State Aggregation in Monte Carlo Tree Search

Jesse Hostetler and Alan Fern and Tom Dietterich
Department of Electrical Engineering and Computer Science
Oregon State University
{hostetje, afern, tgd} @eecs.oregonstate.edu

Abstract

Monte Carlo tree search (MCTS) algorithms are a popu-
lar approach to online decision-making in Markov decision
processes (MDPs). These algorithms can, however, perform
poorly in MDPs with high stochastic branching factors. In
this paper, we study state aggregation as a way of reducing
stochastic branching in tree search. Prior work has studied
formal properties of MDP state aggregation in the context of
dynamic programming and reinforcement learning, but little
attention has been paid to state aggregation in MCTS. Our
main result is a performance loss bound for a class of value
function-based state aggregation criteria in expectimax search
trees. We also consider how to construct MCTS algorithms
that operate in the abstract state space but require a simulator
of the ground dynamics only. We find that trajectory sampling
algorithms like UCT can be adapted easily, but that sparse
sampling algorithms present difficulties. As a proof of con-
cept, we experimentally confirm that state aggregation can
improve the finite-sample performance of UCT.

Introduction

Monte Carlo tree search (MCTS) algorithms (Browne et al.
2012) have increasingly demonstrated state-of-the-art per-
formance on a wide range of Markov decision problems
(MDPs) with enormous state spaces (e.g. (Gelly and Sil-
ver 2007; Balla and Fern 2009)). MCTS methods work by
estimating action values at the current environment state
by means of a lookahead search tree built using a simula-
tor of the MDP. A variety of MCTS algorithms have been
proposed, such as UCT (Kocsis and Szepesvari 2006) and
sparse sampling variants (Kearns, Mansour, and Ng 2002;
Walsh, Goschin, and Littman 2010).

One of the key theoretical advantages of MCTS is that the
performance bounds are typically independent of the size of
the state space. Rather, performance is usually dominated in
practice by the effective search depth that can be reached
within the decision-time bound. As in any search approach,
this depth is determined by the tree branching factor. In
MCTS, the branching factor includes both action branch-
ing, equal to the number of actions available at each state,
and stochastic branching, equal to the number of possible

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

successor states for each action. Stochastic branching in par-
ticular can be enormous if there are many random state vari-
ables. Certain MCTS algorithms, such as UCT, simply de-
generate to depth 1 search in such cases. This is in spite of
the fact that often, much of the stochastic variation is unim-
portant for selecting the optimal action.

In this paper, we consider state aggregation as a way of re-
ducing the stochastic branching factor for MCTS. The idea
is to build trees over abstract states, where each abstract
state is a set of aggregated ground states that are effectively
“equivalent” with respect to decision making. We introduce
a class of @Q-function-based state space partitions, which
generalizes state aggregation criteria identified by Li, Walsh,
and Littman (2006). Our main result is a performance loss
bound for decision-making with expectimax tree search over
the abstract state spaces induced by partitions in this class.
An important consequence of our analysis is that under some
conditions it is safe to aggregate states based only on the fact
that they share the same optimal action. This is not true in
general outside of tree search (Li, Walsh, and Littman 2006)
and is significant, since it implies that an ideal abstraction
can reduce the stochastic branching factor to be no larger
than the number of actions, while preserving optimality. We
then consider how to do MCTS in the abstract space, given
only a simulator of the ground problem. We show that tra-
jectory sampling algorithms like UCT are easily modified
to use abstraction, but that difficulties arise when adapting
sparse sampling algorithms due to the need to model the ab-
stract dynamics. Finally, we give illustrative experimental
results that show the benefits of abstraction in practice.

Background

We assume basic familiarity with MDP concepts. An MDP
isatuple M = (S, A, P, R), where S and A are finite sets
of states and actions, P is the transition function such that
P(s,a,s’) is the probability of reaching state s’ after tak-
ing action ¢ in state s, and R is the reward function giving
the real-valued reward R(s) for being in state s. We assume
that the MDP is absorbing in the sense that all policies are
guaranteed to reach a zero-reward terminal state in a finite
number of steps. The objective is to find a policy that maxi-
mizes the expected sum of rewards until reaching a terminal
state, which is finite due to our assumptions. All of our re-
sults can be adapted to alternative settings as well, such as

finite-horizon and discounted, infinite-horizon problems.

Our discussion of state aggregation will require us to keep
track of several different state spaces and their elements. To
simplify our notation, we consistently will employ the idiom
that s means a successor of s in S. We will extend this idiom
to other state spaces as we introduce them.

Abstractions for General MDPs

We first review state aggregation and abstractions for general
MDPs, following prior work (Li, Walsh, and Littman 2006).
Let X be a partition of S and let x : S — X be a surjective
function mapping ground states to their equivalence classes
in X. We call X the abstract state space and X the abstraction
function. We stipulate that the set of terminal states maps to
a single designated abstract state 2. An MDP abstraction of
M is a tuple (x, u), containing the abstraction function x
and a set of functions ;1 = {1, : @ € X'} such that each i,
is a probability mass function on the ground states s € z.
We call i the weighting function. It can be viewed as defin-
ing the relative contribution of each ground state to its corre-
sponding abstract state. An MDP abstraction (x, y) induces
an abstract MDP M /(x, u) = (X, A, P,, R,), where

(x,a,2) ZMI)ZP(S,(LS/)

sex s'ex’

= Z /"LI(S)R(S)

SEx

In keeping with our notational idiom, z’ will always refer to
a successor of z in A,

Abstraction for Expectimax Trees

Given a ground MDP M and a designated start state s,
define a trajectory ¢ € T = {so} x (A x &)* to be any
state-action sequence of any length that starts in sg. A tra-
jectory need not reach a terminal state. Given a depth bound
d, we can define the corresponding depth d ground expec-
timax search tree T'(sg) rooted at sg. The possible nodes of
T'(so) correspond to the set of trajectories of length d or less.
The children of node ¢ are its one-step extensions t' = tas’
foreach a € A and s’ € S. Tt is understood that when ¢ and
t’ are clear from context, s and s’ refer to their tail states.
The tree dynamics are defined with respect to M,

P(t,a,t") = P(s,a,s’), R(t) = R(s).

The value and Q functions for each node/trajectory ¢ in an
expectimax tree are defined as usual,

Q*(t,a) = R(t) + > _ P(t,a,t)V*(t),
teT
V*(t) = max Q" (¢, a).

Given a state abstraction function y mapping ground
states in S to abstract states in X, we define application of x
to a trajectory t € T as element-wise application of x to the
ground states in ¢, so that x () = x(so)a1x(s1) - - - apx(sk).
We will refer to abstract trajectories as “histories” to distin-
guish them from ground trajectories. Note that the actions in
a history are not abstracted.

Under x, we can define the history space H = {h €
{to} x (A x X)* : |h|] < d}. Each h is an equivalence class
over ground trajectories, and hence H is a partition of 7. To
fully specify the abstraction, we need weighting functions
w = {pn : h € H}, which are now indexed by histories.
Each py, is a distribution over ground trajectories at history
node h, where it is assumed that the root node weighting
function assigns all weight to to, i. e. pp, (to) = 1.

A tree abstraction is a pair (Y,) defined over trajectories,
and it yields an abstract expectimax tree T'(sg)/{x, f) as
follows. The tree is rooted at hg = {to} and the tree nodes
correspond to histories in H. The children of node h are its
one-step extensions i’ € {h} x A x X. By convention, h
denotes a history and &' its one-step extension, x and z’ are
the abstract states at the ends of those histories, and ¢ and ¢’
are elements of h and h'.

The dynamics of the abstract tree are defined with respect
to the ground tree, just as they were for general MDPs,

w(hya,h') Z,uh)ZP(t,a,t')

teh treh’
h) =Y un(t)R(t
teh

Qi (h,a) =Ryu(h) + Y Pulh,a k) max Qi (W, d)

h'eH
Vi(h) = max Q;.(h,a).

The branching factor of an abstract expectimax tree is
bounded by |.A||X| rather than the potentially much larger
branching factor for ground trees |.4| B, where B is the max-
imum number of successor states for any state-action pair.
Thus, given a good abstraction and the ability to run MCTS
on the abstract tree, there is potential for significant gains.

State Aggregation Criteria in MCTS

The properties shared by the ground trajectories in each his-
tory h € H determine the properties of the resulting abstract
expectimax tree and its solutions. We will consider a family
of state space partitions parameterized by p,q € R=Z". We
say that a partition H is (p, q)-consistent if for all h € H,

Ja* V() - Q" (t,a") <p Vteh
V*(t1) = V*(t2)| < ¢ Vi, ta € h

The p bound requires that the value of a* is close to the
optimal value of each ground trajectory in h. The ¢ bound
requires that the optimal values of different ground trajecto-
ries in h are close to one another. Note that there are many
(p, q)-consistent abstractions for a given problem. Ordinar-
ily, we would prefer the one with the smallest abstract tree.
We will use the notation xj to denote an abstraction function
that induces a (p, ¢)-consistent partition.

A key consequence of (1) is that if # is a (p, ¢)-consistent
partition, then for all i € H and for any p,

max » 1 (£)Q = mOVE®)| <p. @

teh teh

O\

al0.5 all

b0 N, al2
G]

(a)

Figure 1: (a) Counterexample for x§° in general MDPs (Li, Walsh, and Littman 2006). “a/0.5” means action a yields immediate
reward 0.5. (b) Counterexample for xg° in tree MDPs. Edge labels now denote transition probabilities.

Our concept of (p,q)-consistency generalizes and ex-
tends aggregation criteria for general MDPs identified by
Li, Walsh, and Littman (2006). In particular, their 7*-
irrelevance condition, which requires that aggregated states
have the same optimal action, is equivalent to (0, 0c0)-
consistency. Their a*-irrelevance criterion, which addition-
ally requires that aggregated states have the same value, is
equivalent to (0, 0)-consistency. We focus on these types of
abstractions because they are the coarsest of the hierarchy
identified by Li, Walsh, and Littman (2006), and thus they
reduce the state space more than, for example, abstractions
based on exact bisimilarity (Givan, Dean, and Greig 2003).

Li, Walsh, and Littman (2006) found that in general
MDPs under 7*-irrelevance abstraction, the optimal policy
in the abstract MDP need not be optimal in the ground MDP,
and @-learning may even fail to converge. Similar conver-
gence failures were noted for the SARSA algorithm by Gor-
don (1996). In general MDPs, 7*-irrelevance abstractions
can make action values non-Markovian with respect to the
abstract state space. To illustrate the problem, consider the
MDP of Figure la, analyzed by Li, Walsh, and Littman
(2006) and Gordon (1996). Under a 7*-irrelevance abstrac-
tion, s; and sy can be aggregated (as shown) because a is
optimal in both states. For any weighting function i, the so-
lution to this abstract MDP will select action a in sy due
to its larger immediate reward, despite action b being opti-
mal in the ground MDP. Stricter notions of abstraction such
as a*-irrelevance avoid these problems, but usually provide
much less savings than 7*-irrelevance.

Weighting Function Criteria

A key difference between general MDPs and trees is that the
counterexample of Figure la is not a problem under a tree
structured abstraction, since trajectories ending at s; and so
will not be aggregated due to their different action prefixes.
Still, it is easy to find expectimax trees where a poor choice
of 1 can lead to unsound decision-making in an abstract
tree under a (0, co)-consistent abstraction. Consider the ex-
pectimax tree in Figure 1b, where the abstract tree merges
s1 with s3 and s, with s, since they agree on optimal ac-
tions and share common prefixes. If we choose w such that
ta, (s3) = 1 and p,,(s2) = 1, we will conclude that a; is
optimal in sg, losing an expected return of ¢/2.

This example shows that the quality of an abstraction de-
pends on the weighting function u, as well as the abstraction

function x. This raises two questions: What is the optimal
weighting function p*, and how does divergence from p*
affect performance?

For expectimax trees it turns out to be straightforward to
define a proper notion of the optimal weighting function. We
say that a weighting function p* is optimal if for any parent
h and child &' histories it satisfies:

ZtEw /[;z (t)P(tv a, t/)

P (s 1) =P('|h"). (3)

i () = Loen

In the next section, we will show that using appropriate ab-
straction functions along with such a p* will result in sound
decision making using the abstract expectimax tree. Further,
we will see that certain MCTS algorithms such as UCT can
search in abstract spaces defined by abstractions of the form
(x, p*) without computing p* explicitly.

Optimality Results

This section establishes our main results. We analyze the
application of state aggregation abstractions of the form
(X%, 1) to expectimax trees and derive a performance loss
bound for decision-making under the abstraction.

We bound the performance loss for an abstraction (x;, 1)
in terms of p, ¢, and p. The dependence on p is in terms of
the single-step divergence of p,

1
O) = 5l = (3], 4)

Zteh Mh(t)P(t7 a, ﬁ/)
P#(hv av h/)

where [}/ (1) = Lyep (5)
This quantity measures the amount of deviation of y from
the optimal weighting function p* introduced in the single
step from h to h/.

Theorem 1. Consider —an abstraction (xj, j1).
Let T(so)/(Xxp,) be the full abstract expectimax
search tree rooted at hg = {to} of depth d. Let
m = maxpey 0(u,h) < 1 be the maximum single-

step divergence of u (4). Then the optimal action in the
abstract tree, a* = arg max,¢ 4 Q;,(ho, a), has Q* error in
the root state bounded by

max Q" (so, a) — Q" (s0,a")| < 2d(p + mg).

Proof. Consider an arbitrary subtree rooted at h in the ab-
stract expectimax tree. If we view p, as a distribution over
ground states, we see that the optimal action in h is a* =

arg Max, e 4 Zteh Mh.(t)Q* (t,.a).
We introduce an aCthH-SpeClﬁC €rror measure,

= |Quh,@) = > Q" (t.a
teh

Our proof will establish a bound on E'(h, a) for arbitrary h
and a, which necessarily holds for the maximizing action a*.

The immediate reward terms do not affect E(h, a). The
difference between the optimal value in the abstract tree and
the true optimal value is thus the error in the future return
estimates,

E(h,a) = \ S Polhya, WYV
h'eH

- Z,uh(t) Z P(t,a,t")V*(s')|.

teh t'eT
We decompose the error as E(h,a) < Eg + E,, where,

Eq=| > Pulh,a, W)Vi(h)

h'eH
= > Pulhia k') D e (E)V()
h'eH t'en’
EX -) Z Pﬂ<haa7h/) Z 122.% (t/)v
h'eH t'en’
=Y () > Plt,a, thV*(t)|.
teh t'eT

Eq is the error due to using the abstract value function be-
low the current node. E, is the error introduced by aggre-
gating states at the current level.

The proof will be by induction on the depth of the tree,
from the leaf states upwards. Consider a subtree of depth
k + 1 rooted at state h. Assume the inductive hypothesis,

E(N,a) < k(p+ mq),

forall B’ € {h} x A x X and all a € A. Clearly this holds
in the absorbing state 2, which establishes the base case.

For the inductive step, we first derive a bound on Eg using
the inductive hypothesis. Note that,
e B0, 2 mage QU o) —may 3 e ()" ().
By (p, -)-consistency of x, equation (2), and the triangle in-
equality, we can exchange the max and sum in the above at a
cost of at most p. Combining this with the inductive hypoth-
esis gives,

’ <
map QLH.o) = 3 (¢ max @' (¢ a)| < k(p+mg)+p,

for any h' € H. We then plug this bound into E to obtain,

‘ZP hah{v*h’ S e () ”

h'eH t'eh’
< k(p+mq) +p.

We now analyze the single-step abstraction error E, . This
error comes from assigning incorrect weights to ground
states within the current abstract state. We can write the sec-
ond part of E in terms of the “exact” weight update (5),

>3 (D m®

P(t,a, t’))V*(t’)
h'eH t'eh’ tEh

= > > Pulh,al)

h'eH t'eh’

[l)V (X).
We can then express F,, as

By =| > Pulh,a,n)

h'eH
[@ty = 3 i e)v @] |
t'eh’ t'eh’

Let v(h) = mingep V*(¢) be the minimum value among
states in h, and let A(h,t) = V*(¢t) — v(h). By (-, q)-
consistency of H, we have A(h,t) < ¢. We can express
the difference in value estimates in £, in terms of A,

D(h') =] D () o(h') + AR, 1)
t'eh’
N IAGICIOEINCED)|
t'eh’!
:4memww—ZMwmww
t'eh’ t'eh’
< 3 [@)A®¥) — i () AR ¥)
t'eh’
1 * /
<5 Y @) = i @)
t/eh/
]‘ * /
=q- §||/~Lh/ — [uliv ||, = a0(u, h') < mg,

where we have used the fact that A(h/,¢') > 0 to introduce
the factor of %. Since E is a convex combination of D(h')
for different A’, we conclude that E,, < mgq. Combining the
two sources of error, we obtain,

Eg+Ey <k(p+mq)+p+mg=(k+1)(p+mq).

We thus have E(h,a) < (k+1)(p+mgq) for any h, a, which
completes the inductive argument.

At the root node, we choose an action a* =
argmax,e 4 @}, (ho, a). If b* = argmax, ¢ 4 Q*(to, a) and
a* # b*, then Q7 (ho,a*) > Q7 (ho,b*). In the worst case,
the estimate for a* is d(p + mgq) too high, and the estimate
for b* is d(p + mgq) too low. Thus the maximum error is
2d(p 4+ mq). O

Corollary 1. Abstraction (x3°, "), corresponding to m*-
irrelevance with pu*, preserves optimality in search trees.

Corollary 2. Abstraction (xJ,p), corresponding to a*-
irrelevance, preserves optimality for any p in search trees.

State Aggregation in MCTS Algorithms

MCTS algorithms use a simulator, or generative model, of
an MDP to construct a sample-based approximation of the
expectimax tree rooted at the current state sg. The action
with the best estimated ()-value is then executed. We have
seen how state abstraction can reduce the stochastic branch-
ing factor of expectimax trees while providing performance
guarantees. If we could run MCTS algorithms directly on
an abstract tree, we could expect to achieve improved per-
formance given a fixed amount of decision time. However,
in practice we only have a simulator for the ground prob-
lem, not the abstract problem. In this section, we show that a
simple modification of UCT allows us, given only a ground
simulator and an abstraction function Yy, to replicate the
performance of running UCT directly on an abstract tree
T/{x, 1w*), without computing p* explicitly. We then con-
sider the case of sparse sampling, where we find that the nat-
ural approach to abstracting the algorithm does not weight
states according to p*, and thus unlike abstract UCT it can
incur error for y{ abstractions when ¢ > 0.

Abstracting UCT

The UCT algorithm (Kocsis and Szepesvari 2006) builds a
tree over sampled trajectories, adding one node to the tree
each iteration. Each iteration uses the simulator to produce a
trajectory from the root sg until reaching the depth bound d,
selecting actions as described below. The first node along the
trajectory that is not already in the tree is added to the tree
as a new leaf. Each tree node ¢ stores the number of times
n(t) that the node has been visited, the number of times
n(t,a) each action a has been tried in ¢, and the average
return (¢, a) received for each action a in ¢.

To choose an action at node t, UCT uses the UCB
rule to select an action @ that maximizes Q(¢,a) + C -

V1ogn(t)/n(t,a), where C is a parameter of the algorithm.

The first term, Q(¢, a), favors actions that have led to good
rewards, while the second term gives a bonus to infrequently
selected actions to encourage exploration. When the current
trajectory is outside of the tree, a random action is selected.

Extending UCT with state aggregation is simple. We con-
tinue to simulate ground trajectories at each iteration, but we
build a tree over the corresponding abstract histories, accu-
mulating node statistics at the abstract history level. Each
history node h stores n(h), n(h,a), and Q(h,a), which
summarize all simulated ground trajectories going through
h. In this way, when generating a ground trajectory, the UCB
rule selects actions based on the statistics of the current his-
tory node h of the partial trajectory. This new algorithm,
which we call x-UCT, requires both the simulator for ground
trajectories and an abstraction function y for abstracting the
ground trajectories during tree construction.

Since UCT and x-UCT are randomized algorithms, their
action choices at the root state are random variables. We now
show that x-UCT faithfully replicates the behavior of run-
ning UCT directly on an abstract problem, by showing that
these action choice variables are equal in distribution.

Theorem 2. Consider a ground expectimax tree T'(sg) and
an abstract expectimax tree H = T(sg)/{x, u*). Let 7 be

a random variable giving the action chosen by UCT at sg
when run on H for w iterations with parameter C. Let 7
be a random variable giving the action chosen by x-UCT
in so when run on T'(sq) for w iterations with parameter C
and abstraction function x. Then for any w, m and " are
equal in distribution.

Proof. (Sketch). We show by induction on the number of
iterations w that both algorithms produce the same distribu-
tion over trees after w iterations, which implies that the dis-
tributions over root decisions are the same. Since the ground
trajectories for x-UCT are sampled from the ground dynam-
ics, the abstract histories seen by x-UCT exactly replicate
the distribution over abstract histories induced by P, in H.
The base case is trivial since both algorithms start with a sin-
gle node tree containing just ty. We then show that given a
particular tree over abstract histories produced after w iter-
ations, the distributions over the abstract histories produced
by x-UCT and UCT at iteration w + 1 are the same, which
results in equivalent distributions over trees at w + 1. O

Since x-UCT running on 7' is effectively simulating UCT
running on T'/{x, u*), the convergence results and sample
complexity bounds for UCT (Kocsis and Szepesvari 2006)
apply with respect to the abstract tree. Further, when y =
Xg, Theorem 1 applies, and in the limit x-UCT incurs root
state error bounded above by 2dp. In particular, if x = xg°,
then x-UCT converges to the optimal action, which means
that the maximum necessary branching factor for optimal
decision-making with UCT is |.A|2.

Abstracting Sparse Sampling

Sparse sampling (SS) (Kearns, Mansour, and Ng 2002) is
an MCTS algorithm that is perhaps best known for being
the first algorithm to achieve approximately optimal MDP
planning in time independent of the number of states. Re-
call that a ground expectimax tree has a branching factor of
| A| B, where B is the maximum number of successor states
for any state-action pair. To remove the dependence on B,
which can scale as the size of the state space, SS samples
only w successor states for any state-action pair, where the
sampling width w is a parameter of SS. The branching factor
of this tree is |.A|w and the main SS theoretical result is that
w can be set independently of the number of MDP states in
a way that yields near-optimal action choices at the root.
Our abstract version of SS, called x-SS, constructs a
sparse tree over abstract histories to approximate the abstract
expectimax tree. For simplicity, we describe x-SS as an it-
erative process for producing a depth d abstract tree, but a
depth-first implementation of x-SS is also straightforward.
Initially, the tree contains just ¢(as the root. Each iteration
of the algorithm picks a non-terminal leaf node of depth less
than d and expands it. The iteration stops when all leaf nodes
are terminals or have depth d. Each node corresponds to an
abstract history h and stores bookkeeping information corre-
sponding to a multiset of ground states S, = {t : x(t) = h}.
From each S}, in the sampled tree, we estimate fiy, the
empirical weight function for h, using any density estima-
tor (e.g. a histogram). To expand node h, for each action

a the algorithm samples w ground states t1,...,t, from
fin, and then samples a successor state t; from P(t;,a,-)
for each ¢;. This produces a multiset of ground next states
S’ = {t},...,t,,}, which are then partitioned into equiv-
alence classes using the abstraction function y, yielding
some number k < w of abstract states {h/,...,h}}. The
children of h corresponding to action a are the histories
{h4, ..., h},}. The bookkeeping information for child A} is
the multiset S,y = {¢' € S’ : x(f') = hl}. Since the
abstract nodes ﬁlight contain different numbers of ground
states, each such node h is assigned a weight of |Sy|/w.
When action values are finally computed for the tree, these
weights are taken into account when averaging values.

Since i is a finite-sample estimate, in general i # p*.
This means that x-SS can incur error due to weight function
inaccuracy (the m term in Theorem 1). The performance of
X-SS thus depends on the properties of /.

Theorem 3. Consider a ground expectimax tree T (s¢). Let
7 be a random variable giving the action chosen by x-
SS when run on T (so) with abstraction function x, density
estimator [i, and sampling width w. Let ™ be a random
variable giving the action chosen by SS when run on H =
T(s0)/{x, fr) with sampling width w. Then for all w, ™ and
7 are equal in distribution.

Proof. Since x-SS directly estimates p* with fi, we are ac-
tually constructing a simulator for T'(sg)/{x, fi) and running
SS in the abstract space directly.

The convergence results for SS (Kearns, Mansour, and Ng
2002) then apply to x-SS with respect to the abstract prob-
lem. Unfortunately, the problem of estimating the weight
functions is non-trivial and may introduce an error bound
on m that depends on the size of the ground state space. Al-
gorithms based on trajectory sampling such as x-UCT are
thus preferable when using xj abstractions for which ¢ is
significant.

Experimental Illustration

This section presents a small experiment that demonstrates
the sample complexity benefits of abstraction. Our experi-
mental domain is a version of the card game Blackjack. We
play to a maximum score of 32, instead of 21 for ordinary
Blackjack. This makes the planning horizon longer, which
allows abstraction to have a larger effect. We draw from an
infinite deck so that card counting is not helpful, and we do
not allow doubling down, splitting pairs, or surrendering.

We compared four different state representations. The flat
representation discriminates states based on the actual cards,
so K#Q< is considered distinct from K#QW. The value
representation treats hands with the same numeric value as
equivalent. The x§° representation aggregates states accord-
ing to (0, c0)-consistency. The “noisy” x§° representation
adds random noise to x3°. We first compute the optimal pol-
icy, then flip 30% of the optimal actions and construct the
noisy xg° abstraction based on this corrupted policy.

We ran x-UCT with the four representations for varying
sample limits. The performance measure is the average re-
turn over 10° games. As Figure 2 shows, the coarser ab-

-0.05
0.1 ~e-chi-inf
c - =noisy chi-inf
5 -=-value
§-O.l5 flat
o —opti
& ptimal
5 -02
2
-0.25
-0.3 L T T T T T T T)
16 32 64 128 256 512 1024 2048 4096
Samples per Tree

Figure 2: Small-sample performance of x-UCT with flat, value,
and xg° representations. The z-axis shows the number of samples
per tree on a log scale. The flat line is the optimal value. 95% con-
fidence intervals are smaller than +-0.006 for all data points.

stractions performed better for a given number of samples.
Further, the noisy x§° abstraction, despite putting 30% of
ground states in the wrong abstract state, outperformed the
(exact) value abstraction. These results show both that ab-
straction can improve search performance, and that inaccu-
rate abstractions can perform better than exact ones if the
inaccurate abstractions achieve a smaller state space.

Related Work

State abstractions have been employed in search-based clas-
sical planning (e.g. (Hoffmann, Sabharwal, and Domshlak
2006) and references therein). Much of the theory of state
abstraction in MDPs has used the framework of bisimilarity,
both exact (Givan, Dean, and Greig 2003) and approximate
(Ferns, Panangaden, and Precup 2004). Our work is most
closely related to (Jiang, Singh, and Lewis 2014), which
proposes state aggregation based on approximate bisimilar-
ity in MCTS. The analysis in that work is in the context of
the UCT algorithm. In contrast, our abstractions are general-
izations of the Q-function-based 7*- and a*-irrelevance ab-
stractions studied by Li, Walsh, and Littman (2006), which
are generally much coarser than abstractions based on ex-
act bisimilarity. Also, our analysis is in the context of full
expectimax trees, so it applies to any method of sampling.
Van Roy (2006) derived error bounds that look similar to
ours for value iteration with state aggregation.

Summary

We have analyzed state aggregation in exact expectimax
search and MCTS. Our results established a performance
loss bound for state aggregation in expectimax trees for a
family of state space partitions called (p, ¢)-consistent parti-
tions, which includes the 7*-irrelevance and a*-irrelevance
conditions of Li, Walsh, and Littman (2006). We showed
how to extend UCT and sparse sampling to build abstract
search trees, and combined our results with existing theory
to analyze the extended algorithms. Our experiments with
x-UCT demonstrated the benefits of abstraction

Acknowledgments
This research was supported by NSF grant IIS 1320943,
NSF grant 0958482, and ARO grant W911NF-08-1-0242.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as neces-
sarily representing the official policies, either expressed or
implied, of ARO or the United States Government.

References

Balla, R.-K., and Fern, A. 2009. UCT for tactical assault
planning in real-time strategy games. In Proceedings of the
21st International Joint Conference on Artificial Intelligence

(IJCAI), 40-45.

Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of Monte
Carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and Al in Games 4(1):1-43.

Ferns, N.; Panangaden, P.; and Precup, D. 2004. Metrics for
finite Markov decision processes. In Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence (UAI),
162-169.

Gelly, S., and Silver, D. 2007. Combining online and offline
knowledge in UCT. In Proceedings of the 24th International
Conference on Machine Learning (ICML), 273-280.

Givan, R.; Dean, T.; and Greig, M. 2003. Equivalence no-
tions and model minimization in Markov decision processes.
Artificial Intelligence 147(1):163-223.

Gordon, G. J. 1996. Chattering in SARSA()). Technical
report, Carnegie Mellon University.

Hoffmann, J.; Sabharwal, A.; and Domshlak, C. 2006.
Friends or foes? An Al planning perspective on abstraction
and search. In Proceedings of the 16th International Confer-
ence on Automated Planning and Scheduling (ICAPS), 294—
303.

Jiang, N.; Singh, S.; and Lewis, R. 2014. Improving UCT
planning via approximate homomorphisms. In Proceedings
of the 13th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS).

Kearns, M.; Mansour, Y.; and Ng, A. Y. 2002. A sparse sam-
pling algorithm for near-optimal planning in large Markov
decision processes. Machine Learning 49(2-3):193-208.

Kocsis, L., and Szepesvari, C. 2006. Bandit based Monte-
Carlo planning. In Proceedings of the European Conference
on Machine Learning (ECML), 282-293.

Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a uni-
fied theory of state abstraction for MDPs. In Proceedings of
the Ninth International Symposium on Artificial Intelligence
and Mathematics, 531-539.

Van Roy, B. 2006. Performance loss bounds for approxi-
mate value iteration with state aggregation. Mathematics of
Operations Research 31(2):234-244.

Walsh, T. J.; Goschin, S.; and Littman, M. L. 2010. Integrat-
ing sample-based planning and model-based reinforcement
learning. In Proceedings of the 24th AAAI Conference on
Artificial Intelligence (AAAI).

