
Learning Probabilistic Behavior Models in Real-time Strategy Games

Ethan Dereszynski and Jesse Hostetler and Alan Fern and Tom Dietterich
Thao-Trang Hoang and Mark Udarbe

School of Electrical Engineering and Computer Science
Oregon State University
Corvallis, Oregon 97331

Abstract

We study the problem of learning probabilistic models of
high-level strategic behavior in the real-time strategy (RTS)
game StarCraft. The models are automatically learned from
sets of game logs and aim to capture the common strategic
states and decision points that arise in those games. Unlike
most work on behavior/strategy learning and prediction in
RTS games, our data-centric approach is not biased by or
limited to any set of preconceived strategic concepts. Further,
since our behavior model is based on the well-developed and
generic paradigm of hidden Markov models, it supports a va-
riety of uses for the design of AI players and human assis-
tants. For example, the learned models can be used to make
probabilistic predictions of a player’s future actions based
on observations, to simulate possible future trajectories of a
player, or to identify uncharacteristic or novel strategies in a
game database. In addition, the learned qualitative structure
of the model can be analyzed by humans in order to cate-
gorize common strategic elements. We demonstrate our ap-
proach by learning models from 331 expert-level games and
provide both a qualitative and quantitative assessment of the
learned model’s utility.

Introduction
Models of player behavior in real-time strategy (RTS) do-
mains are of significant interest to the AI community. Good
models of behavior could improve automated agents, for
example by augmenting the strategy representations used
in some architectures (Aha, Molineaux, and Ponsen 2005;
Ontañón et al. 2007) or guiding the Monte-Carlo simula-
tions of an opponent (Chung, Buro, and Schaeffer 2005;
Balla and Fern 2009). They could be incorporated into in-
telligent assistants that help human players reason about the
state of the game and provide predictions about an oppo-
nent’s future actions. They could also be used in the analysis
of game play, to automatically identify common strategic el-
ements or discover novel strategies as they emerge.

In this paper, we focus on learning probabilistic models
of high-level strategic behavior and the associated task of
strategy discovery in the RTS game StarCraft. By “strategy,”
we mean a player’s choice of units and structures to build,
which dictates the tone of the game. Our models are learned

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

automatically from collections of game logs and capture the
temporal structure of recurring strategic states and decision
points. Importantly, our models facilitate the use of gen-
eral probabilistic reasoning techniques, which makes them
directly applicable to any of the tasks mentioned above. In
particular, in this paper we demonstrate that our models can
be used to categorize strategic play, identify uncharacteris-
tic strategies, and make predictions about a player’s future
actions and the progression of future game states.

The most obvious use of a strategy model is for strat-
egy prediction. The objective is to use features of the
game state to predict the opponent’s future actions. Sev-
eral researchers have studied strategy prediction. Schadd,
Bakkes, and Spronck (2007) developed a hierarchical op-
ponent model in the RTS game Spring. At the top level,
players were classified as either “aggressive” or “defensive”
based on the frequency of attacks. At the bottom level, play-
ers were classified into specific strategies by applying hand-
coded rules to the observed counts of the opponent’s units.
Weber and Mateas (2009) examined strategy prediction in
StarCraft using supervised learning techniques to classify
an opening build order into a set of handcrafted categories.

To build a predictive strategy model, one first has to de-
fine the possible strategies. The utility of the model depends
heavily on the degree to which the chosen strategy labels
are informative. In the prediction work described so far,
the choice of labels was made by the designers, drawing
on their knowledge of the game. A potential weakness of
handcrafted labels is that they may be biased toward strate-
gies that are well-known or easy to describe, rather than
those that have high predictive or strategic value. They can
also be vague, failing to capture the variation in the behav-
ior they are describing. For example, the label “rushing” is
often used to describe early aggression in RTS games, but
the timing and composition (number and types of military
units) of the aggression varies widely between games, and
demands different counter-strategies. To be useful for in-
forming gameplay, a strategy model must make predictions
about the specific threats that a player is likely to face.

In contrast to the manual specification of labels, strategy
discovery seeks to learn a set of labels by revealing recur-
ring patterns in gameplay data. This data-driven approach
avoids the potential biases of engineered labels. On the con-
trary, it has the potential to expand the understanding of

strategic play and even recognize novelties. Relatively little
work has been done in this direction. Perhaps most similar
to our approach, Hsieh and Sun (2008) represent strategies
as paths through a lattice. Nodes in the lattice correspond to
counts of different units, buildings, and researched technolo-
gies. Using hundreds of StarCraft games, the authors learn a
transition model between nodes (i.e., the next unit or build-
ing to be constructed given the current state). Although this
model represents technology dependencies and build orders
nicely, it cannot predict the timing of future events (Weber
and Mateas 2009) because it does not model time.

Our approach to strategy discovery models a player’s
strategy as a sequence of hidden states that evolves over
time. Each state encodes a set of preferences for building
units and structures of different types. At regular time inter-
vals, the player can move from one state to another accord-
ing to a set of transition probabilities. The building prefer-
ences of each state and the probabilities of transitioning be-
tween states are learned from the data. Specific strategies
manifest themselves as high-probability trajectories through
the states. Our approach is distinguished by the combina-
tion of three key attributes. First, we learn our strategy vo-
cabulary directly from data. Second, our model incorporates
time, allowing us to predict when future events will occur
and to use knowledge of the timing of observed events to
inform our beliefs. Third, because we use a probabilistic
model, we can formulate the prediction task as probabilis-
tic inference, which allows us to quantify the uncertainty in
the answers.

The remainder of this paper is organized as follows. In the
next section, we introduce our representation of the game
state and strategies, describe our encoding of the game state
as a Hidden Markov Model, and explain how this model
is learned from data. Then we evaluate our model on Star-
craft gameplay logs and produce a qualitative analysis of the
learned model. We interpret the learned states in the context
of well-known Starcraft strategies and evaluate our model’s
predictive performance on StarCraft games. We conclude
with some directions for future work in this domain.

Representation and Modeling
At each point in time, we model the player as being in one of
K possible states. Each state has an associated set of pref-
erences for what types of units to construct. As the player
plays the game, he or she is modeled as moving from one
state to another and building units according to the states
that he or she visits. Hence, we can describe the player’s
strategy as a trajectory through a state space.

We divide the game into a sequence of 30-second inter-
vals, and we summarize each interval t by a binary observa-
tion vectorOt = (Ot

1, . . . , O
t
U), whereU is the total number

of types of units (“Zealot”, “Reaver”, “Cybernetics Core”,
etc.), and Ot

u is 1 if at least one unit of type u was con-
structed during interval t and 0 otherwise. In this first inves-
tigation, we focus on modeling the initial seven minutes of
each game, so there are 14 time steps (and observation vec-
tors) per game. We use only the first seven minutes because
in the early game, players execute their strategies in relative
isolation, whereas later in the game, actions are increasingly

… …1
0
tO − 1t

UO −
0
tO 1

tO t
UO

1tS − tS

1
1
tO −

Figure 1: Two-slice representation of the HMM. Squares indicate
random variables and arrows denote a conditional relationship be-
tween variables.

dictated by tactical considerations such as the composition
of the opponent’s army or the outcomes of key battles.

An important quality of our model is that the hidden states
and transitions between them are not defined in advance.
Instead, we apply statistical learning to discover the set of
states that best explains the data. Because the model is not
sufficient to capture all aspects of StarCraft and because
players must randomize their play to avoid being too pre-
dictable, we formulate this model probabilistically using the
well-known Hidden Markov Model (HMM) formalism (Ra-
biner 1990). Such a probabilistic model can capture the like-
lihood of different strategy choices and also the probability
that the player will produce particular units in each state.

Figure 1 shows a two-timestep slice of the HMM. The
nodes labeled St−1 and St represent the player states at
times t−1 and t respectively and take values in {1, . . . ,K}.
The remaining nodes represent observations as defined
above. An arrow from a parent to a child node indicates that
the value of the parent probabilistically influences the value
of the child. The model captures two types of probabilistic
dependencies: the transition probabilities and the observa-
tion (or build) probabilities. The transition probability dis-
tribution P (St|St−1) specifies the probability that the player
will make a transition from state St−1 to state St. For each
possible value of St−1 (i.e., one of {1, . . . ,K}), this prob-
ability is a multinomial distribution, P (St|St−1 = k) ∼
Multinomial(αk

0 , α
k
1 , . . . , α

k
K), where αk

k′ is the probability
of transitioning from state k to state k′. This distribution is
time invariant, meaning that it is the same for any value of t
and thus does not depend on the absolute time.

The observation distribution P (Ot|St) is the probabil-
ity that we will observe the unit production vector Ot =
(Ot

1, . . . O
t
U) at time t given that the player is in state St.

We model the production of each unit type as a biased coin
(Bernoulli random variable) whose probability of being 1
is denoted by θku: P (Ot

u|St = k) ∼ Bernoulli(θku). A
Bernoulli distribution captures the distinction between pro-
ducing or not producing a particular unit. This distinction
is generally more informative of a player’s strategy than
knowing the amount of the unit produced beyond one. The
model assumes that the production probabilities of differ-
ent unit types are conditionally independent given the cur-
rent state, which implies that the joint observation distribu-
tion is just the product of the individual unit probabilities:
P (Ot|St = k) =

∏
u P (Ot

u|St = k). Like the transition
distribution, the observation distribution is time-invariant.

To complete the HMM, we define the probability of start-
ing in state k at time t = 0. This is modeled as a multino-

mial (K-sided die): P (S0) ∼ Multinomial(β0, β1, . . . , βK).
Putting everything together, our overall behavior model is
described by the concatenation of all model parameters Φ =
(α1

1, . . . α
K
K , β0, . . . , βK , θ

1
1, . . . , θ

K
U).

Probabilistic Inference
Given an HMM, it is possible to efficiently answer many
types of probabilistic queries about the model variables. The
scope of this paper precludes details of the inference algo-
rithms. However, we can say that most queries of interest,
including the ones used in this work, have a time complexity
that scales linearly in the sequence length and quadratically
in the number of states. Typically a query will be in the con-
text of certain observations, which specify concrete values
for some of the variables in the HMM, and the task is to in-
fer information about the values of certain other unobserved
variables. For example, a predictive query may take the form
P (Ot+d

u = 1|O0, O1, . . . , Ot) for d = 1, . . . , T − t, which
can be interpreted as, “Given what I have seen up to time t,
what is the probability that my opponent will produce unit u
exactly d intervals from now?” Importantly, such queries can
be asked even when the values of some previous observation
variables are unknown, for example due to limited scouting
in an RTS game. As another example, HMMs can be applied
to infer the most likely state sequence given an observation
sequence. This allows us to infer the most likely strategy
of a player based on observations, which can be useful for
analysis and indexing purposes. Our experiments employ the
above types of queries among others.

Learning
The model is learned from a set of training games. Each
game is represented by a sequence of observation vectors
~X =

[
O1, O2, . . . , OT

]
, where Ot = (Ot

1, . . . , O
t
U) is the

binary observation vector of the production in interval t.
The parameters of the HMM are learned using the Expec-
tation Maximization (EM) algorithm (Dempster, Laird, and
Rubin 1977; Rabiner 1990; Murphy 2002). EM is a local-
search algorithm that maximizes the probability of the ob-
servations given the model parameters, P (~X|Φ). This quan-
tity is known as the likelihood of the training sequence ~X .
The α and β parameters are initialized to 1/K, and the θ pa-
rameters are initialized to random values drawn uniformly
from the [0,1] interval. EM is iterated until convergence.

Experiments
We validate our approach by learning a model of the strate-
gies of Protoss players in Protoss vs. Terran match-ups and
assessing its utility. While our method can be applied to
any playable race and match-up, providing reasonable dis-
cussion of all permutations is beyond the scope of this pa-
per. We first describe how our data were collected, and give
a qualitative analysis of the learned model and the discov-
ered strategies. Then, we provide a quantitative analysis of
the model’s ability to predict future game states. Lastly, we
use the model to identify unlikely sequences of states corre-
sponding to novel strategies or erratic player behavior.

Data Collection and Model Selection
We collected 331 Protoss vs. Terran replays from the “Team
Liquid”1 and “Gosu Gamers”2 websites. Both websites con-
tain large archives of replays from expert players, including
some South Korean professionals. The BWAPI library3 was
used to extract counts of the units owned by each player. For
each game, the first 10,800 frames (∼ 7min) of gameplay
were extracted and divided into fourteen 720-frame (∼ 30s)
non-overlapping intervals. For each interval, the total num-
ber of units of each of 30 possible unit types produced by the
Protoss player was counted and the counts collapsed into a
vector of binary production values.

The main design decision in constructing an HMM is
the choice of the number K of hidden states in the model.
We compared several choices for K using five-fold cross-
validation. In this process, the data is split into 5 non-
overlapping blocks each containing 20% of the games. For
each fold, 4 blocks are used for learning Φ, and the likeli-
hood P (~X|Φ) is computed on the remaining held-out block.
The likelihood is averaged over all five folds. In learning the
model, we discarded the Probe and Pylon unit types, because
they are produced in almost every time step and, hence, do
not provide any useful information.

We evaluated models for K = 18, 21, 24, 27, and 30. We
found no significant difference in likelihood across all sizes.
The learned building preferences in the 30-state model best
matched the intuition of our domain experts, so this model
was selected. After model selection, all 331 games were
used to fit the model parameters.

Model Analysis
Figure 2 depicts the state transition diagram learned by the
model. Thicker edges correspond to higher transition proba-
bilities, and all except a few edges with probability less than
0.25 have been removed for clarity. The labeled boxes sur-
rounding groups of nodes represent our interpretations of the
strategies embodied by the states inside each box.

States with a single, high-probability out-edge have high
predictive power. Knowing that our opponent is in State 15,
for example, is strong evidence that the next state will be
State 14, and the one after that State 19. This sequence cor-
responds to the well-known Reaver drop strategy, 4 in which
the Protoss player sacrifices early economic power to pro-
duce a powerful attacking unit and an airborne transport to
carry it. The goal is to drop the Reaver off at the rear of our
base and use it to destroy our workers. A successful Reaver
drop can end the game in seconds by crippling our economy,
but its success depends on surprise. If we believe that the op-
ponent is in State 15, we can predict with high confidence,
more than a minute in advance, that he intends to produce a
Reaver. This advance knowledge is a tremendous advantage.

The model has learned two other high-probability se-
quences: the three states labeled “Early Game” and the four
states labeled “Dark Templar.” In the early game, there are

1http://www.teamliquid.net/replay/
2http://www.gosugamers.net/starcraft/replays/
3http://code.google.com/p/bwapi/
4http://wiki.teamliquid.net/starcraft/1 Gate Reaver

Early game

Dragoon + Gateway

Robotics Facility

Reaver drop

Observatory

Dragoon + Observer

Early Expand

Dark Templar

Arbiter tech

ExpandS8
Probes
... Gate

S28
Assimilator

S26
Cyber

S23
Just

Dragoons

S4

S14
Support Bay /

Shuttle

S2
+Goon

S9

S1
S0

+Gate

S29
Goon /
Citadel

S15
Shuttle

S19
Reaver

S10
+Goon

S17
+Goon

S7

S25
+Nexus

S16
+Gate

S12

S27
+Goon +Citadel

S24
+Citadel

S21
+Zealot

S11
+Goon

S18
Archives

S5
Dark Templar

S13
CitadelS3S20

S22
+Gate

S6
Observer /
Stargate

Figure 2: The state transition diagram learned by the model. Thicker edges denote larger transition probabilities (e.g., the edge from S20 to
S16 has probability 1.0). The solid edges all have probability at least 0.25. Additional dotted edges (with probabilities of 0.05-0.15) are shown
so that every node is reachable. State 8 is the initial state. The labeled boxes around groups of nodes are our interpretation of the strategy
represented by those states. When a box is labeled with a unit type (such as “Observatory”), that unit type was likely to be produced in all
states within the box.

few choices to make, and it is no surprise that most play-
ers in our training set built about the same units at about the
same times. The “Dark Templar” cluster captures a second
specialist strategy in which the goal is to attack with Dark
Templar, a type of unit that is invisible to enemies unless
a unit with the Detector ability is nearby. Like the Reaver
drop, this strategy can end the game immediately if we are
not prepared, but is easy to repel if we anticipate it.

The state diagram also features some states that have mul-
tiple out-edges with similar probability. In these states, we
can narrow the Protoss player’s next state down to a few pos-
sibilities, but have no reason to favor any one of them. This
ambiguity indicates that it is a good time to send a scout to
observe what our opponent is doing. Suppose that we believe
that our Protoss opponent is in State 4. There is a high prob-
ability that his next state is either State 2 or State 14. In State
2, he will build an Observatory with probability nearly 1. In
State 14, on the other hand, he will build a Robotics Sup-
port Bay with probability more than 0.9, but almost never an
Observatory. Thus, if we send a scout during the next time
interval and see an Observatory, we know that our opponent
is most likely in State 2, pursuing a standard Observer open-
ing. However, if our scout sees a Support Bay, we know our
opponent is in State 14, going for a Reaver drop.

Prediction
As described earlier, prediction is handled in our model
through probabilistic inference. We examine the results of
two types of queries applied to a particular game involving
a Reaver drop strategy. Query “A” is of the form P (Ot+d

u =
1|O0, O1, . . . , Ot). This query asks, “Given the observed
production from times 0 to t, what is the probability that my
opponent will produce unit type u exactly d intervals from
now?” Query “B” is P (Ot:T

u 6= 0|O0, O1, . . . , Ot−1) and
asks “Given what I have seen up through t − 1, what is the
probability that my opponent will produce at least one unit
of type u at any point in the future?”

Figure 3 shows the results of these queries for 2 dif-

ferent unit types—the Protoss Reaver and Observer. The
barplots show the results of Query A after observing the
game up to times t = 5, 7, 9, and 11, respectively. For ex-
ample, barplot (1) has observations up to t = 5 (indicated
by the black vertical line), and gives the build probabili-
ties for Reavers and Observers in each time interval t > 5.
The captions in each plot contain the result of Query B (la-
beled P (Reavert:13|O0:t−1)) asked at time t. The captions
also give a running record of the observations made so far.

In (1), Query A with the 6 initial observations shows that
a Reaver (green bar) is unlikely (< 0.05) to be made at any
future time. However, when we see the Robotics Facility in
(2), the probability of a future Reaver rises. The probability
is still small because the Robotics Facility may indicate pro-
duction of a much more common unit, the Observer (blue
bar). In (2), we can interpret the green bar peaking at t = 10
as the model suggesting that, if a Reaver is built, it is most
likely to be built 3 intervals from now. The delay is predicted
because the transition model enforces that a Support Bay
state must be visited before moving to a Reaver-producing
state (e.g., the path S1 → S4 → S14 → S19 in Figure 2).
This query has thus successfully identified the time at which
the Reaver was actually built as the most likely—1.5 min-
utes before its construction. Once we observe the Support
Bay in (3), our confidence that a Reaver is coming in the
next time interval jumps to 0.77 (near-certainty). When we
finally see the Reaver constructed at t = 10 (4), our belief
that another Reaver will be made by the end of the 7-minute
game plummets. The model has learned that a self-transition
to the Reaver production state is unlikely, which suggests
that players rarely make two of this expensive unit. In (1),
Query B tells us that, with little initial evidence, we expect
the opponent to build a Reaver in about 24% of games. Once
the Support Bay is seen (3), Query B matches Query A.

Observers (blue bar) are a commonly-produced unit in
Protoss vs. Terran, which is evident from Query B in (1)
yielding 0.64 probability at t = 5. Once we see the Robotics
Facility (which produces both Reavers and Observers) in (2),

0 1 2 3 4 5 6 7 8 9 10 11 12 13
30−Second Interval (t)

P
ro

b
a

b
ili

ty
0

.0
0

.2
0

.4
0

.6
0

.8
O2=[Gateway]
O3=[Assimilator]
O4=[Cybernetics Core]
O5=[Dragoon]
P(Reaver6:13 | O0:5) = 0.24
P(Observer6:13 | O0:5) = 0.64

(1)

P(Reavert | O0:5)
P(Observert | O0:5)

0 1 2 3 4 5 6 7 8 9 10 11 12 13
30−Second Interval (t)

P
ro

b
a

b
ili

ty
0

.0
0

.2
0

.4
0

.6
0

.8

O6=[Dragoon]
O7=[Robotics Facility, Gateway]
P(Reaver8:13 | O0:7) = 0.28
P(Observer8:13 | O0:7) = 0.68

(2)

P(Reavert | O0:7)
P(Observert | O0:7)

0 1 2 3 4 5 6 7 8 9 10 11 12 13
30−Second Interval (t)

P
ro

b
a

b
ili

ty
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

O8=[Dragoon]
O9=[Zealot, Shuttle, Support Bay]
P(Reaver10:13 | O0:9) = 0.80
P(Observer10:13 | O0:9) = 0.78

(3)

P(Reavert | O0:9)
P(Observert | O0:9)

0 1 2 3 4 5 6 7 8 9 10 11 12 13
30−Second Interval (t)

P
ro

b
a

b
ili

ty
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

O10=[Dragoon, Reaver]
O11=[Nexus, Observatory]
P(Reaver12:13 | O0:11) = 0.0
P(Observer12:13 | O0:11) = 0.95

(4)

P(Reavert | O0:11)
P(Observert | O0:11)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curve

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

x

x

x
x

x
x

x
x

x x x

●

●

●

●

● ●

●
● ● ● ●

X
●

P(Reaver6:13 | O0:5), AUC = .645
P(Reaver7:13 | O0:6), AUC = .739
P(Reaver8:13 | O0:7), AUC = .782
Random Guessing

ψ=.2
ψ=.0

ψ=1.0

Figure 3: Top (Barplots): the prediction results for Query A ap-
plied to Reaver and Observer units for a single game. Bottom: the
ROC curve for the Reaver-prediction task over all games (5-fold
cross validation).

Query A expects an Observer three time-steps later at time
10. In this game, however, the Protoss player is pursuing
a Reaver drop and will be delayed in building Observers.
When the Reaver strategy becomes obvious after the Sup-
port Bay is built in (3), the probability of an Observer in
the immediate horizon decreases. We cannot predict an Ob-
server confidently until we see its precursor building, the
Observatory, constructed at t = 11. After an Observer is
built at t = 12 (not shown), we maintain significant belief
(> 0.6) that another Observer will be built in the final time
step. Unlike the Reaver, Protoss players often produce sev-
eral Observers to spy on their opponents.

To assess the overall prediction accuracy of our models,
we computed receiver operating characteristic (ROC) curves
(Figure 3, bottom) for predicting (at times 5, 6, and 7) future
production of a Reaver (Query B). If the predicted proba-
bility exceeds a threshold, ψ, we predict that a Reaver will
be built in the future. The curve is created by varying ψ
from 0.0 to 1.0. The horizontal axis (False Positive Rate;
FPR) is the fraction of false positive predictions (i.e., frac-
tion of times a Reaver was predicted when none was built);
the vertical axis shows the True Positive Rate (TPR). FPR
and TPR are computed from the 5-fold cross validation. The
area under the ROC curve is equal to the probability that a
randomly-chosen Reaver-containing game is ranked above a
randomly-chosen Reaver-free game. The diagonal line cor-
responds to random guessing, and the area under it is 0.50.

Of the three type B queries given, the third query (based
on evidence up to t = 7; diamond-line curve) performed
the best. Using ψ = 0.2 as a threshold, a true positive rate
of 0.725 was achieved while keeping a FPR of 0.272. Time

Stargate

Carrier

Robo

Anomaly #1
(Carrier Rush)
Anomaly #2
(Cannon Rush)

Figure 4: Cluster transitions for 4 typical games and 2 atypi-
cal ones. Each column represents a cluster identified in Figure 2.
Edges represent transitions from one cluster to another, and are la-
beled with the unit observation that most likely triggered the transi-
tion. The undecorated arrows describe four games in which normal
strategies were observed. The arrows with diamonds on their tails
describe two of the games our model found most unlikely.

intervals 6 and 7 appear to be the earliest that Robotics Fa-
cilities are constructed in the games we saw, which explains
why predictions made with evidence up to this point increase
in accuracy. We consider this good performance given that
the model only has knowledge for half of the game when
making a prediction about a possible future Reaver.

Game Traces
The Viterbi algorithm (Rabiner 1990) can be applied to the
learned model to compute the most likely sequence of states
responsible for a given set of observations. We refer to such
a sequence of states as a game trace.

We can interpret game traces as paths through the clus-
ters in the state diagram (Figure 2). Clusters correspond to
higher-level behaviors than the individual states, which al-
lows us to examine the game at a higher level of abstraction.
Figure 4 shows paths through the clusters for six different
games. The solid arrows show a “standard” build order, in
which the Protoss player takes an early expansion and then
researches Observer technology. The dashed and irregular
arrows show two different games in which the Protoss player
attempted a Reaver drop. In the first game, the player went
for a Reaver quickly and followed it up by taking an expan-
sion, while in the second, the player took an expansion first
and went for Reavers afterward. Despite the different tem-
poral ordering of the build choices, the model detected the
Reaver drop strategy in both cases before the Reaver was
actually built. The trace shown with dotted arrows was a
Dark Templar game. This trace illustrates a weakness of our
model. Although the Protoss player actually built Dark Tem-
plar for only a single time step before proceeding to take an
expansion, the high self-transition probability of the Dark
Templar state (State 5) outweighed the influence of the ob-
servations, causing the model to predict more Dark Templar.

●
−

15
−

10
−

5
0

Sequence Likelihoods

30−Second Interval (t)

Lo
g

Tr
an

si
tio

n
P

ro
ba

bi
lit

y
x x

x

x

x x

x

x

x x
x

x x

x

●
● ● ● ● ●

●

●

●

●

●

●

●

●

X
●

Game 1 (Cannon Rush)
Game 2 (Carrier Rush)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 5: The relative likelihood of transitioning from state t − 1
to t for the duration of two unusual games.

Identifying Unusual Games The Viterbi algorithm also
returns the overall likelihood of the best path given the pa-
rameters of the HMM. We can find unlikely games by exam-
ining these likelihoods. We can then calculate the likelihood
of transitioning through the states in the game traces in or-
der to determine what parts of each game our model finds
unlikely. The transition likelihood is given by

ln

(
P (St = k|St−1 = j,O1:t)

P (St−1 = j|St−2 = i, O1:t−1)

)
,

where k, j, and i correspond to the most likely states at times
t, t − 1, and t − 2 in the game trace. Large negative values
indicate unlikely transitions from the previous time interval.

We examined the five least-likely games in our dataset.
Generally, we found that they featured strategies that would
be risky or ineffective against skilled opponents. The like-
lihood traces for two of these games are shown in Figure
5. Game 1 demonstrates a Cannon rush strategy, in which
the Protoss player uses defensive structures (Photon Can-
nons) offensively by building them in his opponent’s base.
The Cannons are defenseless while under construction, so
the rush will fail if the opponent finds them in time. This
strategy is rare in high-level play because it will almost al-
ways be scouted. The model gives low likelihood to intervals
2, 4, 5, and 7, when the player constructs a Forge, Cannon,
Cannon, and third Cannon. From the game trace (Figure 4;
filled diamonds), we see that the most likely state sequence
did not leave the “Early Game” cluster until much later than
the more typical games, since the Protoss player was spend-
ing money on Cannons rather than on early development.

Game 2 shows a very unusual Carrier rush strategy. Car-
riers are an advanced Protoss technology, typically seen only
in the late game. To build one in the first seven minutes, the
Protoss player must limit investment in military units, mak-
ing this strategy tremendously risky. It is a “fun” strategy,
which one will not see in high-level play. The deepest dips
in likelihood (Figure 5) correspond to the decisions to build a
Stargate (t = 7), Fleet Beacon (t = 9), and Carrier (t = 11),
as shown in the game trace (Figure 4; open diamonds).

Summary and Future Work
This work investigated a probabilistic framework, based on
hidden Markov models, for learning and reasoning about
strategic behavior in RTS games. We demonstrated our ap-
proach by learning behavior models from 331 expert level
Starcraft games. The learned models were shown to have

utility for several tasks including predicting opponent behav-
ior, identifying common strategic states and decision points,
inferring the likely strategic state sequence of a player,
and identifying unusual or novel strategies. We plan to ex-
tend this initial investigation in several directions. First, we
are interested in incorporating partial observability into the
model, and using the learned behavior models to optimize
scouting activity. In particular, scouting should be directed
so as to acquire the observations most useful for reducing
uncertainty about the opponent’s strategy. Second, this work
has used a relatively simple model of behavior, both in terms
of the observations considered and the transition model. We
plan to extend this by allowing states to encode more re-
fined information about production rate and by using tran-
sition models that explicitly represent state duration. Third,
we are interested in extending the model to account for activ-
ity throughout full games rather than just the first 7 minutes.
This will include inferring behavior states related to tactical
activities such as attacking and defending. Fourth, we are in-
terested in demonstrating that such predictive models can be
used effectively in Monte-Carlo planning for RTS game AI.

Acknowledgements
This research was partly funded by ARO grant W911NF-08-1-
0242. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of
ARO or the United States Government.

Jesse Hostetler is supported in part by a scholarship from the
ARCS Foundation, Portland, OR.

References
Aha, D. W.; Molineaux, M.; and Ponsen, M. 2005. Learning to
win: Case-based plan selection in a real-time strategy game. Case-
Based Reasoning Res. Dev. 5–20.
Balla, R., and Fern, A. 2009. UCT for tactical assault planning in
real-time strategy games. In IJCAI, 40–45.
Chung, M.; Buro, M.; and Schaeffer, J. 2005. Monte Carlo plan-
ning in RTS games. In IEEE CIG, 117–124.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maximum
likelihood from incomplete data via the EM algorithm. JRSS B
39(1):1–38.
Hsieh, J., and Sun, C. 2008. Building a player strategy model by
analyzing replays of real-time strategy games. In IJCNN, 3106–
3111. IEEE.
Murphy, K. 2002. Dynamic Bayesian Networks: Representation,
Inference, and Learning. Ph.D. Dissertation, University of Califor-
nia, Berkeley, Berkeley, California.
Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2007. Case-
based planning and execution for real-time strategy games. Case-
Based Reasoning Res. Dev. 164–178.
Rabiner, L. R. 1990. A tutorial on hidden Markov models and
selected applications in speech recognition. In Readings in speech
recognition. Morgan Kaufmann. 267–296.
Schadd, F.; Bakkes, S.; and Spronck, P. 2007. Opponent modeling
in real-time strategy games. In 8th Int’l Conf. on Intelligent Games
and Simulation, 61–68.
Weber, B., and Mateas, M. 2009. A data mining approach to strat-
egy prediction. In IEEE CIG, 140–147. IEEE.

