
User Initiated Learning for Adaptive Interfaces
Kshitij Judah

Thomas Dietterich
Alan Fern
Jed Irvine

Michael Slater
Prasad Tadepalli

Oregon State University

Melinda Gervasio
Christopher Ellwood

Bill Jarrold
SRI International

Oliver Brdiczka
Palo Alto Research Center

Jim Blythe
University of

Southern California

Abstract
Intelligent user interfaces employ machine-
learning to learn and adapt according to user
peculiarities. In all these cases, the learning
tasks are predefined and a machine-learning
expert is involved in the development process.
This significantly limits the potential utility of
machine-learning since there is no way for a user to
create new learning tasks for specific needs as they
arise. We address this shortcoming by developing
a framework for user-initiated learning (UIL),
where the end user can define new learning tasks,
after which the system automatically generates a
learning component, without the intervention of an
expert. We describe the knowledge representation
and reasoning required to replace the expert,
so as to automatically generate labeled training
examples, select features, and learn the required
concept. We present an implementation of this
approach for a popular email client and give initial
experimental results.

1 Problem Description
To help motivate our problem, consider a scenario where a
scientist is collaborating on a classified project where sensi-
tive emails are often exchanged with collaborators. The pro-
tocol for indicating the sensitivity of an email is to set the
sensitivity flag to confidential before sending it out. How-
ever, most emails are not sensitive, even for this project, and
as a result the scientist often forgets to set the sensitivity flag
when warranted. In this scenario, it would be desirable for
the scientist to be able to instruct the system to detect when
such a mistake is about to be made and to interrupt the send
process with a reminder. Unfortunately, there is currently no
natural way for an end user to extend the user interface to
support such a functionality.

In the simplest of cases, a sophisticated user might be able
to write a macro to solve the problem. However, the situation
just described cannot necessarily be addressed using simple
macros since the desired functionality requires that the sys-
tem be able to predict when an outgoing email should be set
to confidential. This can be a non-trivial prediction problem,
which requires reasoning about a combination of factors such

as the email text, subject, recipient list, etc. While sophisti-
cated machine learning software might be able to learn such
a predictor from observations of the user, the end user has
no natural way of employing this technology. Currently all
machine learning mechanisms in software applications, e.g.,
spam filters, are developed by machine-learning experts be-
fore deployment, and hence are limited to only those mecha-
nisms that are believed to be the most generally useful.

We seek to build the capability of user-initiated learn-
ing (UIL), which gives the end user the power to extend
the user interface in ways that require specialized machine
learning mechanisms, but does so naturally without requir-
ing machine-learning expertise. This paper will focus on a
particular class of UIL problems, where the user is able to
request that the system learn to predict when they have for-
gotten a particular activity (e.g., setting the sensitivity flag)
and to post a reminder when that happens. In our system,
the user will communicate such a request by demonstrating a
procedure of interest (e.g., email composition) and indicating
which steps of the procedure he may forget to execute. Note
that often the indicated actions will be conditional in the sense
that they are only executed during some instances of the pro-
cedure (e.g., only for confidential emails), which is a primary
reason that the user may forget them. This gives rise to a pre-
diction problem where the system will attempt to learn the
conditions under which the conditional actions are typically
executed, or in other words, predict when the user intended
to perform those actions. The learned predictor can then be
used by the UIL system to issue reminders when appropriate.

2 UIL System Overview
We implemented our UIL system as part of the Cognitive As-
sistant that Learns and Organizes (CALO) desktop. CALO
is an adaptive, personalized assistant designed to assist users
in office-based electronic desktop environments [Cheyer et
al., 2005; Myers et al., 2007]. CALO is intended to pro-
vide intelligent assistant capabilities across standard applica-
tions on the Windows platform, supported by various learn-
ing and reasoning modules to support management and pri-
oritization of information and tasks. CALO provides a va-
riety of infrastructure support that is used by our UIL sys-
tem including the CALO ontology, knowledge base (KB),
and Microsoft Outlook instrumentation. The CALO ontology
[Chaudhri et al., 2006a], implemented in OWL [Chaudhri et

Figure 1: UIL architecture

al., 2006b], serves as the representational foundation for a
centralized KB that serves as a target for the information gen-
erated by a collection of engineered harvesters and learned
extractors and classifiers that interoperate with the CALO
framework. For example, historical information about emails,
people, projects, files and their relationships are all stored in
the KB.

Figure 1 depicts the basic architecture and process flow of
the UIL system which is composed of five main components:
the task demonstration component, the feature guidance com-
ponent, the training instance reasoner, the learning compo-
nent, and the reminder component. Below we overview the
basic steps of the UIL process and the role that each com-
ponent plays. Later sections of the paper will describe each
component in greater detail. A video of the UIL process is
available which depicts the process from the user’s perspec-
tive.1

Step 1: Demonstrating the Learning Task (Section 3).
The UIL process begins with the user demonstrating a pro-
cedure, or sequence of UI events (e.g., sending a confiden-
tial message in Microsoft Outlook). All of the events of the
demonstration are captured by the task demonstration compo-
nent, which displays the captured steps to the user in an easy
to read text format. The demonstration component then al-
lows the user to highlight a subsequence of the demonstrated
steps (e.g., the step of setting the sensitivity flag) and marks it
as a conditional action sequence that the system should learn
to predict. Finally the user is allowed to select a reminder
point in the procedure where the system should issue a re-
minder to the user if they forget the conditional steps (e.g.,
when the send button is pressed). The demonstration com-
ponent then gives the training instance reasoner a program in
the SPARK procedural reasoning language [Morley and My-
ers, 2004] that represents the newly created conditional pro-
cedure.

Step 2: Feature Guidance (Section 4). In addition to al-
lowing a user to initiate a learning task via demonstration,
our system also allows the user to provide useful hints about
how to solve the associated prediction problem. In particular,
through the feature guidance component the user is able to
navigate through a graphical display of the ontology related
to the learning task and to highlight the pieces of information
that they believe will be most useful in making predictions.
For example, in many prediction tasks involving email, the
user would likely indicate that the words in the email body

1http://web.engr.oregonstate.edu/∼irvine/uil.wmv

are important and even provide a number of specific key-
words. This information, if provided by the user, is given to
the learning component to serve as a learning bias and ideally
reduce the number of training examples required to achieve a
particular accuracy.

Step 3: Training Instance Generation (Section 5). The
job of the training instance reasoner is to create labeled train-
ing examples corresponding to the demonstrated SPARK pro-
cedure. The training instance reasoner extracts instances
from the CALO knowledge base, which stores all past and
newly arriving desktop information such as emails, docu-
ments, projects, contacts, etc. For example, if the learning
task involves email, then every email is a potential training
instance. For each potential instance, this reasoner uses SAT-
based inference to perform two tasks. First, it must reason
about the training instance and SPARK procedure to deter-
mine the correct target label, which will be treated as the de-
sired output of the learned predictor on that training instance.
Second, the reasoner must determine the set of system in-
formation (e.g., words in email body) that can be used as
possible features by a predictor. For each instance these two
reasoning steps combine to produce a training instance com-
posed of a set of features and a target label, which is then
forwarded to the learning component.

Step 4: Learning a Predictor (Section 6). The job of the
learning component is to produce a predictor based on the
sequence of training examples, while taking into account any
available feature guidance provided by the user. Our UIL sys-
tem utilizes a logistic regression model for prediction, which
has the advantage of providing probabilistic predictions and
allows for the specification of priors on the feature weights
that can take the user’s feature guidance into account. How-
ever, with this flexibility comes the problem of choosing the
precise values for the prediction threshold and prior param-
eters, which can dramatically impact performance. Thus, a
key aspect of our learning component is the automatic selec-
tion of these parameters via cross-validation techniques. The
resulting predictor along with estimates of its accuracy are
passed on to the UIL reminder component.

Step 5: Reminding the User (Section 7). The job of the
reminder component is to monitor the UI activity and to issue
a reminder to the user whenever it is detected that the user
might have forgotten an action sequence. The reminder com-
ponent uses the prediction of the learned predictor and the
SPARK program to drive a SAT-based reasoning process that
attempts to infer whether the user forgot a learned action se-
quence or not. If it is determined that the user did forget, then
the reminder component sends an appropriate signal to the
UI and prompts the user with a message, which interrupts the
normal UI flow. This provides the user with an opportunity
to carry out missing actions if they were actually forgotten.
Otherwise, the user simply dismisses the reminder.

3 Initiating Learning via Demonstration
We employ the Integrated Task Learning (ITL) component of
CALO as a means for capturing user demonstrations of target
learning tasks. The ITL component is a general mechanism
that integrates a number of independently developed compo-

{defprocedure do_rememberSensitivity
....
[do: (openComposeEmailWindow $newEmail)]
[do: (changeEmailField $newEmail "to")]
[do: (changeEmailField $newEmail "subject")]
[do: (changeEmailField $newEmail "body")]
[if: (learnBranchPoint $newEmail)

[do: (changeEmailField $newEmail "sensitivity")]]
[do: (sendEmailInitial $newEmail)]
....
}

Figure 2: An example of a SPARK procedure produced by
ITL based on a user demonstration.

nents for learning user workflows [Spaulding et al., 2009] and
supports a number of capabilities for acquiring procedures,
including learning from demonstration and procedure edit-
ing. ITL supports UIL’s demonstration needs via two sub-
components. First, the LAPDOG sub-component [Gervasio
et al., 2008] transforms an observed sequence of instrumen-
tation events, into a SPARK procedure [Morley and Myers,
2004] that captures and generalizes the dataflow between the
actions. Given a captured procedure, ITL then allows for pro-
cedure editing capabilities through the Tailor sub-component
[Blythe, 2005b; 2005a]. For UIL, Tailor was extended to pro-
vide the ability to add a condition to one or more steps in
a procedure—where, in this case, the condition correspond-
ing to the new learning task. The resulting annotated SPARK
procedure can then be utilized by later components to create
training instances and identify situations where reminders are
required.

Figure 2 shows an example of a SPARK procedure pro-
duced by the demonstration process for a task where the user
wishes to teach the system to learn to predict when the sen-
sitivity field should be changed. The original procedure cap-
tured by LAPDOG did not include the if: conditional. Rather,
this conditional was added by the user via the Tailor interface,
which directs the learner to learn a classifier that can predict
whether the branch is taken or not.

4 Feature Guidance Interface

In order to speed up learning, the system allows the user to
provide additional knowledge in the form of feature guidance,
although the user can easily skip this part of the UIL process
if desired. The interface presents to the user a view of the
portion of the ontology that is relevant to the current learning
task. For example, in our email-related tasks this includes the
class of EmailMessage along with other related objects like
Project, Sender, ToRecipient, CCRecipient etc. The user is
allowed to navigate through the ontology in order to select
attributes that are believed to be useful for solving the task.
For example, the user might indicate as important the set of
recipient email addresses, the subject text, or the body text.
Furthermore, in addition to being able to indicate that certain
fields are important, the user can answer questions specific
to each field that further specialize the advice. For example,
when the user navigates to the body text attribute they will
have the option of entering any number of keywords that they
believe will be useful as features.

5 Training Instance Generation
The UIL system employs the training instance reasoner to au-
tonomously generate labeled training instances for consump-
tion by the learning component. First, the reasoner must de-
termine which objects of interest represent valid training ex-
amples and assign a label to those objects, which will serve as
the target output for the predictor. Second, the reasoner must
determine which properties of the training instances are valid
for use as features during learning. For space reasons, here
we only detail the first of these reasoning processes.

An important aspect of our system is that it is able to au-
tomatically extract training instances from relevant objects in
the CALO knowledge base. This allows for prior user data to
be leveraged for new learning tasks when appropriate, rather
than only using newly arriving examples. However, this poses
some challenges since objects in the CALO ontology are not
necessarily annotated with the user actions used to create
them. Thus, it becomes necessary to make inferences about
those actions in order to relate those objects to the SPARK
procedures which define the learning tasks. To accomplish
this in a general way, below we describe a SAT-based reason-
ing process that employs a simple domain model of the UI
actions and the ways they effect the system attributes.

Domain Model. Our domain model needs to capture the
interactions among email related actions and properties. We
utilize propositional logic for this, where we define a proposi-
tion for each email action that can appear in a SPARK proce-
dure and one proposition for each email property. Some ex-
ample action propositions include: ComposeNewMail, For-
wardMail, ReplyToMail, ModifyToField, ModifyCC, Modi-
fySubject, and ModifyBody. Action propositions are defined
to be true relative to the current email under consideration iff
their corresponding UI action was taken during the creation
of the email. Some example property propositions include:
NewComposition, ForwardedComposition, HasCCField, and
HasBody. These propositions are defined to be true relative
to an email being considered iff the email satisfies the corre-
sponding property. For example, the HasBody is true if the
email has a non-empty body. Note that it is straightforward
to compute the truth values of property propositions given
an email, but is less direct for action propositions since the
knowledge based does not store the actions that were used to
create an email.

To provide a link between actions and email properties we
specifying a domain theory, which includes a single axiom
for each property proposition that defines the possible ways
that the proposition can be made true. Some example axioms
include:

NewComposition ⇐⇒ ComposeNewMail

ReplyComposition ⇐⇒ ReplyToMail

HasAttachment ⇐⇒ (AttachFile ∨ ForwardMail)

HasSubject ⇐⇒ (ModifySubject ∨ ReplyToMail ∨ ForwardMail)

....

This domain theory is only a crude approximation to reality
but is sufficient for our purposes.

Inferring Class Labels. Given an email from the CALO
knowledge base and a demonstrated SPARK procedure we
now wish to assign a label to the email. We do this by
first constructing a formula called the Label Analysis For-
mula (LAF) that captures key constraints arising from the

SPARK procedure and domain axioms. The LAF involves
all of the domain propositions plus three new propositions:
Label, which represents the truth value of the branch con-
dition in the SPARK procedure, or equivalently whether the
user intended to select the conditional actions; Forget, which
indicates whether the user intended to execute the condi-
tional steps but forgot to do so; and ProcInstance, which indi-
cates that the current email corresponds to an instance of the
SPARK procedure. Here we say that an email is an instance
of the SPARK procedure whenever the action sequence that
generated the email includes all of the unconditional actions
in the procedure, possibly including other actions. Any such
email can be used as a possible training instance.

Given these new propositions the LAF is constructed by
including all domain axioms in addition to two new SPARK
axioms related to the SPARK procedure. In particular, the
new axioms place constraints on the ProcInstance, Forget,
and Label propositions. To do this, let U1, ..., Un be the set of
propositions corresponding to the unconditional actions in the
SPARK procedure and C1, ..., Cm be the propositions corre-
sponding to conditional actions. The SPARK axioms are then
given by:

ProcInstance ⇐⇒ (U1 ∧ U2 ∧ ... ∧ Un)

(¬ Forget ∧ Label) ⇐⇒ (C1 ∧ C2 ∧ ... ∧ Cm)

The first constraint allows one to infer that an email is an
instance of the procedure iff it can be proven that all of the
unconditional actions were taken. The second constraint in-
dicates that the conditional actions are taken by the user iff
they intended to perform the conditional actions and did not
forget to do so.

Given an email we can use the LAF to label it as follows.
First, for each property proposition P we compute its truth
value by inspecting the email and then add the clause P to
the LAF if it is true and add ¬ P otherwise. Second we
add the unit clause ¬ Forget to the LAF resulting in a for-
mula E, which encodes all of the information we have about
the email domain, the SPARK procedure, the current email,
and encodes the assumption that the user was not forgetful.
To produce a label for the email, we first attempt to prove
that the query ProcInstance ∧ Label is entailed by E. If we
are successful then we have proven that, under the assump-
tion that the user did not forget any intended steps, the email
is an instance of the procedure and is a positive example of
the learning task. Otherwise we attempt to prove the query
ProcInstance ∧ ¬ Label and if we are successful the email is
a negative instance of the learning task. Otherwise, either the
email was not an instance of the procedure and/or there was
not enough information to conclusively infer the label of the
instance. In this later case we ignore the email and do not
create a training instance. In our current UIL system we use
YICES [Dutertre and Moura, 2006] as our reasoning engine,
which is able to solve our relatively small problems almost
instantaneously. It can be proven that any training instance
generated by this reasoning process is guaranteed to have the
correct labels under the assumption that the user was not for-
getful for the instance. Thus, the rate of label noise produced
by our reasoning engine is related to the level of forgetfulness
of the user, which will typically be low enough for machine
learning mechanisms to overcome.

6 Learning Component

The role of the learning component is to fully automate the
creation of a predictor given the training examples produced
by our system and the feature guidance, if any, provided by
the user. We currently use logistic regression as our basic
learning algorithm. This algorithm learns a linear discrim-
inant function over a feature vector x that represents the
probability that the label y is positive given x as follows,
P (y = 1|x,w) = 1

1+exp(−w·x) where w is the weight vector
to be learned, which weights the features against one another.
Logistic regression algorithms, typically learn a weight vec-
tor w by optimizing the log-likelihood of the training data,
which is a convex optimization problem that can typically be
solved quite effectively via gradient methods.

In addition, to help avoid overfitting we incorporate a zero
mean Gaussian prior distribution over the weights as a weight
regularization approach. Setting the prior variance σ2 to
smaller values corresponds to more extreme regularization.
In order to incorporate feature guidance from the user we
set a significantly larger variance for the priors on the user
selected features compared to the unselected features. This
tells the learner that there is a high prior probability that the
weight values for the selected features are not near zero and
thus should contribute significantly toward predictions.

When making predictions with the logistic regression clas-
sifier it is typical to select a probability threshold τ such that
a prediction of 1 is returned if P (Y = 1|x,w) ≥ τ , and
otherwise a prediction of 0 is returned. The selection of τ
can dramatically impact the usefulness of the predictions. In
order to fully automate the learning process, it is important
that both the variance parameters and τ be tuned automati-
cally to optimize performance. To do this, we implemented
a linear search over values of τ and the variance of the unse-
lected features. Logistic regression algorithms are quite fast,
which made this search tractable, however, for slower algo-
rithms or larger data sets there are many more sophisticated
search strategies that could be used.

7 Reminding the User

The reminder component is responsible for monitoring user’s
activities and alerting him if he forgets to execute some condi-
tional actions from previous learning tasks. To do this when-
ever the user reaches a reminder point, as specified in the
demonstrated SPARK procedure, the reminder unit attempts
to infer whether or not the user has forgotten the conditional
steps. This is straightforward when instrumentation is avail-
able that allows for constant monitoring of the user actions.
However, our current instrumentation support does not allow
us to easily do this for all actions and thus we again resort to
the use of automated reasoning to help infer the actions that
are not directly observable. Space precludes details, how-
ever, it can be shown that our process will only issue warn-
ings when the user actually has forgotten the steps under the
assumption of a perfect predictor. Thus, the quality of the
assistance provided by the reminder component is primarily
related to the quality of the predictor.

8 Empirical Evaluation
We evaluated our system on two email related learning tasks:
1) attachment prediction, which involves learning to predict
when the user intends to attach a file to an email, and 2) im-
portance prediction, which involves learning to predict when
the user intends to set the importance of an email to either
high or low. We used a knowledge base that contained 340
real emails authored by a single desktop user. The user pro-
vided 18 features as guidance for each task, which were all
keywords in the body text.

We divided the dataset into a training set of 256 instances
and a test set of 84 instances. To simulate the effect of a
growing email knowledge base, we further divide the train-
ing set to create multiple training sets of increasing sizes: 64
non-overlapping training sets of size 4, 32 sets of size 8, 16
sets of size 16 and so forth. For each training set size, we
train on individual training set and use the learned classifier
on the test set to compute the Kappa coefficient (κ) 2. Finally,
we compute the mean κ for each training set size, which al-
lows us to plot learning curves. In order to evaluate the rel-
ative impact of the user-provided features and our automated
parameter tuning, we generated learning curves for 4 differ-
ent configurations of our system: A) No Feature Guidance +
No Parameter Tuning, B) Feature Guidance + No Parameter
Tuning, C) No Feature Guidance + Parameter Tuning, and D)
Feature Guidance + Parameter Tuning.

Learning Curves. For the attachment prediction problem,
Figure 3(a) shows the learning curves for each of our 4 con-
figurations. Except for configuration A, which did not in-
clude user guidance or tuning, the other three configurations
exhibit positive learning curves of similar quality. This in-
dicates that the feature guidance can compensate for lack of
parameter tuning and vice versa. We do see that for larger
training set sizes, including both feature guidance and tun-
ing results in the best performance. We can also observe a
slight edge for configurations that include feature guidance
for small data sets compared to just using parameter tuning.
A likely reason for this is that the variance of cross-validation,
our tuning method, is higher for small data sets, making it less
effective. We obtained similar trends for the importance pre-
diction task as shown in Figure 4(a). For this task, however,
there appears to be a much more significant benefit for using
both tuning and feature guidance for the larger data sets.

Robustness to Bad Guidance. We now consider the im-
pact of bad feature guidance. To generate bad feature guid-
ance, we restricted our attention to features corresponding
to keywords in the email body text. We then used SVM
based feature selection in Weka to produce a ranking of the
user selected features/words in terms of their predictive util-
ity. Finally, we replaced the top 3 words in the ranking with
randomly selected words with the resulting set representing
“bad” feature guidance/advice.

The learning curves in Figure 3(b) shows learning curves
for good and bad advice both with and without parameter tun-
ing. First we observe that without parameter tuning, the in-
clusion of the bad advice results in a dismal learning curve.

2κ is a common evaluation metric in cases when the labels have
a skewed distribution

By incorporating parameter tuning, however, we see that even
with the bad advice the learning curve is quite good. This
shows that the use of parameter tuning can be critical when
there is a possibility of obtaining bad advice. For importance
prediction the corresponding experiment is shown in Figure
4(b). Here we see that learning is more robust to bad advice
for the smaller training sets but degrades performance signif-
icantly later on. Again for the larger training sets we see that
parameter tuning is critical to overcoming bad advice, but for
this task, even with parameter tuning the bad advice results in
significantly worse performance than with good advice.

Estimating Utility of the Predictors. Here we investigate
whether the reminder assistant might be able to decrease the
overall UI cost to the user. There are two types of user costs:
1) the cost of forgetting, which for example, in the attachment
scenario involves potential delays for recipients and the need
to resend an email, 2) the cost of interruption by the system
with a reminder in cases when the user did not really forget
anything. If we knew these costs for the user, we could easily
compute the expected cost using our reminder assistance ver-
sus not using it. Rather, since we don’t know these costs, we
assess the utility of our predictor by measuring a new metric
called the critical cost ratio (CCR).

To understand CCR, consider the ratio of the forgetting
cost to the interruption cost, which will typically be greater
than one. Given a fixed predictor, it is possible derive an ex-
pression for the minimum value of this ratio such that the cost
of using the reminder assistant is equal to the cost without it.
We define the CCR for the predictor to be this minimum ratio.
Thus, if the CCR for a predictor is 10 then the cost of forget-
ting must be more than 10 times the cost of interruption for
the reminder assistant to provide a net benefit. The expression
for the CCR is given by CCR = (1−CR)×FPR

PR×FR×TPR where FPR
and TPR are the false positive and true positive rates of the
predictor, FR is the frequency that the user forgets the condi-
tional actions when they intend to take them, and CR is the
frequency that the user intends to take the conditional actions.

Figures 3(c) and 4(c) give the learning curves plotted in
terms of CCR for our prediction tasks. We have graphs for
two forgetting rates (FR=0.1 and 0.05) and for each we give
results both with and without feature guidance with parameter
tuning always on. The first observation is that for the largest
training set sizes the values of CCR are quite reasonable for
natural cost models. In particular, for the attachment scenario
the CCR drops to about 2 when advice is used, which means
that a net benefit would be apparent when the cost of forget-
ting is just a factor of 2 larger than the cost of interruption.
For the importance task the CCR drops to about 10 when ad-
vice is used, and surprisingly even lower without advice. For
smaller training sets the CCRs grow to be quite large, but are
less than 100. Whether these CCR ratios would be adequate
depends on the particular user and scenario. In many cases
such high values would indicate that the predictor should not
be used for that amount of training data.

9 Towards Deployment
During the course of the UIL development, we encountered
many challenges in developing user-extensible learning sys-

(a) (b) (c)

Figure 3: Learning curves for attachment prediction.

(a) (b) (c)

Figure 4: Learning curves for importance prediction.

tems, which include building instrumented end-user applica-
tions, translating accurate models of user behavior into an on-
tology, and designing self-tuning learning components. Our
UIL prototype faced these challenges successfully and pro-
vided a first approximation of a solution. However, although
the prototype UIL system we developed is fully functional,
we would need to improve the system’s reliability and per-
formance before wide scale deployment in the field. In addi-
tion, the usability of the system needs further consideration.
The current UIL prototype has been primarily tested by AI
researchers and it is important to translate the current UI ter-
minology into terms that the typical end user can understand.
For example, in the ITL application, we would want to re-
place “Add Learned If” button with something simpler such
as “Help Me Remember”. Also in the existing UIL proto-
type, not all user demonstrable actions are supported as learn-
ing tasks. We may wish to add additional user interface con-
structs to show the user visually what “Help Me Remember”
learning tasks are valid, i.e., supported by the task demonstra-
tion component and the rest of the UIL system.

10 Acknowledgements
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Con-
tract No. FA8750-07-D-0185/0004. Any opinions, findings
and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the
views of the DARPA, or the Air Force Research Laboratory
(AFRL).

References
[Blythe, 2005a] J. Blythe. An analysis of task learning by instruc-

tion. In Proceedings of the 20th National Conference on Artificial
Intelligence, 2005.

[Blythe, 2005b] J. Blythe. Task learning by instruction in tailor. In
Proceedings of the 2005 International Conference on Intelligent
User Interfaces. ACM Press, 2005.

[Chaudhri et al., 2006a] Vinay K. Chaudhri, Adam Cheyer,
Richard Guili, Bill Jarrold, Karen L. Myers, and John Niekrasz.
A case study in engineering a knowledge base for a personal as-
sistant. In Semantic Desktop and Social Semantic Collaboration
Workshop at the International Semantic Web Conference, 2006.

[Chaudhri et al., 2006b] Vinay K. Chaudhri, Bill Jarrold, and John
Pacheco. Exporting knowledge bases into owl. In Proceedings
of the Workshop on OWL: Experiences and Directions, 2006.

[Cheyer et al., 2005] A. Cheyer, J. Park, and R. Guili. Iris: Inte-
grate, relate, infer, share. In Semantic Desktop Workshop, 2005.

[Dutertre and Moura, 2006] Bruno Dutertre and Leonardo De
Moura. The yices smt solver. Technical report, Computer Science
Laboratory, SRI International, 2006.

[Gervasio et al., 2008] M. Gervasio, T. J. Lee, and S. Eker. Learn-
ing email procedures for the desktop. In Proceedings of the AAAI
Workshop on Enhanced Messaging. AAAI Press, 2008.

[Morley and Myers, 2004] David Morley and Karen Myers. The
spark agent framework. In Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems.
IEEE Computer Society, 2004.

[Myers et al., 2007] K. Myers, P. Berry, J. Blythe, K. Conley,
M. Gervasio, D. McGuinness, D. Morley, A. Pfeffer, M. Pollack,
and M. Tambe. An intelligent personal assistant for task and time
management. AI Magazine, 28(2):47–61, 2007.

[Spaulding et al., 2009] A. Spaulding, J. Blythe, W. Haines, and
M. Gervasio. Integrating task learning tools to support end users
in real-world applications. In Proceedings of the International
Conference on Intelligent User Interfaces. ACM Press, 2009.

