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ABSTRACT 

Although habitat fragmentation is one of the greatest threats to biodiversity world-wide, virtually 

no attention has been given to the quantification of error in fragmentation statistics. Landscape 

pattern indices (LPIs) such as mean patch size and number of patches are routinely used to 

quantify fragmentation and are often calculated using remote sensing imagery that has been 

classified into different land cover classes. No classified map is ever completely correct, so we 

asked if different maps with similar misclassification rates could result in widely different errors 

in pattern indices. We simulated landscapes with varying proportions of habitat and clumpiness 

(auto-correlation) and then simulated classification errors on these same maps. We simulated 

higher misclassification at patch edges (as is often observed), and then used a ‘smoothing’ 

algorithm routinely used on images to correct ‘salt-and-pepper’ classification error. We 

determined how well classification errors (and smoothing) corresponded to errors seen in four 

pattern indices. Maps with low misclassification rates often yielded errors in LPIs of much larger 

magnitude and substantial variability. While smoothing usually improved classification error, it 

sometimes increased LPI error and reversed the direction of error in LPIs introduced by 

misclassification. Our results show that classification error is not always a good predictor of 

errors in LPIs, and some types of image post-processing (e.g., smoothing) might result in 

underestimation of habitat fragmentation. Furthermore, our results suggest that there is potential 

for large errors in nearly every landscape pattern analysis ever published, as virtually none 

quantify the errors in LPIs themselves. 

 

Key words:  fragmentation; landscape metrics; landscape pattern indices; spatial error; 

classification error; thematic map; accuracy assessment; remote sensing; uncertainty. 
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INTRODUCTION 

Habitat fragmentation is thought to have significant effects on community structure and 

composition and to be one of the greatest threats to biodiversity (Villard et al. 1999, Terborgh et 

al. 2001, Benitez-Malvido and Martinez-Ramos 2003, Cordeiro and Howe 2003, Ferraz et al. 

2003). Effects of increasing fragmentation can come from an increase in the number of patches, 

the distance between patches (Saunders et al. 1991), and the amount of edge habitat within each 

patch (Brittingham and Temple 1983; Andrén and Angelstam 1988, Laurance et al. 2000). 

Landscape fragmentation is commonly characterized using measures of these and other values 

such as mean patch size. Because software to compute these landscape pattern indices (LPIs) is 

widely available, pattern analyses are routinely performed for a variety of habitats and for many 

different purposes ranging from habitat conservation to regional planning (Cardille and Turner 

2001, Turner et al. 2001, McGarigal et al. 2002, Fahrig 2003). 

LPIs are often computed over remote sensing images that have been classified into 

different land cover classes (Skole and Tucker 1993, Peralta and Mather 2000, Griffiths et al. 

2000, Imbernon and Branthomme 2001), but there are always errors made in classifying the 

pixels of an image into land cover classes. This lack of accuracy raises the question of whether 

these classification errors could lead to substantial errors and variation in the LPIs derived from 

classified maps (Hess 1994). Despite its apparent importance, virtually no study measures the 

error in LPIs, much less accounts for the error caused by image misclassification. This oversight 

may have serious consequences for both science and policy because there is potential for errors 

of unknown magnitude in nearly every landscape pattern analysis ever derived from classified 

images.  

While a great deal of effort has gone into techniques for assessing classification accuracy 
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(Congalton and Green 1999, Stehman 2001), it is generally specified in terms of the 

percentages of misclassified pixels, with no reference to the location of the errors. However, 

higher classification errors are often associated with textured areas or patch boundaries (Edwards 

and Lowell 1996, Plourde and Congalton 2003). While several authors have examined other 

causes of error in LPIs (Turner et al. 1989, Cardille and Turner 2001, Saura and Martinez-Millan 

2001), the effect of classification errors on LPIs has rarely been addressed directly. When it has 

been addressed (Hess and Bay 1997, Wickham et al. 1997, Brown et al. 2000, Shao et al. 2001), 

differing conclusions have been reached. The conflicting conclusions may be partially due to the 

fact that each of these studies was based on a single image or landscape, and thus did not control 

for the impact of landscape structure.  

Objective 

Here, we use a series of simulated landscapes and classification errors to test the notion that LPI 

error is necessarily correlated with classification error. Specifically, we address the following 

two questions: 

1) How do image classification errors and levels of smoothing affect LPIs of fragmentation? 

2) How do the amount of habitat and its clumpiness affect the error in the LPIs? 

Unlike previous work, these simulations allow us to examine both the magnitude and 

spread in LPI error among landscapes that are strictly controlled for spatial characteristics that 

might affect the values of the LPIs. While our simulated landscapes and classification errors 

have elements of real applications to them, it is important to note that we do not claim to build a 

predictive model of the precise amount of expected LPI error for any particular classified map. 

METHODS 

Overview 
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We created a set of 10,800 simulated landscapes designed to represent specific aspects of the 

variability seen in real landscapes, as well as aspects of the remote sensing image classification 

process. We first created 270 simulated ‘correct’ base landscapes with two land cover classes: 

habitat and background. These ‘correct’ base maps represented images where every pixel has 

been classified as either habitat or background with no error. These maps were designed to vary 

systematically in the proportion and clumpiness of habitat. We also created ‘incorrect’ 

misclassified maps from the correct base maps, representing images that have been incorrectly 

classified to some degree, mimicking two types of common classification errors. We ‘smoothed’ 

the images using a process routinely applied to correct salt-and-pepper errors on images. 

Afterwards, we determined the impact of classification errors and smoothing on several LPIs 

derived from the simulated maps. Finally, we determined whether classification errors were 

related to the magnitude of and spread in LPI error.  

Measuring Classification Error 

We refer to two commonly used measures of classification error: producer’s error and user’s 

error, both measured on a per class basis, as opposed to the total error for all habitat or land 

cover classes. We chose these measures of classification error because nearly all current research 

reports classification errors in this way. The producer's error (ep) is the probability that a true 

land cover class will be incorrectly mapped and measures the errors of omission. It represents the 

classification errors that we systematically induced in our maps. In our study with two cover 

types, producer's error refers to the percentage of habitat pixels in the “correct” map that are 

incorrectly labeled in the “misclassified” map (i.e., are labeled as background): 

   ep = fn/(tp+fn)       (1) 

where fn=false negatives, tp=true positives and we treat “habitat” as the positive class. 
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We also measure the resulting user's error (eu) on our maps. It indicates the probability 

that a pixel from a land cover map does not match the correct (i.e., reference or ground-truthed) 

land cover class. User's error measures the error of commission. It is defined as the percentage of 

pixels that are classified as habitat but should be classified as non-habitat, and it is calculated as 

follows:   

   eu = fp/(tp+fp)       (2) 

where fp=false positives, tp=true positives. 

While both measures are important, we examine our results primarily with respect to 

user's error, since it intuitively represents how much the user should “believe” that a given pixel 

is the class that the map claims it is. We introduce producer's errors of 20% on patch edges and 

10% in patch interiors on our ‘incorrect’ maps, and then measure the resulting user's error. Thus, 

the highest producer's error possible on the initial (unsmoothed) simulations is always < 20%, 

but the user's error can vary widely. We chose the 10% and 20% values primarily so that we 

could investigate the impact of conservative classification errors.  Also, using identical error 

rates to those of other studies allows for a useful basis for comparison (Wickham et al. 1997).   

Map Simulation 

Correct Base Maps. We created a total of 270 ‘correct’ base maps to represent stationary, 

isotropic landscapes with no classification error (see Figure 1 for examples). Each of these two 

class random map was generated using the program RULE (Gardner 1999). RULE was chosen 

for several reasons. The mid-point displacement fractal algorithm used by RULE is particularly 

useful for generating continuous variability in landscape structure because both the proportion of 

habitat and the clumpiness of habitat can be varied systematically and independently across a 

range of values. In addition, the behavior of LPIs has been systematically examined on 
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landscapes simulated by RULE and much theoretical work in habitat connectivity is based on 

landscapes generated using this software (With and King 1997), thus further enhancing the utility 

of our results.  

We varied the proportion of the landscapes occupied by habitat from ten to ninety percent 

of the landscape in ten percent increments so that we could examine the impact of habitat loss on 

LPIs.  In addition, we varied the Hurst exponent, H, which ranges from 0 to 1 to examine the 

impact of the clumpiness of fragmentation on our results. A Hurst exponent of 0 represents 

landscapes that are negatively auto-correlated and an exponent of 1 represents landscapes that 

are extremely positively auto-correlated. We examined H levels of 0.2, 0.5, and 0.8. Thus, we 

created 9 proportions of habitat and 3 levels of auto-correlation, with 10 replicates of each, for a 

total of 270 initial correct base maps. While this does not mimic every possible aspect of 

landscape structure, varying these two simple parameters created a wide range of landscape 

structure (Figure 1).  

Incorrect and Smoothed Maps. We created ‘incorrect’ maps from ‘correct’ maps to mimic two 

types of classification error: (a) randomly located misclassification (“salt and pepper” error); and 

(b) increased misclassification near patch boundaries (as compared to the interior of patches).  

While this is not the only error model possible, random error and edge error are a part of any 

classifier's error.  Moreover, this error model creates errors that may directly influence 

fragmentation through the generation of spurious patches. It also matches the error model used in 

Wickham et al. (1997). This was important for our study because we wanted to examine whether 

the same error model would lead to different conclusions on different landscapes. Other error 

models, for example, ones with more spatial autocorrelation are left for future studies.  

Because our maps contained only two classes, we induced errors in the classification of 
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individual pixels on the correct map by simply changing habitat cells to background, or vice 

versa, with a given probability (or error rate). This type of error is routinely termed ‘producer’s 

error.’ We assumed that error rates near patch edges were 10% higher than in patch interiors 

(e.g., due to mixed pixels, Wickham et al. 1997). For inducing errors, we defined an edge pixel 

as any pixel with at least one of its four neighbors belonging to the other category. Thus, we set 

the error rates in the patch interiors at 10% with corresponding edge error rates of 20%. We 

created 10 incorrect maps from each correct base map, resulting in 2700 total incorrect maps.  

We then removed small, isolated regions assumed to be in error by applying a smoothing 

technique that removes all regions smaller than the size of a designated minimum mapping unit 

(MMU). Any patch smaller than the size of the minimum mapping unit is removed by changing 

the classification of its pixels to the classification of the patch with which it shares the longest 

border. In the case of only two classes, that border is always with a fully surrounding patch. We 

employed minimum mapping units of 2, 4 and 9 cells to remove all patches below these size 

thresholds, for a total of 8100 smoothed maps. We chose this method rather than a majority filter 

because it is simple to implement and because a majority filter tends to remove edge complexity. 

The sizes were chosen to roughly correspond to a graduated set of patch sizes: a pair of adjacent 

pixels, a 2x2 square, and a 3x3 square. Similar procedures were used in the classified 

WISCLAND Land Cover data set, where upland land cover categories (excluding URBAN) 

were 'smoothed' to patches no smaller than four contiguous pixels using a clump-sieve-fill 

algorithm, whereas wetlands were smoothed using a minimum mapping unit of two pixels 

(WISCLAND 1993). Brown et al. (2000) used sieves of size 1, 3, and 10 hectares as well as 

majority filters of sizes 3x3 and 5x5.  

Conservative classification errors. It is unlikely that our simulated errors overestimated 
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classification error rates found in real maps at edges or patch interiors. Reported classification 

error rates for some commonly studied data sets vary widely depending on land cover class, level 

of classification and method of accuracy assessment. For example, in the 1992 U.S. National 

Land-Cover Dataset where accuracy assessment was done extensively and carefully, per class 

user's accuracies for Anderson Level I classifications for the mid-Atlantic region range from 

35% correct to 92% (Stehman et al. 2003). Values for Anderson Level II classifications for the 

same region range from 1% to 92%. There is also evidence for optimistic bias in the reporting of 

classification error in many studies (Hammond and Verbyla 1996, Stehman 2001). For the 

purposes of simulating edge-biased classification error, we have assumed patch edges to be one 

pixel wide (Wickham et al. 1997). However, true edge widths may be larger in many landscapes 

(Edwards and Lowell 1996), especially in heavily textured images. Thus, our edge width of one 

pixel is likely to lead to conservative edge errors. 

Measuring Fragmentation 

We applied Fragstats 3.0 (McGarigal et al. 2002) to calculate the following LPIs on simulated 

correct, incorrect, and smoothed landscapes: a) Mean Shape Index, b) Total Edge (m), c) 

Number of Patches, and d) Mean Patch Size (ha). (Details on the LPIs calculated by Fragstats 

can be found in the Fragstats documentation at: 

http://www.umass.edu/landeco/research/fragstats/fragstats.html). Increasing values of mean 

patch size indicate less fragmentation, whereas increases in the other LPIs are indicative of 

greater fragmentation. We make no claims about whether these are ecologically informative 

measures of fragmentation. Rather, we chose these LPIs because they are among the simplest to 

understand and the most widely employed measures for quantifying habitat fragmentation. They 

were also hypothesized to be among the most affected by edge misclassification.  
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Analysis of Results 

For simplicity, we considered only binary maps (with only two land cover classes) and only 

examined the results for one class. Although real maps may have more than one class, the LPIs 

of fragmentation we examined are calculated on a ‘per class’ basis (e.g., for one habitat type 

only, assuming all other habitat types are background). As long as the LPI of interest does not 

distinguish among the different classes that make up the background class, the value of the LPI 

will be identical in the multi-class and the combined binary versions of the map.  

It is also very important to examine classification error on a per class basis rather than 

computing total classification error for the landscape as a whole because a classifier can have 

low accuracy for one class of interest, but still have high overall accuracy when averaged across 

all classes. For example, the total classification error can be small and misleading when a map 

has low classification errors for abundant classes, and high classification errors for less abundant 

classes. Thus, examining classification error and LPI error both on a ‘per class’ basis makes the 

most sense for this study. 

For each LPI on the incorrect and smoothed landscapes, we determined the percent error 

in the LPI relative to the correct landscape, which we termed % LPI Error.  

  % LPI Error = ((LPIincorrect - LPIcorrect) / LPIcorrect) * 100  (3) 

We plotted % LPI Error versus User's Error for the initial misclassifications as well as for each 

level of smoothing at different minimum mapping units. While we demonstrate the spread in LPI 

error within each user's error value quite clearly using these graphs, we do not compute a 

standard deviation or variance of LPI errors. This would require arbitrarily binning data points 

(by base landscape, proportion, clumpiness, or user’s error, etc.) when our purpose is simply to 

examine whether for any given user's error, there is a large spread of values of LPI error. 
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RESULTS 

First, we summarize the general behavior of our landscape model and error model by examining 

the relationship between producer's error (which we manipulated) and the resulting user's error. 

Second, we examine the impact of the classification errors on the computed LPIs to determine if 

smoothing affected LPI error. We discuss the results for each LPI in detail. Lastly, we examine 

the relative impact of landscape structure (clumpiness and habitat loss) on LPI error. 

To fully understand our results, it is important to explain how our error model and our 

landscape model are related (Figure 2). Even though our simulated producer's errors in habitat 

classification were limited to 10 – 20%, it resulted in a larger range of user's errors, between 0 

and 60% (Figure 3). User's errors were generally higher in the incorrect landscapes (before 

smoothing) with low proportions of habitat (Figure 3). However, ‘smoothing’ of an image 

reduced maximum user's error by roughly half, from around 50% in the incorrect images to less 

than approximately 25% when smoothed (MMU=9) (Figure 3). We have shown the full range of 

values for user's and producer's error in Figure 3 to show the effects of smoothing on those 

errors. In Figures 4 and 5 though, we have only shown values for images where both user's and 

producer's error are less than or equal to 15%. While we computed results for all of the simulated 

landscapes that we generated, we have chosen to only show results here for maps with the most 

conservative amounts of classification error. Even though classification rates are often higher 

than 15% and our LPI errors for those classification error rates were even more extreme, we have 

done this so that we are certain not to display results for classification error rates that any users 

would reject as being too high to use in a real application.  

 

How do image classification errors and levels of smoothing affect LPIs of fragmentation?  
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Classification errors often resulted in large errors in LPIs, even at classification error rates 

considered low by the remote sensing community. While the relationship between the values of 

LPIs on the correct versus the incorrect and smoothed maps was roughly linear for Total Edge 

(Figure 4e-h), it was not for the other LPIs. For the Number of Patches, the relationship between 

the correct and incorrect values depends on the minimum mapping unit (MMU) used for 

smoothing. It was linear only for MMU=4 and 9. When examining percent error in LPIs relative 

to the correct image, the errors in LPIs were extremely high (Figure 5), in a number of cases, 

higher than 1000% (Figures 5e,f,i,j,p). User's error did not reliably correspond to LPI error for 

any LPI examined, and therefore, it was not a useful predictor of LPI error. Smoothing did not 

consistently reduce the magnitude of errors in LPIs relative to the original correct classification. 

However, smoothing using MMU=9 always reversed the direction of error caused by the initial 

misclassification (overestimation changes to underestimation and vice versa) for all the LPIs 

examined (Figure 5). Thus, while smoothing to remove salt and pepper error improved per class 

user's error, it sometimes increased LPI error (Figure 5). We next examine each LPI in greater 

detail.  

LPI errors for Mean Shape Index were generally less than ±10% in the incorrect 

landscapes (Figure 5a), but increased to 50% with smoothing (Figure 5b-d). The errors were not 

consistently biased in one direction, as the LPI was underestimated for the incorrect landscapes 

(5a), but overestimated for the MMU=4 (5c) and 9 landscapes (5d). However, the lower user's 

errors in the smoothed landscapes still yielded both higher magnitude and greater spread in LPI 

error within a given user's error (Figure 5d). 

For Total Edge, the maximum percentage LPI error approached 4000% (Figure 5e). 

Smoothing reduced the LPI error to the range between +150% and –60% (Figure 5g-h), but the 
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direction of error differed depending on the minimum mapping unit. Total Edge was 

overestimated on the initial incorrect, MMU=2, and MMU=4 landscapes (Figure 5e-g) and 

underestimated by more than 50% for the most fragmented landscapes when MMU=9.  

The percent error in the Number of Patches (NP) relative to the correct image ranged 

from approximately 0 to 10,600%. The behavior of NP was qualitatively similar to that of Total 

Edge, where the LPI was overestimated for the initial incorrect landscape and for the MMU = 2 

landscapes (Figure 5i-j), but then underestimated by as much as 100% for MMU=9 (Figure 5l).  

For Mean Patch Size (MPS), the initial misclassifications resulted in underestimation of 

the LPI by as much as 100% (Figure 5m). When smoothed using MMU=2, MPS was both over- 

and under-estimated (Figure 5n). Successive smoothing using MMU=4 and 9 resulted in 

increases in LPI error, to more than 1000% for MMU=9 (Figure 5p).  

Our results suggest that the magnitude and spread of LPI errors due to misclassification 

can be quite large. Moreover, LPI errors do not always decrease with spatial post-processing 

techniques, such as smoothing, that are routinely applied to reduce user's error. In short, the 

spatial arrangement of classification error is at least as important as the amount. LPI errors are 

not always lower on maps with lower user's errors, and maps with the same user's error can 

frequently result in maps with LPI errors of very different magnitudes.  

 

How do the amount of habitat and its clumpiness affect the error in the LPIs? 

The magnitude of LPI errors was affected by the structure of the landscape, but it was affected 

more by the clumpiness (H, the auto-correlation parameter) than by the proportion of habitat. 

This was especially evident for Total Edge, Number of Patches, and Mean Patch Size before 

smoothing (Figure 5e.i.m.n). For Total Edge, LPI error was lowest for H=0.2 (dispersed), and 
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much greater when H=0.8 (clumpy), approaching 4000% error (Figure 5e). Qualitatively 

similar patterns were evident for Number of Patches. The effect of landscape clumpiness on error 

in Mean Patch Size was dependent on MMU. Before smoothing, the smallest LPI errors were 

roughly -50% in the H=0.20 landscapes (Figure 5m), and LPI errors were as large as -100%. 

When smoothed, the largest LPI errors were in the H=0.20 landscapes (Figure 5o-p), and the 

lowest LPIs errors were in clumped landscapes (with H=0.80). While the proportion of habitat 

had less effect on our LPI error, it is correlated highly with user's error (Figure 3), and thus our 

results must be seen in that context. The lowest user's errors always occurred in the landscapes 

with the highest proportion of habitat, but this was often the region where the highest LPI errors 

occurred. 

DISCUSSION 

We are aware of only four other studies addressing the effects of classification error on LPI error 

and all but one of these studies were based on either a single image or landscape and did not 

control for the impact of landscape structure. The one study that does use more than one 

landscape and does control for landscape structure is Hess and Bay (1997). Like our study, they 

examined the effect of map error on several LPIs. Unlike our study, their indices were non-

spatial ones, including percent cover and two commonly used diversity indices. They used three 

levels of map error and found that they did cause error in the measures. They further described a 

method to put confidence intervals around the measures. Of the remaining three studies, only one 

measured both accuracy and variability in the LPIs. Wickham et al. (1997) simulated 

classification errors over portions of a land cover map derived from a single TM image. As in 

our study, they computed the difference in the values of several LPIs between the original base 

map and the maps with simulated classification errors. They concluded that for the landscape and 
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methods they used, classification error did not increase LPI error. Instead of simulating errors, 

Shao et al. (2001) had 23 different interpreters classify a single TM image and then measured the 

variation in LPIs over the 23 different maps. They found that even though there was not much 

variation in the accuracy of the classifications, there was a great deal of variation in the LPI 

error. The third related study is that of Brown et al. (2000) in which they examined estimates of 

error in pattern indices used for change detection. They classified images for two forested areas, 

subsetted the two areas into many smaller landscapes and then compared the LPI values obtained 

in overlapping areas of adjacent images photographed around the same time. They found that the 

LPIs of mean patch size and number of patches were more error prone than the edge density LPI.  

Our experiments demonstrate that classification error is not always a reliable predictor of 

LPI error, and that one cannot assume a map with low classification error will produce accurate 

LPIs. In our simulated landscapes, the spread in LPI error was generally large, and the magnitude 

in LPI error was almost always much larger than the magnitude of classification error, even for 

small classification errors. Also, the common practice of reducing classification error by spatially 

smoothing a classified map using a minimum mapping unit sometimes increases LPI errors. This 

result is also consistent with the results in Brown et al. (2000) which is based on empirical data. 

The consistent underestimation of number of patches and consistent overestimation of total edge 

and mean patch size in smoothed classifications suggest that landscape fragmentation may be 

routinely underestimated as a result of smoothing classifications and should be investigated 

further. Since the landscapes and error models in this paper are artificial, the specific quantitative 

results obtained here do not generalize to all landscapes and error matrices. However, our results 

show large and unpredictable amounts of error in LPIs on images with very low classification 

error by the standards of the remote sensing community. In addition, our results show that 
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different smoothing and/or classification techniques may be recommended for reducing errors 

in different LPIs even on the same image. In the following sections, we discuss these points in 

greater detail. 

 

How do image classification errors and smoothing techniques affect LPIs of fragmentation?  

Our results suggest that the accuracy of LPIs derived from classified images may not be easily 

predicted from the accuracy of the classification. In our simulated landscapes, the magnitude of 

LPI error was nearly always a great deal larger than the magnitude of the corresponding 

classification error, even when classification error was small. While there is no reason to expect 

that the value of the LPI error should equal the value of the classification error, we often found 

that the errors were not even within the same order of magnitude. Moreover, the large spread in 

LPI error at all levels of classification error (shown in Figure 5) means that we cannot fit any 

single function from classification error to LPI error in the conditions that we have simulated. 

We cannot even guarantee the weak criteria that the rankings of maps by classification error 

would yield the same results as a ranking based on LPI errors.  

Predicting LPI error from classification error was further confounded by the fact that the 

common practice of using minimum mapping units to reduce salt and pepper classification error 

actually increased LPI error for mean patch shape and mean patch size. Moreover, it always 

reversed the direction of error (from over to underestimation or vice versa). Further, the ideal 

smoothing levels for reducing LPI error varied by LPI (Figure 5). For example, the smallest LPI 

error values and spread for Mean Patch Shape occurred in scenarios with no smoothing, while 

the best smoothing level for Total Edge was MMU=9; for Number of Patches, MMU=4; and for 

Mean Patch Size, MMU=2. This suggests that minimizing error for each LPI may require using 
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different maps derived from different classifiers or smoothing levels for each LPI. 

 

How do the amount of habitat and its clumpiness affect the error in the LPIs? 

The proportion of habitat had less effect on LPI error than habitat clumpiness did. As the 

smoothing MMU increased, clumpiness had less effect on LPI errors for Mean Patch Shape and 

Mean Patch Size, but greatly affected LPI errors for Total Edge and Number of Patches. While 

habitat proportion was not related closely to LPI error in our simulations, it had a large effect on 

the difference between user's error and producer's error generated by our model. User's errors 

were generally higher in low proportion landscapes (Figure 3). This error pattern would not be 

unreasonable to expect using any classifier for several reasons. First, there are likely to be 

relatively more edge and mixed pixels in lower proportion landscapes, exactly the type of pixels 

where more classification error is expected. Second, the small sample size of pixels in low 

proportion landscapes results in fewer training data available for training a classifier. Lastly, 

higher user's error in low proportion landscapes is likely simply given the equation for User's 

Error: fp/(tp+fp). In a low proportion landscape, this equation would be dominated by the false 

positives, given the small number of true positives possible even if 100% of habitat was 

recognized correctly. In future experiments, we could totally eliminate this effect by writing a 

more complicated error model that draws pixels in a different way to control for user's error as 

well. We did not rerun the experiments here with the more complicated model because our 

conclusions remain the same even if we remove all points with user's error greater than 15%.  

Bounds of Generalization  Our primary goals were to characterize a certain type of classification 

error over a range of landscape structures and to test the hypothesis that a map with small 

classification error necessarily yields spatially reliable LPIs. Our results should not be 



 17
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

generalized quantitatively to all landscapes, all LPIs, or all types of classification error. Our 

results are limited to the landscape structures, LPIs, smoothing and classification error models 

tested. In spite of these limitations, we argue that the scenarios we have presented have enough 

realism to reasonably reflect some of the complexity of a real application, and demonstrate that 

this complexity can generate subtle and counterintuitive outcomes.  

Just as we recommend not over-generalizing from our results, our study strongly 

illustrates the problem in drawing general conclusions based on classifications derived from one 

original base landscape or image. As an example, even though our experiments employed 

classification error assumptions similar to those of Wickham et al. (1997), our study yielded 

much larger errors in LPIs not only because we used different LPIs, but more importantly we 

used a range of different landscape structures.  

Simulations vs. Real Landscapes  The danger of over-generalizing from a single map is made 

particularly clear by the use of multiple simulated landscape maps that we have presented here. 

Simulated landscapes are often employed to directly control, manipulate, and replicate features 

of landscape structure (Gardner et al. 1987, Gardner et al. 1991) such as the proportion of habitat 

types or clumpiness (With and King 1997, Turner et al. 2001, Gergel 2002). Controlling for the 

variability in real landscapes is extremely problematic because they vary widely in many of these 

features that influence the behavior of LPIs. Often, they are also highly anisotropic and non-

stationary (containing different gradients of clumpiness or auto-correlation, and in different 

directions). This makes their patterns uneven within one landscape. Thus, any subset of real 

landscape imagery used for a study such as this is unlikely to systematically span the range of 

proportions or variability in auto-correlation. Furthermore, the proportions of different habitat 

types on a remote-sensed image are ultimately dependent on the spatial resolution and on the 
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level of thematic resolution of land cover classes chosen to create the map (e.g., 3 vs. 5 cover 

types).  

Equally important is that when using a classified image as the ‘correct’ base landscape 

for simulating classification errors, the ‘correct’ patch boundaries and LPI values cannot be 

known due to LPI errors already introduced by the classifier. The range of LPI values on the 

initial correct map (if obtained this way) would incorporate the classifier's bias and need not 

represent the true range of LPI values. For example, smoothing tends to reduce the complexity of 

patch edges and the number of small patches.  

We argue that until we understand the behavior of LPIs in highly controlled and 

replicated scenarios, we cannot expect to understand or predict their behavior on real maps 

which vary in many uncontrolled ways.The numerous sources of error and variability make it 

difficult to isolate the factors influencing the behavior of LPIs on real landscapes or those from 

any classified image. With simulated landscapes, we can systematically vary proportion and 

spatial autocorrelation and we can generate multiple realizations of these landscapes using the 

same parameters.  

Error models. One limitation in our error model is that spatial structuring of error is not directly 

accounted for beyond edge effects. Directly modeling spatial autocorrelation in the errors might 

have different results and should be investigated since many errors in our model come from the 

splitting off of small patches. However, there are several factors that suggest that results derived 

from this model are still of interest.  First, our experiments showing smoothing with a minimum 

mapping unit of 9 cells do address a certain amount of autocorrelation because there is spatial 

grouping of errors when no patch can be smaller than 9 cells.  Second, as the spatial resolution of 

imagery used increases, there is less averaging of the signal; consequently, the local 
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characteristics of the image are less uniform.  Per pixel classifiers that do not take this texture 

into account are more likely to generate varying classifications of neighboring pixels.  These 

classifications are likely to require post-classification smoothing similar to that employed in our 

simulations, possibly with similar results.  Third, the amount of salt and pepper error that occurs 

in a classified image is partly a function of the skill of the operator.  The experiments in Shao et 

al. (2001) with multiple operators showed many different outcomes even given exactly the same 

input.  Anyone with access to an image processing program can push a button to classify an 

image and then compute LPIs on that output.  Users whose primary expertise is not in image 

processing, may have little idea how to deal with issues such as texture in an image and produce 

speckled classifications which they may or may not smooth afterwards.  In either case, their 

errors may be qualitatively similar to those expressed in our error model.  Finally, our results 

have shown that even if there is less than 1 or 2% error of this kind, it can still generate huge 

amounts of error in some LPIs (e.g., see Figure 5p).   

Normalization of LPI errors for comparison  Another important issue is that the ability to 

compare and rank different LPIs by error requires a fair method for normalizing LPI errors. 

Throughout this paper we have examined LPI error as a percentage of the correct LPI value, but 

the total possible percent error can differ greatly among LPIs. When the range of an LPI is 

infinite or allows values to become infinitessimally small (i.e., arbitrarily close to zero), there 

will be no upper bound on the percentage error possible. In contrast, any LPI whose magnitude is 

bounded above and below and does not include any neighborhood of zero will have bounds on 

the percentage error it can possibly attain. It may thus appear better (lower error) than an LPI 

with errors that can be unbounded. For example, the fractal dimension of a planar region can 

only vary between 1 and 2. Consequently, it can never have an error greater than 100% because 
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the denominator can never be less than one and the numerator can never be greater than one. 

Similarly, an LPI may be effectively bounded if it is very difficult or uncommon to observe 

values outside a narrow range (e.g., the Shape Index in our studies). In either case (actual or 

effective bounding of error), it is inappropriate to directly compare the magnitude and variation 

of the error of bounded LPIs with unbounded ones. The bounded LPI may appear to have very 

little percentage error, but this may be simply because its range is so small that the ecologically 

relevant distinctions in the LPI’s values require high precision that is irrelevant in the unbounded 

LPI.  

One way to normalize the errors would be to normalize them against what is considered 

to be the smallest ecologically relevant distinction in the application of interest. For general 

comparison of LPIs however, it would be useful to have a normalization method that was more 

independent of specific applications. One way to do this would be to compare the errors to the 

largest error “reasonably possible” for that LPI. For example, we could assume that a classifier 

should not do any worse than randomly guessing classifications. More research is necessary to 

determine what are the appropriate characteristics and candidates for a normalization method to 

allow comparison of LPI errors. However, it is clear that any future studies that attempt to rank 

LPIs in terms of LPI error will need to normalize their error measures in some way so that the 

results are meaningful. 

Accuracy Assessment  Our work suggests that both the creators and the users of classified images 

need to do more to measure spatial aspects of classification errors in maps. In particular, better 

techniques for accuracy assessment of LPIs need to be developed for several reasons. First, as we 

have shown, non-spatial measures of accuracy (user's error) do not necessarily correspond to 

errors in spatially-explicit LPIs. To date, studies that do measure spatial aspects of classification 
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error (Foody 2002, Hagen 2003, Pontius et al. 2004), do not examine how those error 

measures relate to the errors in the LPIs. Second, many users of classified remote sensing 

imagery are often unlikely or unable to verify the spatial accuracy of classifications themselves 

due to budget or expertise or because not all of the original reference data is available to the user 

(e.g., because of agreements with land owners covered by the map). In such cases, the producers 

of classified imagery would help their users by evaluating spatial characteristics of classification 

error instead of just counting misclassified pixels.  

However, it is not clear whether it is possible to develop predictive models of LPI error 

that can be generalized to real-world applications. The reason for this is that the pattern of errors 

in any classified map is the result of complex interactions among many factors. These factors 

include the classification algorithm, its training data, the user's skill, the landscape, the class 

structure (e.g., relative abundance of classes, relative importance of different types of errors, 

patch shapes, patch interlacing, anisotropy) as well as the spatial distribution of classification 

errors (e.g., location of easily confused classes relative to each other). It may be more useful to 

develop project-specific predictive models for LPI error based on image characteristics, as 

Brown et al. (2000) did for change detection in LPIs in forest cover maps. At a minimum 

however, analogous to classification error analysis, subsamples of the images of interest should 

have patch boundaries identified through some more reliable method of assessment. These 

subsamples could then be used to provide a standard for assessing the correctness of spatial 

measures derived from their classification.  

In this paper, we do not mean to suggest that deriving a more accurate value of the LPI as 

defined for the given single landscape will solve all problems with LPIs. Even if we could 

identify the correct value of an LPI from a classified map, there are other issues about whether 
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that value has ecological meaning. For example, if a landscape represents a stochastic process, 

the many possible realizations of that process may each yield different values for an LPI and in 

that sense, there is no single correct value for the LPI. Questions such as this have led some 

researchers to advocate approaches based on stochastic models (Remmel et al. 2002, Fortin et al. 

2003). For example, to determine whether the LPI values of two landscapes are significantly 

different, they suggest measuring the overlap of confidence intervals on the LPI values obtained 

over a large number of realizations from an ecologically relevant stochastic model. These 

questions are beyond the scope of this paper, however, they raise the following important point.  

The stochastic modeling approach requires the estimation of model parameters such as 

proportion and autocorrelation from the same erroneously classified maps of land cover used to 

calculate LPIs. Therefore, the stochastic modeling approach also requires an analysis of model 

errors and LPI errors induced by estimating model parameters from maps containing  

classification errors. In short, any process that computes spatial results based on a classified 

image must assess the errors in the results themselves rather than assuming that the classification 

error is a reliable estimate of the amount of error in the results. 

CONCLUSION 

Several important considerations result from this work that merit further attention. In particular, 

fragmentation statistics may be suspect regardless of the accuracy of the classifications on which 

they were based, as quite small errors in classification can lead to quite high errors in LPIs. This 

has implications not only for forest fragmentation statistics, but for wetland and riparian zones as 

well. Many states in the U.S. are currently spending millions of dollars developing GIS 

coverages and other spatial databases to quantify wetland abundance and wetland losses. Even 

simple measures such as “the number of wetlands” and “average wetland size” may require 
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further accuracy assessment in light of the results presented here. Errors in LPIs for all habitat 

types deserve further consideration, particularly as remote sensing data becomes available at ever 

increasing levels of resolution. Such imagery provides an unprecedented opportunity to quantify 

and monitor all habitats, but especially, smaller habitats such as ephemeral wetlands and narrow, 

linear riparian zones which are often missed in routine mapping using coarser scale data sources. 

The linear nature of riparian habitats might render them particularly sensitive to errors in 

classification – as a misclassified pixel or two could shatter one long contiguous patch into 

several smaller patches. While presenting valuable new sources of data at the resolutions needed 

for many ecological applications, spatial measures derived from classifications of such data 

sources must be used with care. A recent review of papers on habitat fragmentation discussed the 

challenges in discriminating the impact of habitat loss from that of habitat fragmentation on 

biodiversity, and found that the impact of fragmentation was weaker and less consistent than that 

of habitat loss (Fahrig 2003). This conclusion is interesting in light of the fact that errors in 

measuring habitat loss are routinely quantified (via classification errors), whereas errors in 

measuring landscape pattern are generally not quantified, and may be substantial. The kinds of 

errors found in LPIs in our study suggest there may be some danger that fragmentation may be 

routinely underestimated as a result of smoothing and we recommend this possibility be 

investigated further.  

In summary, our work shows that the spatial arrangement of classification errors affects 

the amount of error in LPIs. Classification errors often resulted in large errors in LPIs, even at 

classification error rates considered low by the remote sensing community. The amount of map 

classification error is not necessarily a reliable predictor of LPI error. One cannot assume that a 

map with low classification error will produce relatively accurate LPIs. This suggests that the 
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results of any fragmentation study where LPI errors have not been measured may be incorrect, 

and potentially to a large degree. No one would classify an image and then claim that the 

classifications were accurate without testing that claim, yet virtually no study using LPIs derived 

from a classified image actually measures the accuracy of the LPIs derived from those maps. 

More emphasis must be placed on evaluating the sources and spatial nature of error in land cover 

data used for conservation purposes, because over- or under-estimation of the degree of 

fragmentation can have significant impacts on both public policy and scientific conclusions 

related to habitat fragmentation. Simply saying that it is difficult or expensive to measure LPI 

accuracy will not correct erroneous conclusions derived from faulty LPI values. 
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FIGURES 

Figure 1. Examples of simulated ‘correct’ landscapes. Landscapes were designed to represent a 

range of landscape structural features: 3 levels of proportion (20%, 40%, 60% remaining habitat) 

are shown with varying levels of spatial auto-correlation (H = 0.2, 0.5, 0.8). Habitat is shown in 

white, non-habitat background in black. These nine proportions were used in this study, with 3 

levels of autocorrelation, and 10 replicates of each scenario for a total of 270 correct maps. 

Figure 2. Examples of simulated classification errors and smoothing. In this example, a correct 

landscape is shown (40% habitat, H=0.5) at the top. The 'incorrect' map is derived from the 

correct map but with simulated classification errors of 20% at patch edges and 10% in patch 

interiors. Smoothing to remove salt-and-pepper error is shown for 3 minimum mapping units 

(MMU = 2, 4, and 9) whereby all patches smaller than the MMU are reverted to the class of the 

matrix surrounding the patch. 

Figure 3. User's error vs. producer's error for the Incorrect and Smoothed landscapes at different 

MMUs. Top panel shows relationship with habitat proportions labeled and grouped into low (10-

30%) medium (40%-60%) and high (70-90%) levels. Bottom panel shows the same data points 

labeled with the 3 levels of spatial auto-correlation (see Figure 1b for details). Points on 

smoothed landscapes are labeled according to the H level of the corresponding original correct 

landscape. Horizontal and vertical lines on the plots mark 15% user's error and producer's error 

respectively. Figures 4 and 5 only show results from inside this 15% region. 

Figure 4. Values of raw LPIs on Correct base maps vs. Incorrect and Smoothed landscapes 

resulting from pattern analysis using Fragstats. Each graph shows one point for each map that 
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had no more than 15% user's error and producer's error. The x axis shows the measured raw 

LPI value and the y axis shows the correct raw LPI value that the measured value should predict. 

There are 3 rays on each plot. The central one shows the line that would result if there was no 
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Figure 5. Percent LPI Error Relative to the LPI Value for the Correct landscape for four LPIs. 

Each graph shows one point for each map that had no more than 15% user's error and producer's 

error. The x axis shows the user's error and the y axis shows the percent error in the LPI. There 

are 3 lines on each plot. The central line marks the line of no LPI error. As in Figure 4, the other 

two lines show the boundaries of the interval of LPI errors between +15% and -15% for 

reference. Points are shaded according to the H value of the corresponding original correct map. 
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