§ — [|[Wiy1 — ut+1|\§) =0 + P + € + pr.

Thenw; 1 = w} — v¢. A; can be rewritten as

2 2
+ (Wi — wegally = Wi — wepall3)



We have already proved the lower boundsdgr), and 0 omm e
€; above. Fop,, we have D X
Pt =2vi - W, —2vy gy — ||VtH§ ) o6 """:".‘: """""""""""""""""" ;7{ """
z 0.5 oo = —'.w------’(; ————————————
Itis obvious thawv; - w} = ||v,||3, thus we have B ga b S A S -
8 N - S -m-P2
(3.19) pt = ||Vt|\§ — 2V Upgp1 > =2V Wy i 1(‘ o
0.2 Fommmm e
. . . /’I
Applying the Cauchy-Schwarz inequality, we get 04 oo S Vi, N —
e [}
——ar e Ny \
(3.20) pr = = 2|[vielly [[uggally = =2V D. N . : ; .
Using Egs. 3.4, 3.6 and 3.20, we obtain Phase

T 2 2
Y Arzm (1 = 2(1+ a)uf — aD® _ 2\/51)) . Figure 2: Non-stationary class probabilities employedhi t
Pt R 2+a experiments.

Since}", A¢ < D?, we have
We have previously shown thgt +~; > % —2upand

1- 042 CYD2 2 h / 2 2 > 9 D.Th
m R2 - 2(1 + a),uﬁ - 2% a - 2\/ED < D-. t atHWt - ut+1||2 - HWt+1 - ut+1||2 = — \/E . us,
1
Sinceh = 152° — 2(1+ a)up — $2 — 25D > 0, (3:25) Ay > 55 =28 = 2V/oD.

we obtain the result in the theorem.
Since we know.z — 213 — 2/aD > 0, we obtain the
Similarly, for the algorithms with norm constraints, weesult in the theorem. ]
obtain the following error bound:

T 3.4 A that th ist timal This theorem shows that removing those small-weight
HEOREM3.4. ASSume that there exists an optimal S¢aayreg slightly increases the error bounds by subtmctin
quence of weight vectotsy, ..., ur € R™ such that|u,||, =

2~ 2y/0||ul|, from the denominator. Given a smai) ignoring
* _ . . . .
D < 6; = 0forall ¢, lu; —uppll, < pandp satisfies w0 foqrires with small weights has little influence on the

4= % _2“.5_2ﬁD > 0, thenthe numbgr oferrors mad rediction accuracy. Our experimental results show that th

by the a;\Igonthm with the L2 norm constraint is bounded tcuracy is not hurt even when we remove more than half

m < £-. Similarly, if there exists an optimal weight vectops the features. This feature selection effect can alsoadxpl

sequence such thit ||, = D and|lu; — us+1l|, < 11, the  the superior performance of regularized online learning: o

number of errors made by the2 algorithm with the L1 norggorithms drive many feature weights towards zero. The

constraint is bounded by, < DT. algorithms tend to learn a model with a sparse parameter

vector when the feature space is large.

Proof. Let A; = ||w; — utHg — w1 — ut+1||§. We can

prove the bound by lower and upper bounding A;. As 4 Experimental Results

the above, we knoy_, A; < ,DQ' _ We evaluate our algorithms with three data sets.
Obviously,A; # 0 only if ¢t € Ip. We will only con-

sider this case here. Let; be the solution of Problem 3.8.4 1 pata sets We tested our algorithms on one image

We define the vector, € R" as data set, USPS, and two text data sets, 20NewsGroups and

SRAAL For all text documents, we removed the header

W if Zi- wi<o and converted the remainder into a 0/1 vector of indicator
(3.21) Vi = te g=1 "tj i i i i
ti 0 otherwise. variables for each word (without stemming or a stoplist).
To make the experiments more realistic and dynamic, we
Thenw;;1 = w}, — v¢. A, can be rewritten as defined a non-stationary process for generating the data
) ) sequence. In each data set, we chose four classes (P1, P2,
(3.22) (Jlwe — we||5 — [[wi — we]3) N1, N2). We defined the union of P1 and P2 to be the
(3.23) + (W) — utH; ~wl - Ut+1|\§) positive class and the union of N1 and N2 to be the negative

/ 2 2
(3.24) + (”Wt - ut+1H2 - ||Wt+1 - ut+1H2)' TAvailable at http:/Awww.cs.umass.edu/ mccallum/datsgar.gz



class. Then we defined four phases for the data sequencef@aeer, although PA is tied with it on SRAA during the early
Figure 2). In Phase 1, the probability of class P1 decreapest of Phase 3.
from 0.7 to 0.5 and the probability of N1 increases from 0.3 The Passive-Aggressive algorithm is the next worse per-
to 0.5. In Phase 2, the probability of P1 decreases from @omer. On USPS and 20NewsGroups, it starts out adapting
to 0.3, P2 increases from 0 to 0.2, and N1 is fixed at Orfore rapidly than NORMA and the Bayesian Perceptron, but
In Phase 3, P2 is fixed at 0.5, N1 decreases from 0.2 tatn its performance fails to improve as rapidly as the other
and N2 increases from 0.3 to 0.5. In Phase 4, P2 decreasethods.
from 0.5 to 0.3 and N2 increases from 0.5 t0 0.7. Classes not The Bayesian Perceptron algorithm initially adapts
mentioned have probability O. more slowly to the non-stationary change at the start of®has
For the USPS set, we sampled 500 instances (with@than our algorithms. However, by the end of Phase 4, its ac-
replacement) in each phase and defined P1 to be the digitacy approaches that of our algorithms, and in the case of
“3", P2 to be “7”, N1 to be “8”, and N2 to be “9”". For SRAA, it eventually becomes more accurate than our meth-
the 20NewsGroups and SRAA data sets, we sampled &@3. This may show that our algorithms are more strongly
instances (without replacement) in each phase. For 20Nedssigned for non-stationary distributions and suffer some
Groups, P1 is “Baseball”, P2 is “Hockey”, N1 is “Auto”, andvhat when the distribution is fairly stable for a sufficigntl
N2 is “Motorcycle”. For SRAA, P1 is “RealAutos”, P2 islong time. The Bayesian Perceptron algorithm requires more
“RealAviation”, N1 is “SimulatedAuto”, and N2 is “Simu- CPU time and memory, partly because it must maintain a co-
latedAviation”. There are 256 features in the USPS datariance matrix. When the feature space is extremely large,
8354 features in the 20NewsGroups data, and 9610 featuhesBayesian Perceptron algorithm will become infeasible.
in the SRAA data. The experiments show that both the L1-norm con-
strained algorithm and the L2-norm constrained algorithm
4.2 Approach. We applied our algorithms to the genergive similar performance. A possible reason for this is that
ated data sequence as follows. We used the first half of the number of irrelevant features is within an order of magni
data to select the regularization parameter and then ttaitede of the number of informative features in these problems
the model on the first half. We then measured online perférs we will show below, more than half of the features are in-
mance using the second half of the data. Since the sectarthative in the USPS problem. For the text problems, there
half corresponds to phases 3 and 4, this approach meansahatseveral times more meaningless features than informa-
the initial model (learned in phases 1 and 2) performs veiye features, but the number of informative features i sti
badly initially, because of the discontinuous shift in slagjuite large. Previous work suggests that L1 regularization
probabilities at the start of phase 3. The results are simierks best when a small number of features play moderate-
lar if the regularization parameters are tuned on the secakd effects in classification, while L2 regularizatiogiste
half of the data. All results are averaged over 40 trials.  competitive when a large number of features play small ef-
fects in classification [33]. One future direction would be t
4.3 Comparison with Other Online Learning Methods. consider the elastic net approach, which employs a mix of
We compare our algorithms with the Bayesian Perceptrbh and L2 regularization [36].
algorithm [32, 4] (which approximates the posterior with One advantage of the L2-constrained method is that it
a Gaussian), the linear NORMA algorithm [21] (whiclis more efficient than the L1-constrained method. However,
is another regularized online learning algorithm), and thecent work has shown that L1-constrained methods can be
passive-aggressive algorithm [6] (which is a state-of-thmade very fast [36, 11]. In our implementation, we used the
art online learning algorithm). The results are shown @urrent weight vector as the initial value when solving the
Figure 1. quadratic programming problem to compute the update. This
Of the five methods evaluated, our objective-regularizethkes the update quite efficient. For example, it took less
and L2-norm constrained algorithms are clearly superior tiran 10 minutes to process all 3200 20NewsGroups instances
the USPS and 20NewsGroups data sets. On SRAA, owara Linux machine (AMD64 2.6Ghz CPU, 2G memaory). As
algorithms are able to adapt very rapidly to the nonstatipna comparison, the objective-regularized algorithm toakeb
change in class probabilities at the start of Phase 3. Haweu® seconds to process all 3200 20NewsGroups instances.
by the end of Phase 4, the Bayesian Perceptron algorithm hasFeature Selection Power. Next we investigate the
caught up and surpassed our methods. feature selection power of our algorithms and compare this
We consider each of the methods in more detail. Thetwo other feature selection methods. For our methods,
worst method appears to be the NORMA algorithm. Alwe did the following. We chose a set of possible values for
though in theory, NORMA can quickly adjust its hypothes and ran each algorithm with each value. In each run at
sis, in our experiments, it adjusts more slowly than all efach time step, we sorted the weights by their magnitudes
the other algorithms. NORMA is consistently the worst peand removed features until the sum of the absolute values of



the weights exceedetl We computed the average numbedion gain does not realize that the data is changing and con-
of non-zero weights per iteration and the overall error raiaues to select features aggressively based on overaliahut
over the testing sequence. Features were “removed” oimformation. Its performance is extremely bad when we se-
for purposes of predicting the label on the new examplect only a small number of features. Information gain shows
The algorithm continued using the entire weight vector improvement only for the 20NewsGroups problem, which is
perform its weight updates. relatively easy to predict.

The other two feature selection methods that we ex- On USPS, the game-theoretic method selects better
plored were information gain [35] and a game-theorefieature sets than information gain. However, the game-
method. When updating the model, we first perform fetiieoretic method is too inefficient to run on 20NewsGroups
ture selection and then carry out the model update. Infornoa-SRAA because of the large number of features in these
tion gain is a pair-wise feature selection method that iy vedomains.
effective in aggressive term removal without losing clissi The L1-norm constrained method does not perform as
cation accuracy in stationary environments [35]. It simplyell as the L2-norm method. This is probably because the
computes the mutual information between each feature aridnorm method is more likely to put more weight on a
the class label(z;;y). It then chooses thk features with smaller number of informative features. Once these feature
highest mutual information. are removed, its performance is severely damaged. Although

We also devised a game-theoretic feature selectioniilshows slightly better performance when we allow many
gorithm that tries to maximize accuracy in the worst cadeatures, it becomes unstable and its accuracy is much worse
Online learning faces a dynamic, sometimes even advershan the L2 constrained method when the number of selected
ial environment [14, 9]. We treat feature selection as a twigatures is small. The accuracy of the L2-constrained ntetho
person game [12]. Let the learner be the row player and feenot hurt even when we remove most of the features. This
environment be the column player. The game can be thoughggests that this method has the ability to learn a sparse
as this: given an observatian the row player chooses a feamodel that still performs well.
ture z; and probabilistically determinegi|, the label ofx
based only on feature;. Simultaneously, the column played.4 Adapting to a Changing Environment. For online
chooses a feature; and probabilistically determines the lalearning, the learned model is determined by dleéve set
bely[j]. If they predict the same label, then the row playd@he regularized methods naturally reduce the influence of
gets reward 1, otherwise 0. We want to design a reward nitze old active instances and pay more attention to the more
trix M so that each eleme (4, j) is proportional to the recent ones. In Figure 4, we compare the final learned
likelihood thaty[i] = y[j] when the row player selects feamodels for the USPS problem. We plot the learned models
turex; and the column player selects feature There could as follows: each feature corresponds to its position in the
be many choices. We chose the mutual information betweerage, and the gray scale is proportional to its absolute
x; andz;: Mi, j] := I(z; ;). Letu be the learner’s selec-weight. To compute the information gain figure, we apply
tion strategy and’ be the environment’s strategy, our goal ithe information gain criterion to the entire data sequence
then to find a strategy that can maximize the reward in thed compute the information gain of each feature. For

worst case: the Passive-Aggressive (PA) algorithm, we plot the absolut
. weights of the features at the end of Phase 4. At the end of
(4.26) max min (uMv) Phase 4, each algorithm should be just predicting whether

a digit is “7” or “9”. The images suggest that this is what

the regularized algorithms (and to a lesser extent, PA) are

Zui = Zvj =k, doing. The information gain method does not appear to
i J be focused on this task. We can also see that the L1-

subjecttoVi w; € {0,1}, Vj v; € {0,1},

wherek is the number of selected features. We then selggtnStra'nEd method has more aggressively put_Iarger_uwght
X . n a smaller number of features. The PA algorithm still puts
those features withy; = 1. In practice, we can relax

the integer requirement and replace the constiéing; € large weights on some features that can discriminate “3” and

{0,1}, V5 v; € {0,1} with constraintVi0 < wu; < 8 (from Phases 1 and 2).
j < < i L - "
L vy 0<w <1 The problem can be cor_lv_erted int Application to Activity Recognition
a linear programming problem and solved efficiently. We ) i ) ) _
then select thé features with the largest;. We applied a variation of our regularized online learning
The feature selection results are plotted in Figure 3. §#gorithms to do activity recognition in an intelligent &ty
most cases, the regularized methods significantly outparfdn@nagement system, the TaskTracer system [10, 30, 29].
other feature selection methods, especially for the USPS
problem in which most features are informative. Informa-



Corfomicss, i, N | i ber of examples, so the longer TaskTracer is used, the slower
Corferences the training becomes. Furthermore, activity prediction is
ConferencestAAA]_05

Cosarcasicl 1) t3h | 14h multi-class prediction problem over a potentially largemu
ConferencesINIFS_08 I ber of classes. For example, our busiest user worked on
@ 1 299 different activities during a four-month period. To per
form multi-class learning with SVMs, we employed the one-
Figure 5: The screenshot of Task Selector, an applicatin tiersus-rest approach. If there ake classes, then this re-
is located at the right bottom of the desktop. quires learningK classifiers. If there ar&/ examples per
class, then the total running time is rouglily N2 K3). This
is not practical in an interactive, desktop setting.

- . Another drawback with the previous learning methods
51 The TaskTracer System and Its Activity Recogni- is that they are slow to respond to the user’s feedback. In

tion Problem The TaskTracer system is an intelligent activ- : .
ity management system that helps knowledge workers mmany cases, when the user provides feedback, the algorithm
. S ) or](ly takes a small step in the right direction, so the useitmus
age their work based on two assumptions: (a) the user’s WOIK  ~ted| . i
. . A i y provide feedback until enough steps have been
can be organized as a set of ongoing activities such as Wgﬁgen to fix the error. This behavior has been reported to be
TaskTracer Paper” or “Take CS534 Class”, (b) each actiw& S
is associated with a set eésources “Resource” is an um- © tremely annoying.
. . Our regularized online learning methods can address the
brella term for documents, folders, email messages, ema%love bl ; - )
problems. Thus we redesigned the activity predictor
contacts, web pages and so on. TaskTracer collects events
) o L Q apply our new methods.
generated by the user's computer-visible behavior, inclu

ing events from MS Office, Internet Explorer, Windows E

: : % 2 System DesignAs indicated above, TaskTracer mon-
plorer, and the Windows XP operating system. The user &ts various desktop events (Open, Close, Save, SaveAs,

declare a c_urrent activity” (via a “Task Selector” usernt Change Window Focus and so on). Everseconds (default
face, see Figure 5), and TaskTracer records all resources ge, g ; : i
. . s=60) or when the user declares an activity switch, it com
they are accessed and associates them with the current d?- . X . L
L . putes an information vectdX; describing the time interval
clared activity. TaskTracer then configures the deSktOpt'gince the last information vector was computed. This in-
various ways to support the user. For example, it suppliesan " . : P :
application called the Task Explorer, which pr’esents a uf(l)_rmat|0n vector is then mapped into feature vectors by two
’ unctions: F : (Xy,y;) — RF andFgs : (X;) — R™.

fied view of all of the resources associated with the curreft o . - o
- . . e first functionF 4, computesactivity-specifideatures for
activity and makes it easy to open those resources in the ap-

propriate application. It also predicts which folder theus> specnﬂed activityy; the secoqq functlo_rf_‘s computes
is most likely to access and modifies the Open/Save diaﬁwnch—spemﬁc features The activity-specific features in-
; Ja88de
box to use that folder as the default folder. If desired, it ca
restore the desktop to the state it was in when the user lasé Strength of association of the active resource with ac-
worked on an activity, and so on. tivity y;: if the user has explicitly declared that the ac-
To get the right resource-activity associations, the user tive resource belongs tg; (e.g., by drag-and-drop in
must remember to indicate the current declared activitheac = TaskExplorer), the current activity is likely to he. If
time the activity changes. If the user forgets to do this, the active resource was implicitly associated wittior
then resources become associated with incorrect acsivite  some duration (which happens whegnis the declared
and TaskTracer becomes less useful. For this reason, we activity and then the resource is visited), this is a weaker
sought to supplement the user's manual activity declaratio  indication that the current activity ig;.
with an activity predictor that attempts to predict the emtr _ ) o
activity of the user. If the predictor is sufficiently acctea ® Percentage of open resources associated with activity
its predictions could be applied to associate resources wit s+ If Most open resources are associated withit is
activities, to propose correct folders for files and emaij a  likely thaty; is the current activity.

to remind the user to update the current declared activity. Importance of window title word: to activity ;. Given
. . . J"
We have previously developed two machine learning o bag of words) from the window title, we compute

methods for detecting activity switches and predicting the  , \,ariant of TE-IDE [6] for each word and activityy,:
current activity of the user [31, 30]. A significant drawback |5| !

of both of these learning methods is that they employed a TH(z, ) - log DR Heres is the set of all feature
batch SVM algorithm [19, 5]. This must store all of the train-  vectors not labeled ag;, TF(z,?) is the number of
ing examples and reprocess all of them when retraining is re- timesz appears Q2 and DRz, S) is the number of
quired. SVM training time is roughly quadratic in the num-  feature vectors containingthat are not labeleg;.




These activity-specific features are intended to predict The second term in the objective functiaii¢?, serves
whethery; is the current activity. The switch-specific feato encourage to be small. Ideally¢ = 0, so that this
tures predict the likelihood of a switch. They include enforces the condition that the functional margin (between
correct and incorrect scores) should be 1. The constant
ramete€ controls the tradeoff between taking small steps
e first term) and fitting the data (driviggto zero).

Like our other algorithms, this has a closed-form so-
e Percentage of open resources that have been accesskdign, so it can be computed in time linear in the num-

the lasts seconds: if the user is still actively accessiniger of features and the number of classes. We now de-

open resources, it is unlikely there is an activity switchive the closed-form update rule for this modified version

he fi i h . lici . . of our algorithms. First, let us expand theerms. Define
e The time since the user’s last explicit activity switc , = (21,22, 73) where

immediately after an explicit switch, it is unlikely the

o Number of resources closed in the lasteconds: if the
user is switching activities, many open resources wﬁ[;
often be closed.

user will switch again. But as time passes, the likeli- Z; =F (X 1,y1) + Fa(Xs, )
hood of an undeclared switch increases. CFa(Xe_1,91) — Fa(Xe, i)
To detect an activity switch, we adopt a sliding window Z2 = (I[1 # i) — I[y1 # y2)) Fs(Xi_1)
approach: at time, we use two information vector&X(_; 3 rra .
andX,) to score every pair of activities for time intervals Z; =l # o] — Iy # y2]) Fs (Xo).
t — 1 andt. Given an activity pairy;1,y:), the scoring Plugging this into the above optimization problem allows us
functiong is defined as to rewrite the inequality constraint as the following siepl
form:

9(Yi—1,91)) = A - Fa(Xi—1,y-1) + A1 - Fa(Xe, yr)
—Iye—1 # ye) (A2 - Fs(Xy—1) + Az - Fg(Xy)),
whereA = (A1,Ay, As) € R™ is a set of weights to be

learned by the systeni[p] = 1 if p is true and) otherwise,
and the dot-) means inner product. The first two termsgof

AN-Z>1-¢
We can then derive the following result:

LEMMA 5.1. The optimization problem (5.27) has the
closed-form solution

measure the likelihood that _, andy; are the activities at 1

timet¢ — 1 andt (respectively). The third term measures th@'zs) Avrr = 1+a (A +7Ze),

likelihood that there is no activity switch from tinte-1to¢. \\hare

Thus, the third component gfserves as a “switch penalty” 1 A7

wheny; 1 # y;. (5.29) S Al
We search for thej;,§,) that maximizes the score 1Z.]|3 +

function g. If g, is different from the current declared
activity and the score is larger than a specified threshiogoh t
a switch prediction is made.

A detailed proof is presented in the Appendix. The
update rule (5.28) can be viewed as shrinking the cur-
rent weight vectorAr and then adding in the incorrectly-
. i , classified training example with a step sizerf(1 + «).

5.3 _Eff|0|¢nt Learning AIgont_hm. We e_mploy a soft- The step size is determined (in the numerator of (5.29)) by
margin variant of the L2-regularized objective algorithisi. the size of the errofl — A, - Z,) and (in the denominator)

of the algorithms previously discussed in this paper aredhg,, e squared length of the feature vector and a correction
margin” algorithms that ensure that each new exampletég.m involvinga andC

correctly classified with a functional margin of 1. This is The time to compute this update is linear in the number
appropriate for non-stationary learning problems, buteitymof features. Furthermore, the cost does not increase wath th

_not be a_gpod approach \{v_hen th_ere are likely to be e nber of classes, because the update involves comparing
in the training data. Specifically, in the TaskTracer sgttmonly the predicted and correct classes

the user can easily mislabel an activity switch. Hence, our It is worth asking how much accuracy is lost in order

algorithm needs to be robust to such label errors. to obtain such an efficient online algorithm compared to a
To achleye this, we follow the. stapdard SOft'mf"‘rQWatch algorithm (or, more generally, to the best possible al
approach _bY mt_rc_)ducmg a slack vana_t&lm the constraint gorithm). By extending existing results from computatibna
and penalizing it in the objective function: learning theory, we can provide a partial answer to this ques
tion. Let us assume that the length of each ve#ipis no

1 2 2 « 2
Apyr = arg . 5 [A = Adfl; +C& + 3 1Al more than some fixed value:

(5.27) subjecttog((y1,y2)) — 9({J1,92)) > 1 —&. I1Z4]|, < R.



was fairly careful about declaring switches. This data set
records 4 months of daily work, which involved 299 distinct
activities, 65,049 instances (i.e., information vectpes)d
3,657 activity switches.

To evaluate the learning algorithm described in Sec-
tion 5.3, we make the assumption that these activity switche
are all correct, and we perform the following simulationeTh
datais ordered according to time. Suppose the user fogetst
declare every fourth switch. We feed the instances to the on-
line algorithm and ask it to make predictions. A switch pre-
diction is treated as correct if the predicted activity isreot

Precision

= Objective-regularized method

- - Batch approach with silence period and if the predicted time of the switch is within 5 minutes of

0,65 m=-Batch approach without silence period | ‘ the real switch point. When a prediction is made, our simula-
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 . . . .
Recall tion provides the correct time and activity as feedback. Whe

the user declares an activity switch, the simulation alse ge
Figure 6: Precision of different learning methods as a furgrates training instances [29].
tion of the recall, created by varying the alarm threshold. The online algorithm parameters were set based on
experiments with non-TaskTracer benchmark sets. We set
C = 10 (which is a value widely used in the literature) and
This is easily satisfied if every feature has a fixed range of= (.001 (which gave good results on the benchmark data
values. Suppose there is some other algorithm that compuies).
a better weight vecton € R". Let/; = max{0,1 —u- Performance is measured pyecisionandrecall. Pre-
Z,} denote the hinge loss af at iterationt. With these cisjon is the number of switches correctly predicted didide
definitions, we can obtain a result that compares the acgurgg the total number of switch predictions, and Recall is the
of the online algorithm aftef” examples to the total hingenymper of switches correctly predicted divided by the total
loss of the weight vecton after7” examples: number of undeclared switches. We obtain different preci-
) sion and recall values by varying the score confidence thresh
TH_EOREM 5_.1. Assmirpe that there e>2<|sts a vectore R™  o1d required to make a prediction.
which satisfies, = @ ~ta lull; > 0. Givena <1, The results comparing our online learning approach
the number of prediction mistakes made by our algorithmyigth the batch training methods are plotted in Figures 6.
bounded byn < 1 ||ull + Wt S ()2, The batch training methods adopt a large margin approach
[34] to train the weight vector\. This method creates

A detailed proof is presented in the Appendix. Thid positive example for the correct label a_nd a ”eg"’?“"e
theorem tells us that the number of mistakes made by &Zl@mple Fhe the Incorrect label. It th_en trains the weight
online algorithm is bounded by the sum of (a) the squar ctor using all available e>_<amp|es with t_hg linear kernel
hinge loss of the ideal weight vectar multiplied by a To reduce repeat_eq Incorrect predlpt|ons, we alsc_)
constant term and (b) the squared Euclidean nornuofevaluated thg batch training method configured so_that it
divided byh. This bound is not particularly tight, but itdoesgqes not raise any new alarms for at least the first 10

suggest that as long ads not too large, the online algorithmmInUtes aft_er the most_ Tece”t switch alarm.  Our online
%rl)proach gives competitive performances compared to the

will only make a constant factor more errors than the ideb :
; atch approaches. The non-silent batch approach only takes
(batch) weight vector. Il step in the riaht directi fer th id
Theoretical analysis can provide one more insight infos(;r;)a ks esp;) '.r: : (Ia'knlg th |tr(_atc 'F;In a Ifrth € user pr_0\€| kes
the relationship betwee@ and how often the user make eedback. 5o s fikely that It will make the same mistake
in the next iteration. The user has to repeatedly provide

mistaken feedbacks. Since usu > 1te we can treat .
alty 2¢ feedback so that enough steps are taken to fix the error. Our

h as approximately independent@f When the user makes ine | . h outperf this | " it
many feedback errors (i-ez:;[:o(f?)z is large), we should online learning approach outperforms this in most cases.

setC to be small to allow a large slack valge As C we force the batch predictor to keep silent after a switch

becomes smaller—2< T (¢%)2 becomes smaller, tOolalarrr?, the bgtch pred|ctor.can av0|d_many re_peated mistakes

Thus we will havgggﬁ%a%:éFoﬁéganteed arror bound In this configuration during the silent period, the batch
9 ' predictor treats repeated prediction as an error. Hence, by

5.4 Experimental Results on Real Desktop User Data.the time thg .3|Ient period IS over, it has probably fixed the
error by gaining enough training examples.

We deployed TaskTracer on Windows machines in our ré- . .
Compared to the batch approaches, the online learning
search group and collected data from one regular user who



approach is much more efficient. On an ordinary PC,vibbuld be very interesting to design a bandit version of our
only took 4 minutes to make predictions for the 65,049 i@lgorithms.

stances (0.0037 seconds/instance) while the non-siléch ba

approach needed more than 37 hours (more than 2 skcknowledgments

onds/instance), a speedup factor of more than 500 fold. The guthors thank the anonymous reviewers for their helpful
comments and suggestions.

6 Conclusions And Further Work

An important challenge for online learning is to achievehhigAppendix — Detailed Proof of the Theorems

accuracy while also adapting rapidly to changes in the engiroof of Lemma 3.2

ronment. This paper presented three efficient online algo- _ )

rithms that combine large margin training with regulariz%im()f- The Lagrangian of Problem 3.8 is

tion methods that enable rapid adaptation to nonstationary B

environments. Each algorithm comes with theoretical guar- L{w, ) 9 |

antees in the form of online error bounds with respect to an +7(1 = yo(w - x0)) + M| w2 = 8),

optimal online algorithm. The algorithms have some inter- o

esting characteristics that make them especially apeprivherer > 0 and A > 0 are the Lagrange multipliers.

in dynamic environments. First, they shrink the weights t&ifferentiating this Lagrangian with respect to the elefsen

wards zero, which makes it easier to adapt the weights wifdiyv and setting the partial derivative to zero gives

the environment suddenly changes. Second, the algorit ,}0) B

naturally shrink the influence of the old instances and put T 1420

more weight on the more recent ones. Third, the methqgg etz = 1 + 2). The KKT conditions require constraint

learn a sparse model that ignores or down-we|ghts wr_etevrim_ yi(w - x,) < 0 to be active, which leads to

features. Finally, we have successfully applied a softgmnar

version of our algorithms to activity recognition in the Kas (g 31) S (we - x¢) _

2
(W —wil;

w (Wi + Tyxe).

Tracer system [29]. |\xt||§
There are two promising directions for future wor
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First, we noted that the learned weight vector of our L e KKT conditions requir(||w||, — 5%) = 0. We discuss

H 11—y (WXt
regularized methods is a linear combination of the actip#0 cases here. First, ¥ = 0, then we getr = yH,ETg)
instances. It would be interesting to employ the kernektriérom Equation 6.31.2
here by replacing the inner product with a kernel satisfying Second, if|w|; — 3> = 0. We replacer with

the Mercer conditions and compare our algorithms with ﬂM;xf) and get
Forgetron algorithm [8]. The Forgetron is an online kernel- Iellz

based learning algorithm that controls the number of suppor
vectors by removing the oldest support vector when the
number of support vectors exceeds a fixed quota. Since
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removing a support vector may significantly change the  + el we X;) + (e - X4) =327
hypothesis, the Forgetron aggressively “shrinks” the Wweig e[l
of old support vectors. Our L2-regularized online algarith (B2 1x:]13 = 1) 22 = [ well3 I1xell5 — (wi - x4)2.

naturally shrink the weights of those support vectors, and , , o 5

we could also control the number of support vectors by 'NiS can be possible only if5* [lx, — 1 <

removing the oldest one. w3 lIxe]l3 = (we - x4)? sinceZ = 1+ 2X > 1. In this
Our cur_rent algorithms assume thz_;\t the system W&Ié\se,we geF — ||wt\\§||;ct\\§;(:7vt~xt)2. If 32 ||xt|\§—1 N

always receive the correct label immediately after making BlIxell5—1

a prediction. However, in many cases there can be a delay; |3 ||x;||5 — (w: - x;)2, this corresponds to the first case,

between the time a prediction is made and the time feedback- (. We can easily show that COﬂStraHWHg < B%is

is received. For example, in TaskTracer, sometimes thergjigays feasible and inactive if it is true:

no feedback at all after the system makes a switch alarm,

2 2
Wl llxellz = (we - x4)% + 1

because the user is too busy and does not notice the alarm. wl? =

Currently TaskTracer does nothing when this happens, and ? th||§

the system assumes that its prediction was incorrect. But B2 llxe||2 =1+ 1
2

an alternative would be to assume the prediction is correct
and automatically change TaskTracer’s “current activity”
This situation can be thought as a bandit setting [1, 20]. It = 3.
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Since both our objective function and constraint fun®e will lower bound boths; ande;. Lety? = (1 + «)/2C.
tions are convex, we know our solution is globally optimalkor §,, we have

Combining the above two cases, we conclude the prod} ) )
(6.38) & =|[A¢ —ully — |Ar + 7 Z¢ — ull;

= || Ay —ulf — A — 3
— 272 - (A —0) — |7 2|3
(6.40)  >27ly — 2mlf — 72 || Z4)]
(6.41)  >27ly — 27,0 — 7 || 2|3 — (i — €5 )2

(6.42) =21l — (|1 Zel3 + %) — (€)% /0.
wherer > 0 is the Lagrange multiplier. Differentiating this
Lagrangian with respect to the elements\cind setting the We get Eq 6.41 becauser, — /; /1)? > 0. Plugging

Proof of Lemma 5.1
Proof. The Lagrangian of the optimization problem in (3.18

is 6.39)
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L&) = 5 1A = Adl3 +C€ + S A3

(6.32) +7(l-A-Z; - ),

partial derivative to zero gives the definition ofr; and considering; > 1, we get
1 2
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Differentiating the Lagrangian with respectg{and setting 1 5 90
the partial derivative to zero gives (6.44) >— - ?+a _ (@)2_
T R + 20 1 + «
(6.34) &= oY
Fore;, we have
Expressing¢ as above and replacing in Eq 6.32 with )
Eq 6.33, the Lagrangian becomes (6.45) ¢ =(1 — VAL —2(1 — ——)A) -u
. ti2 t
) ) (1+«)? 1+«
L) =t ||z — 2| +
21+« I+a 7|, 4C Using the fact thafju — v||> > 0 which equals to
all - 1 2 [uf3 = 2u-v > —||v|2, we get
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By setting the derivative of the above to zero, we get 1+—a
635  1- % - l 2% - (/;t_;—zt) 0 Using Eq 6.44 and 6.47, we get
[0 «
1— (At Zy) + «
(6.36) = (t—tl)m (6.48)
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Combining Eq 6.33 and Eq 6.36 completes the proof. || Z Ay = Z Ay
= telr

Proof of Theorem 5.1 (6.49)
Proof. Let A; = ||A; — u||> — |[A+1 — u||>. We can prove 1 —a? 2C_ ey o 2
the bound by lower and upper boundipg, A;. = Z 1+Ca 1+ a( 1))~ 2+ a [ull2

Since Ay is a zero vector and the norm |s always telr
non-negative,> ., A, = ||Ag — u||2 — [[Ar — uH (6.50) )
180 — w5 = ful3. _ _ (Y ) - 3 20 (o2

Obviously, A; # 0 only if t € Ip. We will only R? + 5 Q el 1+
consider this case here. L&t = Ay +7Z, Ayyq = 1+o¢AI (6.51)
A, can be rewritten as T

2 1]~ ) + (1] — wl )z e O i) - e S )
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=0+ e SinceY", A; < ||ulf3, we have



(6.52)

(15]

. [16]
1-— O[Q [ 2 2C £\ 2 2
m(Rz + e T a [ull3) — H—QZ(Q) <lulz- gy
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_ 2 N 2 18
Sinceh = @ — 575 llullz > 0, we get the result [18]
in the theorem. |
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Figure 1: Cumulative error rate of different online methadsa function of the number of instances.
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Figure 4: The learned models. The lighter color indicategdaabsolute value of the weights.



