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Abstract—Unsupervised anomaly detection algorithms search
for outliers and then predict that these outliers are the anomalies.
When deployed, however, these algorithms are often criticized
for high false positive and high false negative rates. One cause
of poor performance is that not all outliers are anomalies
and not all anomalies are outliers. In this paper, we describe
an Active Anomaly Discovery (AAD) method for incorporating
expert feedback to adjust the anomaly detector so that the
outliers it discovers are more in tune with the expert user’s
semantic understanding of the anomalies. The AAD approach
is designed to operate in an interactive data exploration loop.
In each iteration of this loop, our algorithm first selects a data
instance to present to the expert as a potential anomaly and then
the expert labels the instance as an anomaly or as a nominal data
point. Our algorithm updates its internal model with the instance
label and the loop continues until a budget of B queries is spent.
The goal of our approach is to maximize the total number of
true anomalies in the B instances presented to the expert. We
show that when compared to other state-of-the-art algorithms,
AAD is consistently one of the best performers.

I. INTRODUCTION

High accuracy anomaly detection algorithms have the poten-
tial to solve difficult problems in many application domains,
including insider threat detection, biosurveillance, computer
security, data cleaning and scientific discovery. The goal of
anomaly detection is to identify unusual data instances of
interest. More precisely, we define an anomaly to be a data
instance that is generated by a process that is different from
the process generating the “normal” data instances, which we
refer to as nominal instances. Anomalies typically constitute
a small percentage of the data (e.g. 1% or even less).

Since known anomalies are scarce, most anomaly detection
algorithms (eg. [1], [2], [3], [4]) are applied in an unsupervised
setting in which an unlabeled data set is used to build a
model of nominal data instances, even though the data may
be contaminated by a small percentage of anomalies. The top
B outlier instances under the nominal data model are then
identified as anomaly candidates. B is determined by some
combination of the expected anomaly rate and the amount
of human resources available to investigate the anomaly can-
didates. This approach, however, usually leads to high false
positive and false negative rates.

One cause of poor performance is that not all outliers are
anomalies and not all anomalies are outliers. If the distribution
of nominal data points has heavy tails, then many outliers will

be nominal. Conversely, in adversarial situations, the adversary
is trying to mimic the nominal data points, so the anomalies
will be buried in regions of high nominal density. There is
no statistical solution to these problems—the designer of the
anomaly detection system must choose features to mitigate
these problems. Another cause of poor performance is the
difficulty of performing any kind of feature selection in un-
supervised anomaly detection. As most anomaly detection ap-
plications involve high-dimensional feature spaces, this leads
inexorably to poor anomaly detection performance. In this
paper, we describe a method for incorporating expert feedback
to adjust the anomaly detector so that it puts more weight on
relevant features and ignores features that do not correspond
to the expert’s semantic understanding of the anomalies.

We consider an interactive data exploration loop. Initially,
the anomaly detector is applied to an unlabeled dataset. Then,
the anomaly detector presents a data instance to the analyst and
asks the expert to label it as anomalous or nominal. The analyst
labels this instance and the anomaly detector updates its model
with the newly acquired instance labels. The process resumes
with the next iteration presenting another data instance to the
analyst. This process continues until a budget B on the total
number of instances presented to the analyst is spent. Our goal
is to maximize the number of true anomalies presented to the
analyst. For most applications, we expect B < 100.

II. RELATED WORK

We call our approach Active Anomaly Discovery (AAD) to
differentiate it from active learning [5]. In active learning, the
goal is to select the most informative instances for an analyst
to label with the aim of training a classifier that has the highest
predictive performance on unseen data instances. In contrast,
the performance of AAD is not measured by the predictive
ability of the classifier on an unseen test set, but rather by
the total number of anomalies presented to the analyst after
the interactive data exploration loop finishes. Active learning
has been applied to anomaly detection [6], [7], [8], [9] using
a variety of query strategies. A common query strategy (also
used in our approach) is to ask the user to label the instances
which are least likely under the current model [6], [9]. Another
strategy combines uncertainty sampling with querying the
most likely anomalies [7], [8].



Rare category detection (RCD) [10], a field related to
anomaly detection, tries to identify a representative of each
class with as few queries as possible. The user either identifies
an instance as belong to one of K existing classes or to a new,
previously unseen class. AAD can be viewed as a simpler
version of RCD; it places a lighter cognitive burden on the
analyst by only requiring instances to be labeled as anomaly
or nominal rather than placing them into K distinct classes.

Our work is also closely related to Learning to Rank (LTR)
[11]. In LTR, the goal is to learn a ranking function that
can return a total (or partial) order over a set of instances.
One strategy for LTR is based on learning from pairwise
preferences [12], [13], which is a technique that we adapt
to our approach. Recently, loss functions for maximizing
accuracy at the top of the ranked list [14], [15], [16] have
been proposed and we use these loss functions in our work.

III. METHODOLOGY

In our setting, we are given a dataset D with n instances,
D = {x1, . . . ,xn}, where xi ∈ Rd. Each instance i is a tuple
(xi, yi), where xi is a d-dimensional real vector and yi ∈
{anomaly, nominal} is the (hidden) class label. We assume that
there is a large class imbalance, with yi = nominal comprising
the overwhelming majority of the data.

A subset of the class labels is progressively revealed as
the analyst provides the class labels during the interactive
feedback loop. In the first iteration, the model chooses a
data instance xq1 to present to the analyst, and the analyst
provides a class label yq1 for the queried instance. This process
continues until a total of B instances are queried. We represent
the sequence of queries as Xq

B = (xq1,x
q
2, . . . ,x

q
B). The

class labels associated with these instances are provided as
feedback by the analyst. We denote the analyst feedback as
F = ((xq1, y

q
1), (x

q
2, y

q
2), . . . , (x

q
B , y

q
B)).

The goal of our work is to maximize the number of true
anomalies seen by the analyst over the B total instances
presented:

argmax
Xq

B

|{(xqi , y
q
i ) ∈ F : yqi = anomaly}| (1)

Equation 1 cannot be computed because we do not know the
true class labels. To achieve our goal, we greedily select in-
stances to query that our model assigns the highest probability
of being an anomaly. Even though our approach is greedy, we
show that it is very effective in our empirical results.

A. Anomaly Detector

For our anomaly detector, we employ the Loda algo-
rithm [4], which is an ensemble P = {pm}Mm=1 of M
one-dimensional histogram density estimators computed from
sparse random projections. Each projection pm is defined by a
sparse d-dimensional random vector βm, with 1/

√
d randomly

chosen non-zero components, with each value of these non-
zero components drawn from a standard normal distribution.
Loda constructs a one-dimensional density estimator fm by
projecting each data point onto the real line according to

pm(xi) = β>mxi and forming a histogram density estimator
fm. The anomaly score assigned to point xi is the mean
negative log density (mean surprise):

aLodai =
1

M

M∑
m=1

− log(fm(xi)) (2)

We can view Loda as a representation transformation that
converts a data point xi in the d-dimensional feature space into
a log probability vector in M -dimensional real space. Denote
the latter as zi = [− log(f1(xi)), ...,− log(fM (xi))]

T , where
zi ∈ RM . The negative-log-pdf for the entire dataset will
be represented by H = [z1, ..., zn]

>. With this notation and
defining wU = [ 1

M , ..., 1
M ]T ∈ RM , we can write Equation 2

in a more compact form: aLodai = wU · zi.
Loda gives equal weights to all projections and since these

projections are selected at random, it is not guaranteed that
every projection is good at isolating anomalies by itself. Once
the projections have been computed by Loda and fixed, we
propose to integrate analyst feedback by learning a better
weight vector w that assigns higher weights to the more useful
projections and lower to the less useful ones. Our approach is
not restricted to using LODA. Other ensemble methods based
on random projections (e.g. [17]) could also be employed.

B. The top τ -quantile

Internally, our model maintains a list of data instances
ranked by the anomaly score produced by the anomaly de-
tector. We wish to keep the labeled anomalies at the top of
the ranked list, where the top of the list is defined as the top
τ -quantile. The top τ -quantile value of a function h : X → R

is defined as the value qτ : Px(h(x) > qτ ) = τ .
For any τ ∈ [0, 1], let ρτ be defined as:

∀u ∈ R, ρτ (u) = −τ(u)− + (1− τ)(u)+
where, (u)+ = max(u, 0), and (u)− = min(u, 0)

The τ quantile value qτ of a sample of real
numbers {u1, ..., un} can be computed as qτ =
argminu∈R

∑n
i=1 ρτ (ui − u) [18]. This method can be

useful when the quantile value needs to be computed
simultaneously as part of an optimization function.

An alternative (and natural) way to compute the top τ -
quantile value is to sort all values in descending order and
select the τn-th ranked value.

C. Accuracy at the top

We want the scores of all labeled anomalies to be higher
than qτ and the scores of all labeled nominals to be below
qτ . When this property is violated on a specific data instance
(zi, yi), we incur the loss shown in Equation 3, where w is
a vector of weights. Equation 3 is based on the surrogate



empirical loss function defined in the Accuracy at the Top
(AATP) approach [14].

`(qτ ,w; zi, yi) =
0 w · zi ≥ qτ and yi = ‘anomaly′

0 w · zi < qτ and yi = ‘nominal′

(qτ −w · zi) w · zi < qτ and yi = ‘anomaly′

(w · zi − qτ ) w · zi ≥ qτ and yi = ‘nominal′

(3)

The AATP approach in [14] was presented in a supervised
learning setting, meaning that it typically expects all pair-
wise preferences between relevant and irrelevant items to be
available during training. In contrast, all pairwise preferences
between anomalies and nominals are not available in our initial
dataset and we typically only obtain a small subset of these
pairwise preferences when instance labels are revealed. As
a result, the loss in Equation 3 needs to be computed by
summing up the loss over the instances in the labeled feedback
set HF , i.e., the instances labeled by the analyst. The weights
w that minimize the overall loss can be computed as:

w = argmin
w

( ∑
zi∈HF

`(qτ ,w; (zi, yi))

)
s.t., qτ = argmin

u

∑
zi∈H

ρτ (w · zi − u) (4)

Equation 4 is not convex because the equality constraint is
not affine [14]. This makes joint inference of w and qτ hard.
As an alternative, we solve for w and qτ separately. The steps
are shown below, with w(t−1) denoting the value of w from
iteration (t− 1).

1) Solve qτ = q̂τ (w
(t−1)) using the (fixed) value of

w(t−1). We compute q̂τ (w(t−1)) by ranking the anomaly
scores given w(t−1).

2) Compute w(t) using Equation 4 keeping qτ =
q̂τ (w

(t−1)) fixed.
Under this approach, there is no guarantee that q̂τ (w(t−1))
still remains the τ -th quantile score under the new value w(t).
Nevertheless, this approximation was performed in [14] and
shown to produce reasonable results.

D. Objective Function

A straightforward application of the AATP approach pro-
duces the objective function in Equation 4. However, even
with the approximation with q̂τ (w), Equation 4 needs to
be further modified in order to satisfy our goal. Our overall
objective function is shown in Equation 5 and we discuss the
four necessary modifications below.

The modifications to Equation 4 are as follows. First, we
divide the labeled dataset HF into the set of labeled anomalies
HA and the set of labeled nominals HN . We then introduce
a weight CA that causes the loss for anomalies in HA to be
higher than that associated with nominals.

Second, we use soft pair-wise constraints [12] to encourage
labeled anomalies to have higher scores than labeled nominals.
Since we assume that the number of instances labeled by a user

would be limited by a small budget (e.g., < 100 queries), the
resulting optimization can be solved in under a few minutes
of running time on most modern computers.

Third, the proximal factor ‖w −wp‖2 avoids a degenerate
solution of w = 0 and keeps the learned weights close to
the uniform weights of Loda. The Loda algorithm has been
shown to perform well as an anomaly detector [4] and we
want to adjust but not make drastic changes to an otherwise
good model.

Finally, we introduce the τ -th ranked instance (under the
current model) as a proxy anomaly when there are only labeled
nominals and no labeled anomalies. This ensures that the
known nominals and instances which are similar to them are
forced lower in ranking due to pair-wise constraints while
other potential anomalous instances rise to the top.

w(t) =argmin
w,ξ

CA
|HA|

( ∑
zi∈HA

`(q̂τ (w
(t−1)),w; (zi, yi))

)

+
1

|HN |

( ∑
zi∈HN

`(q̂τ (w
(t−1)),w; (zi, yi))

)
+ ‖w −wp‖2 + Cξ

∑
i,j

ξij (5)

s.t.,
(zi − zj) ·w + ξij ≥ 0 ∀zi, zj : zi ∈ H′A, zj ∈ HN ,

ξij ≥ 0

where, wp = wU

‖wU‖ = [ 1√
m
, . . . , 1√

m
]T , q̂τ (w(t−1)) is com-

puted by ranking anomaly scores using w(t−1) and,

H′A =

{
{xτ} when HA = ∅
HA when HA 6= ∅

(xτ is the τ -th quantile proxy anomaly instance)

E. Active Anomaly Discovery (AAD)

Algorithm 1 describes the active learning loop for our
approach. Note that we ask the analyst to label the top ranked
instance that has not already been labeled.

IV. RESULTS

A. Experimental Setup

Since our objective is to maximize the number of true
anomalies presented to the analyst, we plot the total number
of true anomalies discovered against the number of queries
presented to the user. We call this plot an anomaly discovery
curve. Ideally, this curve climbs as quickly as possible. In
our experiments we assume that the user is an oracle that
labels instances correctly. We compare the results of our
proposed algorithm against four other algorithms on nine
different datasets. The algorithms we compare against are:

1) Baseline: For the baseline, we present instances in
decreasing order of anomaly score computed with the original
Loda algorithm (i.e. with uniform weights). This baseline
captures the performance of an unsupervised anomaly detector
that does not incorporate expert feedback.
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(b) ANN-Thyroid-1v3
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(c) Yeast
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(d) Covtype-sub
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(e) KDD-Cup-99-sub
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(f) Shuttle-sub
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(h) Cardiotocography
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Fig. 1. The total number of true anomalies seen vs. the number of queries for all datasets. Total number of queries for the smaller datasets (top two rows)
is 60. Total number of queries for the larger datasets (bottom row) is 100.

2) Semi-supervised Anomaly Detector (SSAD): The algo-
rithm proposed by [8] encodes labeled anomalies and nom-
inals as constraints and does not need any labeled data to
initialize. The best performing query strategy for SSAD was
demonstrated to be the combination strategy called margin and
cluster [8]. In our experiments we refer to SSAD using this
strategy as SSAD-MC. For comparison, we also include in
our experiments the query strategy that selects the top ranked
anomaly instance for feedback (SSAD-Top).
3) AI2: AI2 [9] is a system that incorporates analyst feedback
for detecting malicious attacks on information systems. It is
comprised of an ensemble of unsupervised outlier detection
methods and a supervised learning algorithm. In our im-
plementation of AI2 we use Loda’s random projections as
the unsupervised ensemble members, and for the supervised
algorithm we use L1-regularized Logistic Regression. In our
experiments we use a batch size of 2, meaning AI2 queries
the user with one instance suggested by the ensemble of

unsupervised algorithms and an instance suggested by the
supervised algorithm (if such an instance is available).
4) ATGP: Grill and Pevny [16] propose a supervised algorithm
that is also based on maximizing accuracy at the top. Unlike
our approach, ATGP does not add pair-wise constraints and
it uses a simple gradient approach for inferring the detector
weights.

In our experiments, we used the Mammography [19] dataset
as well as seven datasets from the UCI repository [20]:
Abalone, Cardiotocography, Thyroid (ANN-Thyroid), Forest
Cover (Covtype), KDD-Cup-99, Shuttle and Yeast. The number
of true anomalies and true nominals in each dataset are
shown in Table I. Our implementation of all algorithms and
the datasets in our experiments are available online1. For
SSAD we used the code made available by the authors2.

1(https://github.com/shubhomoydas/aad.git)
2(https://github.com/nicococo/tilitools)



Algorithm 1: Active Anomaly Discovery (AAD)
Data: Raw data D, negative-log-pdfs H, budget B
Initialize the weights w(0) = { 1√

m
, ..., 1√

m
}

Set t = 0, HA = ∅, HN = ∅
while t ≤ B do

t = t+ 1
Set a = H ·w (i.e., a is the vector of anomaly

scores)
Let xi = instance with highest anomaly score (where
i = argmaxi(ai))

Let zi = negative log probability vector
corresponding to xi

Get feedback {‘anomaly′/‘nominal′} on xi
if xi is anomaly then

HA = {zi} ∪HA

else
HN = {zi} ∪HN

end
1 w(t) = compute new weights; normalize ‖w(t)‖ = 1

end

This implementation requires an n × n kernel matrix and
therefore does not scale to large datasets. Therefore, for
the larger datasets (Covtype, KDD-Cup-99, Mammography,
Shuttle) we also include results from a smaller version of
the original dataset which was created by sub-sampling 2000
data instances and keeping the ratio of anomalies to nominals
roughly the same as in the original dataset. These sub-sampled
datasets are named *-sub (Table I). For the Cardiotocography
dataset we retained all instances from the nominal class as in
the original dataset, but down-sampled the anomaly instances
so that they represent only around 2% of the total data. The rest
of the datasets were used in their entirety by all algorithms.
SSAD is deterministic and was therefore run once per dataset.
Since AAD and AI2 are randomized, their results were
averaged across 10 runs for each dataset. The 95% confidence
intervals from these 10 runs are plotted on the curves as error
bars. In Table I, the number of dimensions of each dataset
(under the ‘Dim’ column) includes the additional dimensions
added after performing the standard transformation of multi-
class categorical variables into multiple binary variables using
dummy coding.

For AAD, we set the parameters τ = 0.03, CA = 100, and
Cξ = 1000 by default for all datasets. AAD is not sensitive
to τ over a wide range of values [0.01, 0.10], or to CA. It
generally performs well for Cξ > 1.

Instead of tuning the parameters Cu and Cn in SSAD, we
give it an advantage by reporting only the best results across all
combinations of values ∈ {0.01, 0.1, 1.0, 10.0, 100.0}, chosen
after running the experiments. We fixed κ = 1 as was set in
[8] and used the RBF kernel.

The top two rows in Figure 1 compare the performance
of all algorithms on the smaller datasets and the sub-sampled
datasets. The bottom row in Figure 1 compares the perfor-

mance of all algorithms except SSAD on the full versions of
the larger datasets. These results show that the AAD curve
is consistently one of the best performers across all datasets
and it always performs better than its baseline. Although AAD
and ATGP are similar algorithms, ATGP performs worse than
AAD on most datasets. Our hypothesis is that even though
both AAD and ATGP are non-convex and therefore prone to
local optima, the pair-wise constraints likely restrict AAD to
better parts of the parameter space.

Shuttle is the easiest dataset having the highest percentage
of anomalies discovered. For this dataset, almost all instances
ranked at the top by the baseline Loda are true anomalies.
Therefore, querying the top ranked instance is very effec-
tive for AAD and AI2. Surprisingly, SSAD-Top, which also
queries instances ranked at the top by SSAD, discovers fewer
anomalies than SSAD-MC. We hypothesize that this might
be due to the presence of clustered anomalies in the Shuttle
dataset, which SSAD-MC is able to exploit more than AAD.
AI2 performs better than AAD on Covtype-sub and when

the number of queries is near the end of the budget on Yeast.
AI2 performs poorly on the full Covtype dataset, which is
nearly 100 times larger than Covtype-sub. The unsupervised
and supervised parts of AI2 struggle initially to find true
anomalies in this much larger dataset, resulting in poor per-
formance with a relatively small budget of 100.

V. DISCUSSION

AAD is based on the intuitive concept that scores assigned
to labeled anomalies should be in the top τ -quantile of all
scores while scores assigned to nominals should be below.
It makes efficient use of analyst feedback to fine-tune the
behavior of a reasonably good unsupervised anomaly detector.

Most commonly reported performance metrics like area
under the ROC curve (AUC), average precision (APR), and
lift are computed over the entire (often large) dataset and
assume that the analyst is willing to investigate every instance.
Precision at top k (precision@k) can be used to evaluate the
internal ranked list of anomalies after B queries are expended
but it fails to account for wasted effort by the analyst when
investigating (and labeling) false positives during the data
exploration loop. In contrast, the goal of AAD is to maximize
the number of true anomalies inspected by the analyst over
the B queries.

When the number of false positives among reported anoma-
lies is high, it often discourages users from even getting
started with initial exploration. This also causes severe class
imbalance when supervised techniques are involved (e.g. [21],
[9]). In the extreme case, supervised algorithms are likely to
face a cold start problem where there are no anomalies in the
initial labeled set. In contrast, AAD can usefully incorporate
expert feedback even when that feedback only consists of
labels for nominal instances. This behavior is due to the fact
that AAD relies on an internal ranking model and it attempts
to push nominal instances below the top τ -th quantile. AAD
can also be used to quickly generate the initial labeled set and
bootstrap the supervised methods.



TABLE I
DATASETS

Dataset Nominal Class Anomaly Class Total Dims # anomalies(%)
Abalone 8, 9, 10 3, 21 1920 9 29 (1.5%)
ANN-Thyroid-1v3 3 1 3251 21 73 (2.25%)
Cardiotocography 1 (Normal) 3 (Pathological) 1700 22 45 (2.65%)
Covtype 2 4 286048 54 2747 (0.9%)
Covtype-sub 2 4 2000 54 19 (0.95%)
KDD-Cup-99 ‘normal’ ‘u2r’, ‘probe’ 63009 91 2416 (3.83%)
KDD-Cup-99-sub ‘normal’ ‘u2r’, ‘probe’ 2000 91 77 (3.85%)
Mammography -1 +1 11183 6 260 (2.32%)
Mammography-sub -1 +1 2000 6 46 (2.3%)
Shuttle 1 2, 3, 5, 6, 7 12345 9 867 (7.02%)
Shuttle-sub 1 2, 3, 5, 6, 7 2000 9 140 (7.0%)
Yeast ‘CYT’, ‘NUC’, ‘MIT’ ‘ERL’, ‘POX’, ‘VAC’ 1191 8 55 (4.6%)

In future work, we will investigate four directions with
AAD. First, we would like to speed up the running time by
scaling up the constraint optimization problem in Equation 5.
Second, we would like to solve for the values of qτ and
w simultaneously rather than approximating them by solving
them separately. Third, we will explore applying AAD to
ensembles of heterogeneous detectors (e.g. [21], [9]) as an
alternative to having each ensemble member focus on a
particular subspace. Finally, we will explore query strategies
that can look ahead further than the current myopic approach
(i.e. querying the current most anomalous instance).

VI. CONCLUSION

We have introduced AAD, which is a simple algorithm that
helps an analyst quickly discover anomalies in a dataset. AAD
maintains an internal ranking of data instances according to
their anomaly scores as computed by the LODA algorithm,
which is an ensemble approach to anomaly detection. When
AAD receives labeled instances, it adjusts the weights of its
ensemble members such that false positives get pushed lower
in its internal ranking model while true anomalies bubble
up with each labeled instance provided by the expert. Our
experiments show that AAD is consistently one of the best
performing algorithms.
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